Math 525

Yiwei Fu

Oct 27

1 Generating Functions

$$G_X(s) = \sum \mathbb{P}(X = n)s^n = \mathbb{E}\left(s^X\right)$$

If you have to RV's X, Y and $G_X = G_Y$, then $X \sim Y$. They have the same pmf.

Other generating function is moment generating function. Recall the n-th momenet of X is $\mathbb{E}(X^n)$.

$$M_t(X) = \mathbb{E}\left(e^{tX}\right)$$
$$= \mathbb{E}\left(\sum_{n=1}^{\infty} \frac{t^n}{n!} X^n\right)$$
$$= \sum_{n=1}^{\infty} \frac{t^n}{n!} \mathbb{E}\left(X^n\right)$$

when converges.

We have $\frac{de^t}{dt} = e^t$. Hence

$$\left. \frac{d^n}{dt^n} M_X(t) \right|_{t=0} = \mathbb{E} \left(X^n \right).$$

Example 1.1. Bernoulli $[p] \sim X$.

$$G_X(s) = \mathbb{P}(X=0)s^0 + \mathbb{P}(X=1)s^1 = (1-p) + ps.$$

$$M_X(t) = \mathbb{E}\left(e^{tX}\right) = \sum_x e^{tx} \mathbb{P}(X = x)$$

= $e^{t \cdot 0}(1 - p) + e^{t \cdot 1}p$
= $(1 - p) + e^t p$.

 $X \sim B[n, p], X \sim X_1 + \ldots + X_n, X_i$ are iid's and $X_i \sim \text{Bern}[p]$.

Theorem 1.2. Let X, Y be independent RV's in values $\mathbb{Z}_{\geq 0}$ then

$$G_{X+Y}(x) = G_X(s)G_Y(s).$$

Proof. Just compare coefficients.

$$\mathbb{P}(X+Y=n) = \sum_{i=0}^{n} \mathbb{P}(X=i)\mathbb{P}(Y=n-i)$$

Theorem 1.3. (Abel's Theorem) If $\sum_{n\geq 0} a_n s^n$ with $a_i\geq 0$ and converges for |s|<1 then

$$\sum a_i = \lim_{s \uparrow 1^-} G_X(s).$$

Now we look at moment generating functions: X, Y are independent RV's, then

$$M_{X+Y}(t) = M_X(t)M_Y(t).$$

Proof.

$$M_{X+Y}(t) = \mathbb{E}\left(e^{t(X+Y)}\right)$$
$$= \mathbb{E}\left(e^{tX}e^{tY}\right)$$
$$= \mathbb{E}\left(e^{tX}\right)\mathbb{E}\left(e^{tY}\right)$$
$$= M_X(t) \cdot M_Y(t)$$

Example 1.4. Binary, $(M_{X_i}(t))^n$.

 $G_X(s)$ where $X \sim \text{Geom}[p]$:

$$G_X(s) = \sum_{n=1}^{\infty} s^n \mathbb{P}(X=n)$$

$$= \sum_{n=1}^{\infty} s^n p (1-p)^{n-1}$$

$$= ps \sum_{n=1}^{\infty} s^{n-1} (1-p)^{n-1}$$

$$= ps \frac{1}{1-s(1-p)}$$

$$= \frac{ps}{1-sq}$$

when it converges |sq| < 1.

We can look at joint distributions and functions of them, $p_{X,Y}(x,y), G_{X,Y}(s,t) = \sum_{i,j \geq 0} p_{X,Y}(i,j) s^i t^j$.