Math 525

Yiwei Fu

Oct 29

1 Generating function

Recall two kinds of generating functions:

1.

$$
G_X(s) = \sum_{n=0}^{\infty} p_X(n) s^n = \mathbb{E}\left(s^X\right)
$$

where *X* is a "counting" variable (taking values $0, 1, 2, \ldots$).

2.

$$
M_X(t) = \mathbb{E}\left(e^{tX}\right).
$$

is a more general form.

Let's compute some examples.

Example 1.1. • $X \sim \text{Poisson}[\lambda]$:

$$
G_X(s) = \sum_{n=0}^{\infty} e^x \frac{\lambda^n}{n!} s^n
$$

= $e^{-\lambda} \sum_{n=0}^{\infty} \frac{(\lambda s)^n}{n!}$
= $e^{-\lambda} e^{\lambda s}$
= $e^{\lambda(s-1)}$.

• $M_X(t)$ for $X \sim \text{Norm}[\mu, \sigma^2]$. Take $\mu = 0, \sigma = 1$.

$$
\mathbb{E}(e^{tX}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-x^2/2} dx
$$

= $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x^2 - 2xt)/2} dx$
= $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x-t)^2/2 + t^2/2} dx$
= $e^{t^2/2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x-t)^2/2} dx$
= $e^{t^2/2}$.

Now consider $M_{aX+b}(t)$ since $\sigma Z + \mu \sim \text{Norm}[\mu, \sigma^2]$.

$$
M_{X+b}(t) = \mathbb{E} (e^{tX+b})
$$

\n
$$
= \mathbb{E} (e^{tX} \cdot e^{tb})
$$

\n
$$
= e^{tb} \mathbb{E} (e^{tX}) = e^{tb} M_X(t),
$$

\n
$$
M_{aX}(t) = \mathbb{E} (e^{taX})
$$

\n
$$
= \int_{-\infty}^{\infty} e^{tax} f_X(x) dx
$$

\n
$$
= M_X(at).
$$

Hence

$$
M_{\sigma Z + \mu} = M_{\sigma Z}(t)e^{t\mu} = M_Z(\sigma t)e^{t\mu} = e^{t\mu + \frac{\sigma^2 t^2}{2}}.
$$

<u>FACTS</u>: G_X, M_X determine the density "uniquely".

CAUTION: "Random sums"

$$
S_n = \sum_{i=1}^n X_i
$$

where X_i are iid's. Then

$$
G_{S_m}(S) = (G_{X_1}(s))^n.
$$

A random sum is defined as follows:

$$
S_n = \sum_{i=1}^{N} X_i, \quad N \text{ is a "counting" random variable.}
$$

where X_i are iid's. Do we have

$$
G_{S_N}(s) = (G_{X_1}(s))^N?
$$

No, there is a variable outside on the RHS. We do have

$$
G_{S_N}(s) = \mathbb{E}\left(s^{S_N}\right)
$$

\n
$$
= \mathbb{E}\left(\mathbb{E}\left(s^{S_N} \mid N\right)\right)
$$

\n
$$
= \sum_{n=0}^{\infty} \mathbb{E}\left(s^{S_N} \mid N=n\right) \mathbb{P}(N=n)
$$

\n
$$
= \sum_{n=0}^{\infty} \mathbb{E}\left(s^{S_n}\right) \mathbb{P}(N=n)
$$

\n
$$
= \sum_{n=0}^{\infty} (G_{X_1}(s))^n \mathbb{P}(N=n)
$$

\n
$$
= G_N(G_{X_1}(s)).
$$

Example 1.2. Suppose $X_i \sim \text{Bernoulli}[p]$ and $N \sim \text{Poisson}[\lambda]$. What is $\sum_{i=1}^{N} X_i$? Recall:

$$
G_{X_1}(s) = q + ps, G_N(s) = e^{\lambda(s-1)}.
$$

Hence

$$
G_{S_N}(s) = e^{\lambda(q+ps-1)} = e^{\lambda p(s-1)}.
$$

So, $\sum_{i=1}^{N} X_i \sim \text{Poisson}[\lambda p]$.

2 Applications to random walk

Can be biased: $p \neq \frac{1}{2}$. Is it <u>transient? recurrent?</u>

TRANSIENT: starts at 0, not recurrent.

RECURRENT: starts at 0, $Prob(return) = 1$

Theorem 2.1. *A random walk is recurrent if and only if* $p = q$.

Proof. Let

$$
p_0(n) = \text{Prob}(S_n = 0), f_0(n) = \text{Prob}(S_n = 0, S_1, \dots, S_{n-1} \neq 0).
$$

and $P_0(s)$, $F_0(S)$ be the generating functions.

Let $E =$ event " $S_n = 0$ ". $Prob(E) = p_o(n)$. $F^{(k)} =$ event "k is the first return."

$$
P(E) = \sum_{k=1}^{n} \mathbb{P}(E \mid F^{(k)}) \mathbb{P}(F^{(k)})
$$

$$
= \sum p_0(n-k) f_0(k)
$$
multiply sⁿ, add 1

$$
\xrightarrow{\text{multi by } s^n, \text{ add } 1} P_0(s) = 1 + P_0(s) F_0(s)
$$

So we have

$$
P_0(s) = 1 + P_0(s)F_0(s)
$$
\n(1)

CLAIM: $P_0(s) = (1 - 4pqs^2)^{-\frac{1}{2}}$.

$$
\text{Prob}(S_n = 0) = \begin{cases} {n \choose \frac{1}{2}n} (pq)^{n/2} & n \text{ even} \\ 0 & n \text{ odd.} \end{cases}
$$

$$
P_0(s) = \sum_{k=0}^{\infty} {2k \choose k} (pq)^k s^{2k}
$$

Check: Taylor series of $(1-4pqs^2)^{-\frac{1}{2}}$ at $s=0$. Solve [\(Equation 1\)](#page-3-0) we have that

$$
F_0(s) = [1 - 4pqs^2]^{1/2}.
$$

Let $s = 1$, we have

$$
F_0(1) = 1 - |p - q|.
$$