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Expectation
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Then we get
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Poisson RV: p.d.f

px(k) = e−λ
λk

k!
, k ∈ Z+.

∑
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∑ λk
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Parameter λ > 0.

Claim: E(x) = λ.

Where does this come from?

1. Approximation to the binomial (small k and pn = λ)

2. occurrences of rare events

Calculate: Xn,p = Bin[n, p], expectation = np = λ
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P(Xn,p) =
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(1− p)n−k =
(1− p)n

(1− p)k

= [(1− p)1/p]λ

= (e−1/p)k = e−λ

First: Jointly distributed RV’s. X,Y are RV’s of same Ω. X = 1st toss, Y = 2nd toss.
X,Y are the “marginals."

p.m.f
pX(i) =

∑
j

pX,Y (i, j).

pY (j) =
∑
i

pX,Y (i, j).

When are X,Y independent?

pX,Y (i, j) = pX(i)pY (j).

There is a notion related to expectation which is weaker than independence correlation:
if

E(XY ) = E(X)E(Y )

we say X,Y are uncorrelated.

If X,Y are independent, with E(X) = E(Y ) = 0 then they are uncorrelated.

Basic Fact:
E(X1 + . . .+Xn) = E(X1) + . . .+ E(Xn).
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