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1 Random Walk

Start with Problem 3.11.3
E(f(X)) =Y f(z)px(x).

It is also true for jointly discrete RV’s.
Can use this for our argument about “probabilistic method” for counting

Theorem 1.1. Suppose X1, ..., X, are jointly distributed RV’s (discrete), then
EXi1+...+X,)=EXy)+... +E(X,).
Proof.
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Notice: X; need not to be independent.
For Canvas, in “File”, there are handbooks of distributions.

Conditional Expectation:



Suppose X,Y are jointly distributed RV’s. Then conditional expectation:

E<Y|X=w>=2ym<¥=yiX:w:ZW'

Notice:

1. If X,Y are independent then
EY | X =2)=E(Y).

2. E(Y | X =) in general an RV = f(X) =E(Y | X). We have

E(E(Y | X)) =E(Y).
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“Moments” E(X™).
“Ist moment”= E(X1!) = E(X).
“2nd moment”= E(X?) > 0.

Why study moments?

Consider continuous distribution on [0, 1]. We have a p.d.f fx ().
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where x[q,5 () is the characteristic function
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Moments:
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Weierstrass approximation theorem: g(x) is
Pi(z) s.t. |g(z) — Py(x)| < 1 for i >> 0.

Invariant of a distribution:

What is the difference between

continuous on [0, 1] there there exists a polynomial

¥ 1, g’Y: 100, %-
-1, 3 —100, 3
We have
E(X)=E(Y)=0
Spread:
E(X?) = 1,E(Y?) = 10000.

In general, Var(X) = E((X — E(X))?).

Notice:

Var(X) =0 < Prob(X =E(X)) =1

Proof. Denote E(X) = p.

Var(X) = E(X

x

—E(X))?)

> (@ = p)’px ()

=0 = px(x)=0ifx —p #0.
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