Notes of A Mathematician's Apology, Ch.2
I propose to put forward an apology for mathematics; and I may be told that it needs none, since there are now few studies more generally recognized, for good reasons or bad, as profitable and praiseworthy. This may be true: indeed it is probable, since the sensational triumphs of Einstein, that stellar astronomy and atomic physics are the only sciences which stand higher in popular estimation. A mathematician need not now consider himself on the defensive. He does not have to meet the sort of opposition describe by Bradley in the admirable defence of metaphysics which forms the introduction to Appearance and Reality.
我打算代数学道个歉;也许会有人和我说数学并不需要(道歉),因为不管是出于好的还是坏的原因,大家都认可没有什么学科比数学更有好处和有声望。也许他们是对的:因为自从爱因斯坦卓越的成就以来,基本上也只有华丽耀眼的天文学和原子物理是比数学在大众心目中地位更高的了。数学家没有必要自我戒备起来。(因为)他并没有必要遇到布拉德利对于形而上学值得倾佩的辩护,而后者构成了《表现与现实》的介绍。
A metaphysician, says Bradley, will be told that ‘metaphysical knowledge is wholly impossible’, or that ‘even if possible to a certain degree, it is practically no knowledge worth the name’. ‘The same problems,’ he will hear, ‘the same disputes, the same sheer failure. Why not abandon it and come out? Is there nothing else worth your labour?’ There is no one so stupid as to use this sort of language about mathematics. The mass of mathematical truth is obvious and imposing; its practical applications, the bridges and steam-engines and dynamos, obtrude themselves on the dullest imagination. The public does not need to be convinced that there is something in mathematics.
一个形而上学家,布拉德利说,会被告知说,“形而上学知识是不可能达到的”,或者“即使部分程度上你能获取一些(形而上学)知识,这知识基本上也配不上他的名号。”“相同的问题,”他会听到,“相同的争议,相同的脆败。为什么不放弃(这门学科)早日改行呢?难道没有其他东西值得你研究吗?”(但是)没有傻子会说数学是个劝退专业。数学真理的重量不言自明,甚至“咄咄逼人”;他的实际应用,像桥,蒸汽机和发电机等,已经是数学的最无聊应用了。公众不需要相信数学中有什么东西。
Metaphysical knowledge,直译为“形而上学知识”。而在这里,F. H. 布拉德利作为一名受康德影响很深刻的哲学家,我认为他对于“形而上学知识”的理解应该与康德的解释类似。
Immanuel Kant
我在YouTube上找到一个关于这个话题的视频,以下是大致内容:
“Metaphysical knowledge”是康德哲学理念中颇为重要的一部分。康德提出过这样一个观点:形而上学知识须为“先验综合知识” (synthetic a priori knowledge)。具体说来,在哲学范畴中,知识可以被分作“综合知识”(synthetic knowledge)和“分析知识”(analytic knowledge)。“分析的知识”直接指向定义所包含的内容,比如“单身汉都没有结婚”(定义如此),“Ag的原子序数是47”(这是通过元素周期表的构造得来); “综合知识”则指向定义所不涉及的内容,比如“单身汉很快乐”(和单身在定义上没有联系),“Kr不和很多金属反应”(并不是决定元素Kr的本质)。
同时,知识又分作“先验”(a priori)和“后验”(a posteriori)两种。先讲“后验知识”。后验知识是指所有通过经验得到的,即通过人的感官观察,然后总结推理得出,比如“纯银是闪亮有光泽的”(诉诸视觉),“真香”(诉诸味觉,嗅觉)等。与此同时,“先验知识”指的是不需要通过感官和感受而得出的。比如“1+1=2”,并不需要动用任何感官(手,鼻子等)。
这是两种知识的分类方法,稍加推断我们可以得出,所有的分析知识一定是先验的,因为动用定义不依赖于任何感官。(问题:物理,化学定义是否动用了感官?)
所以,既然综合知识是和定义不相关的,那么想要获取综合知识,就一定要动用感官吗?在康德看来并不是。他认为综合知识中也有一部分是属于先验知识:比如数学。正像欧式几何这样的领域,“三角形的内角和是180度”,是可以通过定义和几种基本公理推断得出的。而康德则认为这就是metaphysical knowledge的内涵。
视频的原址在这里:
回到原文,哈代开始阐述数学在公众认知中的地位。从他的口气来看他应该是对自己的学科相当的自信。自恃清高也依旧不改,“公众不需要相信数学中有什么东西,”是他的结论,因为在他看来数学并不是一个门槛低大家都能来评论一番的学科。
All this is in its way very comforting to mathematicians, but it is hardly possible for a genuine mathematician to be content with it. Any genuine mathematician must feel that it is not on these crude achievements that the real case for mathematics rests, that the popular reputation of mathematics is based largely on ignorance and confusion, and there is room for a more rational defence. At any rate, I am disposed to try to make one. It should be a simpler task than Bradley’s difficult apology.
所有这些东西都给数学家带来了很大的安慰,但是一个真正的数学家是基本不可能对此感到满意的。任何一个真正的数学家一定会觉得真正的数学并不停留在这些粗浅的成就,一定会觉得对于数学的流行观点其实是因为无知和误解,会觉得会有一个更理性的辩解。无论如何,我很乐意试着做一个(辩解)。(做这事)这应该比布拉德利艰难的辩白简单。
哈代先是表达了很多人觉得数学其实不需要辩白的观点,因为公众对于数学的认知是宏大的,数学驱动了工程、科学发展,是一个明眼人都能看得出来的事实。但是哈代作为一个真正的数学家,内心对于公众的谬赞实际可能是感到尴尬的。哈代认为真正的数学并不是公众想象的那样“粗浅”,而是背后有着抽象复杂的智力游戏。而他试图在公众面前否定很多对于数学的称赞,但是一种全新的方式证明数学的本质价值。
I shall ask, then, why is it really worth while to make a serious study of mathematics? What is the proper justification of a mathematician’s life? And my answers will be, for the most part, such as are expected from a mathematician: I think that it is worth while, that there is ample justification. But I should say at once that my defence of mathematics will be a defence of myself, and that my apology is bound to be to some extent egotistical. I should not think it worth while to apologize for my subject if I regarded myself as one of its failures.
那么,我应该问,为什么系统深入的研究数学有价值呢?数学家一生的意义价值体现在哪里?我的回答会是,大部分和数学家所期望的一样:我觉得有价值,并且有充足的体现和证明。但是我会说我的关于数学的辩白很大程度上是关于自己的辩白,而且给自己的辩白肯定会有些自我为中心。不过我并不觉得我应该代表数学做辩白,如果我是数学中的败者的话。
Some egotism of this sort is inevitable, and I do not feel that it really needs justification. Good work is no done by ‘humble’ men. It is one of the first duties of a professor, for example, in any subject, to exaggerate a little both the importance of his subject and his own importance in it. A man who is always asking ‘Is what I do worth while?’ and ‘Am I the right person to do it?’ will always be ineffective himself and a discouragement to others. He must shut his eyes a little and think a little more of his subject and himself than they deserve. This is not too difficult: it is harder not to make his subject and himself ridiculous by shutting his eyes too tightly.
有些自大是不可避免的,而且也不需要什么理由。伟大的工作都不是由“谦虚”的人来完成的。对于任何一门学科的一位教授来说,他的首要任务之一,就是夸张一点点地描述自己学科的重要性,和自己在这之中的重要性。一个一直在问“我做的事情是有意义的的吗”和“我是做这件事的正确人选吗”的人永远是低效的,并且让别人也泄气。他必须闭上眼睛然后高看一下他的学科和自己所值得的东西。这并不是很难的事:当他闭上眼睛的时候,让他不把自己的和自己所在的学科想的太天花乱坠才是更难的事情。