Math 525

Yiwei Fu
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Parameter A > 0.

Claim: E(z) = A.

Where does this come from?
1. Approximation to the binomial (small & and pn = \)
2. occurrences of rare events

Calculate: X,, , = Bin[n, p], expectation = np = X
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First: Jointly distributed RV’s. X,Y are RV’s of same Q2. X = 1st toss, Y = 2nd toss.
X, Y are the “marginals."

p-m.f
px (i) = ZPX,Y(ia J)-

py(j) = ZPX,Y(LJ')
When are X, Y independent?
px.y (i,7) = px (1)py (j)-
There is a notion related to expectation which is weaker than independence correlation:
if
E(XY) =E(X)E(Y)
we say X, Y are uncorrelated.

If X,Y are independent, with E(X) = E(Y) = 0 then they are uncorrelated.

Basic Fact:
E(Xy+...+X,) =E(X1) +... + E(X,).



