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Chapter 1

Source Codes

1.1 Lossless Coding

Lossless coding is a type of data compression.

GOAL to encode data into bits so that
1. bits can be decoded perfectly or with very high accuracy back into original data;
2. we use as few bits as possible.

We need to model for data, a measure of decoding accuracy, a measure of compactness.

MODEL FOR DATA

Definition 1.1.1. A source is a sequence of i.i.d (discrete) random variables Uy, Us, . ..

We would like to assume a known alphabet A = {a1,as, ..., aq} and known probability
distribution either through probability mass functions py (v) = Pr[U = u].

Definition 1.1.2. Source coding

PERFORMANCE MEASURES A measure of compactness (efficiency)

Definition 1.1.3. Encoding rate, also called rate, is the average number of encoded bits

per data symbol.
There are two versions of average rate:

1. Emprical average rate

N
. 1
<7‘> = ngnoo ﬁ ];Lk(Uh LR Uk')7
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2. Statistical average rate

where L is the number of bits out of the encoder after U, and before Uy ;.

Definition 1.1.4. The per-letter frequency of error is defined as
| X
(Frp) = lim — ;1 (U, = Uy)
and per-letter error probability is defined as

N
pre = lim Z I(U, = Up)] —A}EHOO—ZPr (U, = Up)

1.1.1 Fixed-length to Fixed-length Block Codes (FFB)

characteristics

Definition 1.1.5. A code is perfectly lossless (PL) if the B(a(u)) = u for all u € A}, (the set

of all sequences uy, ..., ug).

In order to be perfectly loss, & must be one-to-one. Encode must assign a distinct code-

word (L bits) to each data sequences. rate = L/K. We seek R}, (k) the smallest rate of

any PL code.

Number of sequences of size k = Q*, and number binary sequence of size L = 2L, We

need 2F > QF.

Choose [klog, @], then we have

R, () = Ufloi;z Q} < klongQ—&-l 2Q+ 1

" 1
log, Q < Rpp (k) <log, Q + T

Let R}, be the least rate of any PL FFB code with any k. R}, (k) — log, Q as k — oo.

Rpy, = infy Ry ()
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Now we want rate less and log, () almost lossless codes.
R*; = inf{r, there is an FFB code with 7 < r and arbitrarily small P;g}
= inf{r, there is an FFB code with 7 < r and Prp < § forall § > 0}

Instead of per-letter probability Pr g, we focus on block error probability Prr = Pr(Q +
U)

Lemma 1.1.1. Pgg > Prp > %

Proof. See homework. [ |

To analyze, we focus on the set of correctly encoded sequences. G = {u : f(a(u)) = u}
Then we have

Ppr =1—Pr[U € G, |G| < 2%, L > [log, |G]] .
QUESTION How large is the smallest set of sequences with length k form Ay with prob-
ability ~ 1?
We need to use weak law of large numbers (WLLN).

Theorem 1.1.1. Suppose A, = {1,2,...,Q} withprobability p:,...,pg. Givenu = (u1,...,ux) €
A¥.

ng(u) 1= #times ag occurs inu,  fq(u) = nqli@) = frequency

Fixanye > 0,
Pr(fy(u) =pg el — lask — oco.

Moreover,
Prif,(u) =p,te,q=1,...,Q] = qas k — oc.
NOTATION g =bte < |a—b| <e
Consider subset of A%, that corresponds to this event .
T ={u: folu) =p,te,q=1,...,Q}.
Pr{U = u] = p(u1)p(uz) . .. p(ur)-
By WLLN, Pr(T}) — 1l as k — oc.

KEY FACT all sequences in T} have approximately the same probability.
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Foru e T},

p(w) = p(ur)p(uz) . . . p(us)

_ p?l(u)pgz(w - .ka(u)
kfi(u) kfa(u k u
:plfl( )p2f2( )"‘pkfk( )

~ p" where p = p* ph? Py

So we have || ~ .

Then we have

_ log, [Tk klog, p -
T = 2k =— l<;2 = —log,y p.

Is that rate good? Can we do better? Can we have a set S with probability ~ 1 and
significantly smaller?

Since Pr(U € AF\Ty) ~0 = Pr(U € S)~Pr(U € SNT}) ~ 151 5o when k is large,

[T

T}, is the smallest set with large probability. And R¥; ~ —log p.

How to express p.

Q
—logp = —log [ [ "

i=1

Q
=- Zpi log p; =: entropy = H.
i=1

Some properties of H:
1. its unit is bits
H>0.
H =0 < p,; =1forsome q.

. H <log, Q.

S SN

. H=log,Q — pqzéforallq.

Identify the set that WLLN says has probability — 1. Suppose X, Xs,... iid. real-
valued variables. v
1 S
T={xy...0, € AY : N;:ci:xis}

is called a typical set. Pr(X € T) ~ 1 when N is large.

Now suppose X1, Xo,...1iid. A;-valued random variables, function g : A, — R. Con-
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sider Y7, Ys,... with Y; = g(X;). Y;'s are i.i.d. random variables.
If E[g(X)] is finite than we can apply WLLN that

N
1 .
Pr(N E_IYZ-:]E[Y]:N:5> —1 as N — 0.

Typical sequences wrt g:

N
TIYP)\#]; { Z ;) = 9(X) }
If E[g(X)] is finite then by WLLN we have

Pr(XeTy,) =1 as N —oo.

1 zeF
Example 1.1.1 (Indicator function). Suppose F' C Ax, and g(z) = . Then

0 ¢ F
LN g(z;) = fr(z). Now
T, ={z: fr(z) =Pr(X € F) £ ¢}
By WLLN,

PriXeT,) -1 as N — oo, = Pr(np(X)=E[z]te) - 1.

Example 1.1.2. 4, =R, g(z) =22 T, = {z :}

Theorem 1.1.2. Now suppose M functions g1, gz, ..., gm. Fix e. Then

91,92 cagM T ﬂ T it

Pr(X €Ty g0,900) =1 as N — o0.
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Proof.

IMPORTANT APPLICATION

Suppose A, = {ai,...,aq} afinite alphabet with probability p, ..., pg. The g,(x) be the
indicator of a,. T, = {z : f,(z) =p,+c}. And T = ﬂ?:l T, = {z :Vq, fy(z) =p, £ e}
T)]}f px.c Very typical sequence. We have

Pr(XeT)—1 as N — ooc.

IfzeT, thenz € Tg for any other g. Consider any real-valued g. If z € T. thenz € Ty ec

for some c.

1 X ny(x) Q Q
N Zg(:rz) = Z qN 9(Qq) = Z(pq + g)g(aq) = E[g(X)] +5ZQ(Qq)

i=1 q=1 q=1

p(z) = p(x1)p(x2) ... p(wN)

_ ni(z)
1 e

= p{l(g)N “ee
= p&plis)N R

Q Q
= 9N(32g . pqlogpgte 320 log pg) = 9-NH#Nze

Theorem 1.1.3 (Shannon-McMillian Theorem). Suppose X1, Xo, .. .iid, Ay = {a1,...,aq}
with probability p1, .. .,pg. Then

Pr(X e TN) - 1as N — oo.



Shannon-McMillian Theorem Yiwei Fu

2. Ifi c TEN, p(g) KR 27NH:‘:NEC.

3. |TN| = Pr(X € TN)2N(Hew),

Proof. [ |

1.2 Shannon-McMillian Theorem

Is T essentially the smallest set with probability ~ 1?
Yes. Let S € AY. We have

Pr(X € S = Pr(X € SNT)+Pr(X € SNT¢)=|SNT|2- NHE2Ne L Pr(T°) = 0 as N — oo.

Theorem 1.2.1. For every ¢ > 0, there is a sequence bz 1,be2,... st. be y — 0as N — oo,
be.g > 0.

Forany N and any S C A¥,

|S| > (Pr(X € S) — b ) 2NHNee,

An in hindsight shortcut

Let us directly consider

T§. = {@ p(z) = TN(HiE)}
— . 7i1 ( ) = H +
=z -y logp(a) = €
| X
= {m: fﬁzllogp(xi) = Hi€}
compare TV and TX.
Claim: TN ¢ T, where c = —; %, log p,.

Suppose z € TN. Show if it is also in T.Y.. Check the following p(z) = 2~ NH=N=,
—logp(x) = NH + Nec.
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N
—log p(z) = —log [ [ p(x:)
i=1
Q
= — log H pgq(m)
q=1

Q
q=1

Q

= —log H péV(PqiE)
q=1

Q
= —ZN(pq:I:E)logpa

q=1

C
= NH + Ne ) logpi

qg=1
= NH + Nec.

Extreme example:

A= {01} po=pri= b H=1
p(z) =27N.

TN = {2 p(x) = 2~ NHE) — 9=V} — 4N,

TN ={z:m(z=N(;+e))}

TN |22gN (ko) | TN |2gN (Hi2ec),

T, is called probability typical. T is called frequency typical.

Example A, = {0,1},p1 = L, po = 2. TN = {2: fi(x) = L +&}.

7 = {g  fi(z) = L £ Nelog 1—P1}

p1

Typical sequences for an infinite alphabet
There are two cases: A, is countably infinite / random variables are continuous

In the first case, frequency typical approach doesn’t work. Probabilistic typical approach
works just as is. H = — >, p, log p, can be infinite.

Let S5,y = size of the smallest set of N sequences form A, with probability at least 1 —¢.

Thenforany0<6<1andanyh,§i,—’%—>ooas]\f—>oo.



Fixed Length to Variable Length (FVB) Lossless Source codes Yiwei Fu

1.3 Fixed Length to Variable Length (FVB) Lossless Source

codes

Recall that FFB perfectly lossless has R},; = log, |A;|, and FFB almost lossless has RY; =
H.
FVB perfectly lossless R, < log, |Az|.

Suppose we have a source with A, = {a, b, ¢, d} with probability {3, 1,1, 5 }-

p(u) u | codel code2 code3 code4 code5 codeb
: a 00 0 0 0 0 0
3 b 01 10 10 10 1 01
: c 10 110 10 11 01 011
% d 11 111 11 111 10 0111
Rate 2 1.75 1.5 1.625 1.25 1.875

We can see that code 3-5 are all bad.

Code 6 has an advantage that you know 0 represents the start of a codeword. We will
see later why (Example 1.4.2).

FVB source code is characterized by
¢ source length k&
* codebook of binary codewords C' = {v;,v,,...,vox }, Q = |Ay].
e encoding rule o : AX — C
e decoding rule 3: C — AK.
The encoder operates in block fashion. The decoder does not.
Distinguish codes that look like code2 and codes that look like code6.
Definition 1.3.1. A codebook C is prefix-free if no codeword is the prefix of another.

A prefix-free code is called a prefix code. We will stick to prefix codes until states other-
wise. (instantaneously decodable)

We like to draw binary tree diagrams of code.

Code 1:
233

%>, p(w)L(w)

e
=

A prefix is perfectly lossless if and only if « is 1-to-1. The rate: 7(c) =
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(length of codeword assigned to w)

v (k) = min {F(c) : cis perfectly lossless FVB with source length £} .
Ry, = inf {F(c) : cis PL FVB prefix code with any source length} = i%f Ry (k).

How does one design a prefix code to have small or smallest rate?
Focus first £ = 1. Shannon’s idea: L, ~ — log, pq.
Zqul pglg =~ — Z(?=1 pglogp, = H.

Question. Is there a prefix code with L, ~ —logp, for ¢ = 1,2,...,Q? Could there be
prefix codes with even smaller rate?

Theorem 1.3.1 (Kraft inequality theorem). There is a binary prefix code with length L1, Lo, ..., L
iff the Kraft sum

Q
ZQ*Lq <1.
q=1

Proof. Suppose vy, ..., is a prefix code with length Ly, ..., Lg. Let Lyjax = maxy L.

From the tree, the number of sequences of length L,,.. prefixed by any codeword, is
Equl 2Lmax—Le < 2lmax —; Zqul 27La < 1. So the Kraft inequality holds. n

Now suppose
Lq = |—_10g2pq—| 4 = 17"'7@' (131)

Is there a code with these lengths? Check Kraft.

9~ [—1logpg]

e

> oot

q=1

=)
Il
_

2_(_ log pg)

Me

<
Il
—

olog pq

Mo

=)
Il
—

IA
Mo
=

I

—

=]
Il
—

So the Kraft inequality holds. 3 a prefix code with length L1, ..., Lg given by (1.3.1),
called Shannon-Fano code.
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Now the question is how good is this Shannon-Fano Code?

For the Shannon-Fano code, the rate (average length) is

Q
Lsr =Y pq[—logp,].
g=1

We have the following bounds:
Q 7 Q
H =Y py(—logp,) <Lsr <Y pe(—logp,+1)=H+1.
q=1 q=1

Question. Can we do better now?
We will show that L > H for any prefix code.

Let C be a prefix code with length L1, ..., L. Take the difference L — H = Zqul PqLq +
ZqQ:1 Pqlog pg.

Q Q
L—-H= quLq +qulogpq
qg=1 qg=1
2-Lq
== _plog
q Pq
I
p ! pg In(2)
Z <2L‘1 1) 1
N p (— 1) ——
p "\ In(2)

1 1 1
> — 27t ——=—(1-1)=0.
= mm; +§”mm 2t~ D=0

Y

In homework we will that that L can get very close to H + 1.
Now allow k > 1. WEhavea C' = {v,,...,vor } of length Ly, ..., Lo.. We want small

.~ L ¥, pL(u)
o) =% = k
Shannon-Fano code achieve that
_ HF Lsp HF 1
H<T H* +1 — <Fgp = —— < — + —.
< Lgr < + :>k_7”sp kj<k+k‘

11
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Since H* = kH we have

1
H <7gp < H* + -
Similarly we have for any prefix code, we have
L _ H*
Tr=—>—=H.
"TTETh

This leads to a new coding theorem.

Theorem 1.3.2. Given i.i.d. source U with alpha Ay and entropy H. We have
1. Forevery k, Ry, < Ry, (k) < H+ 4.
2. Forevery k, Ry, (k) > R}, > H.

Combined we have

1
Wk € Zso, H < Ry (k) < H +

and
R*VL :H

1.4 Huffman’s Code Design

Given p1, ..., pg, it finds a prefix code with smallest L.

Algorithm 1.4.1 Huffman Code
Input: Alphabet probability {p;|i =1,...,Q}, WLOG assume p; > ps > ... > pg.
Output: FVB Codebook for alphabet {a;|i =1,...,Q}.
1: function HUFFMAN(Pg = {p;li=1,...,Q})
2 if ) = 2 then return {0,1}
3 end if
& poo1 < PQ-11DQ
5. Po1 ¢+ (P \{pg-1+pe}) U {rg_.}
6
7
8:

cg-1 + HUFFMAN(Pg_1) =: {vy,...,v9_ 1}

cq ¢ {v1s-+ 0g 2,0G-10,vp 11}
end function

Proposition 1.4.1. If cq_1 is optimal for Pg_4 then cg is optimal for Pg.
Example 1.4.1.
We found that

12
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But there is a tighter upper bound

1
o +pmax Pmax < 5
' < |
H J’_pmax + 0.086 Pmax Z 5
Hence i
max c 1
H + pTa (prrlax)k < 5
Ry (k) < .
H + Pmax + 0.086 ( )k > 1
r T TR Pmax)” =2 9

Up till now we’ve only focused on i.i.d RV’s. Now suppose RV’s are dependent, then
' kH
k k-
For a stationary random process,
Hk

LN ¢
k:\

For example, English has
H' ~4.08, Hy ~ 1.

The bits produced by a good lossless source code (7 ~ H) are approximately i.i.d.
equiprobable.

Synchronization and transmission entropy

Example 1.4.2. Suppose {01,001,101,110} for {a, b, c, d}.

u = ddddddddd ... = z =110110110110110110...

(if one leading 1 is missing) 2z’ = 101101101101 ... = @ = ccccecc. ..

Now if {1,01,001, 000} for {a,b, ¢, d}. Then the same problem will not happen.

1.5 Buffering

Suppose the source is outputting at R symbols per second. The encoder would have R7
bits per second.

Buffer overflow happens when a long sequence of low probability symbols are encoded.

Buffer underflow happens when a long sequence of high probability symbols are en-

13
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coded. Buffer will be empty. Include an additional codeword in codebook called a

“flag”. Insert this codeword when buffer becomes empty.
We focused prefix codes. There are some non prefix codes that can be decoded losslessly.

Definition 1.5.1. A code is separable if any finite sequence of codewords is different from

any other finite sequence of codewords.

Remark. Prefix codes are separable. And determining if a non prefix code is separable is

not easy.
Could prefix codes have smaller 1?

McMillian’s theorem says that Kraft inequality holds for separable codes. If you have
a separable code whose codeword satisfy Kraft, then there is a prefix code with same

lengths.
Lossless coding for source with infinite alphabet.
Suppose 4,, ={1,2,3,...}.
1. FFB codes can’t have finite rate if perfectly lossless
2. AL FFB then SM theorem

3. FVB. Current approach is based on Kraft inequality. It still holds for infinite case.
(See Apppendix). But Huffman’s optimal design does not apply.

Other forms of variable length lossless source codes.
1. Run-length coding

2. Dictionary coding

1.6 Universal Source Coding

Suppose you are to encode 10° symbols from alphabet A = {a,b,c,d}. We can calcu-
late ng(w), np(u), ne(u), ng(u) and similarly, frequencies. Then we can apply Huffman or

Shannon-Fano code.

14



Chapter 2

Entropy

The star of this chapter is
Inz<zxz-—1

2.1 Entropy

Entropy

Zp )log p(

is a measure of randomness or uncertainty.

1
Hyi= = p@)log,ple),  Hy=Hyi—

x

H(X) = E[log px (X)]

Remark. 1. H(X)>0and H(X) =0 < p(x) = 1 for some z.
H(X) = oo if X is continuous or has continuous component.
H(X.Y) > H(X)

H(X,Y)=H(X)+ H(Y)if X and Y are independent.
H(X1, Xo,...,X,) = HXs(1), -, Xo(n)) forany o € Sy,.
Divergence is a measure of dissimilarity of two probability distribution.

Definition 2.1.1. Suppose p and ¢ are probability mass functions. The divergence from p

15
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to g is

D(pllq) = Zp Ei

Remark. 1. p=q = D(p|lq) =0

2. Tt is not symmetric. D(p|lq) # D(q||p). You can make symmetric by taking the sum,
but then it is not nicely related to information theory.

What if p(z) = 0 for some 2? We take 0log —°
Then D(pllq) =

7y = V- Soif 3z s.t. q(z) = 0 and p(z) # 0.

When alphabet A, is infinite, D(p||q) can be co even when p(z) > 0 and ¢(z) > 0 for all
T E A,
IsY, p(z)log® E is always defined? Write
Z p(x) log pqg; = Z log pqgg + Z log p(i;
z z,p(z)>q(x) z,p(x)<q(x)
We will show later that the second term is never —oo, so it is always well-defined.

Proposition 2.1.1 (Divergence inequality). For any p,q,

D(pllg) > 0,D(pllg) =0 <= p=q.

Proof.

IN
I
(]
=
&
(=)
S
I

IA
|
™
=
=
|
=
=
N———
5|~
[\

For first equality, <= is clear. Now suppose D(p||¢) = 0. Then

@) _ a@)

s S s 1 = p(z) = q(z)for all z with p(x) > 0.

16
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Let’s rewrite the divergence inequality a little bit.

0< D(pllq) = Zp (:;) ZP
Zp )log(g.)

with= <= p=g¢q. — ), p(z)log(q,) is called cross entropy.

Definition 2.1.2. The cross entropy of p with respect to g is
Z p(x)log q(x

Cross-entropy inequality: for any p, ¢
HP(X) S Hc(pv q)
with=<«= p=yg¢.

Remark.

D(pllq) = He(p, q) — Hp(X) <= Hc(p,q) = Hy(X) + D(pllq).

Definition 2.1.3. Variation distance
= Ip(x) -

How does D(p||¢) compare to V(p, ¢)?

Proposition 2.1.2 (Pinsker’s inequality).
Vi(p,q) < v(2In2)D(plla)-

)log(qz)

So small D(pllq) = small V(p,q) even when |A,| = co. On the other hand the converse is

not true.

Lemma 2.1.1. If there exists 0 < & < 1 such that % <dforall x s.t. p(x) > 0 then

1

< - =
Dplla) = =515

If D(pl||q) = 0 then p = ¢, meaning V(p,q) ~ 0.

17
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If p, ¢ are percentage wise close, then D(p||q) ~ 0.
Log-sum inequality
Suppose ui,ug, ..., Un, 1, .., v, nonnegative. Then

ZW log%j > (Zuz> log %ZZ;

’L

This is a generalization of divergence inequality.

2.2 Basic Properties of Entropy

Proposition 2.2.1.
N
H(XN) <) H(X))
i=1
with = <= Xy, ..., Xn are independent.
Proof.
where p is probability mass function of X, ..., X . Choose

q(z1,. .., xn) = plar)p(as) ... p(x,). ]

Since we are dealing with discrete random variables, it is useful to think about probabil-

ity mass function as a set of probabilities {p1, pa, .. .}. Write

H(p1,p2,...) = — Zpi log pi

Let p; = p; + p;, replace p;, p; with p; and leave all others the same. We have

—p;logp; — p;logp; > —(pi + p;) log(pi + p;)

i.e. entropy decreases when two probabilities are merged.
WLOG, assume p; < p;. Def 0log 0 = 0.

Def
9(pi) = —(pi — pi) log(p; — pi) — pilog p; = —pilog p; — pjlogp;

18



Basic Properties of Entropy Yiwei Fu

So
—(pi +pj)log(ps +p;) = 9(0).

Differentiate g:
g' = log(p; — p;) — log(p;).

Since p; < 3p}, g’ > 0, g is increasing. So any p; > 0 have g(p;) > ¢(0).
Proposition 2.2.2. If X is Q-ary with Q) < oo then
H(X) <log, @
-1
Proof. Let q(z) = 3.

H(X) < He(p,q) = — Y _ p(x) log p(x)

= ZP(3C) log, @ = log, Q. n

Proposition 2.2.3. Suppose Y = g(X). Then

and = <= g is one-to-one (probabilistically).

Proof.
H(Y)=> p(y)logp(y)

where p(y) = >, /()= P(@). -

19
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pi =q'(1—¢q),i=0,1,2,..., then

—> " pilogp;
1=0
e . .
== ¢'(1—q)logg' (1 —q)
=0
= ¢'(1—q)(ilogq+log(l - q))
=0
—loggy q'(1—q)i—» q'(1—q)log(l—q)
=0 =0

—logq-q(1—a)¢ Zq —log(1 —q)

= —logq-q(1 —q)ﬁ —log(1 - q)

—qlog(q) — (1 — g)log(1 — q)
1—gq

q
—logq- —— —log(l —q) =
084 T og(1—q)

- %(Q)l—iq < 0.

p; = (1nz)2‘vl =2,3,..., then

:X;Z 7 <(a)>

Ins i 20 Inlnié
21n2 i(In4)? In2

Mx

—loga +
1=2

—log o + 0o + somethlng positive

= Q.

Fact:
r>1

s 1 J<o
Z i(lnd)r

i=2 =00 r<l1

2.3 Conditional Entropy

H(X |Y) =) p(x,y)logp(zly) > 0

z,Y

with equality iff X is a function of Y.
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H(X|Y) < H(X)

with equality iff X, Y are independent.
chain rule:

HX,Y)=HX)+H(Y | X) = H(X,Y) > H(X)

Conditional lossless source coding

2.4 Convexity

Goal: entropy is a concave (convex N).

Extended definition of entropy

Definition 2.4.1.
H(x) = sup H(Q(x))

finite quantizers Q

where finite quantizer is a function @ : A — B, |[{Q(z) : z € A} | < .

This gives normal definition for discrete random variables and oo for continuous and

mixed random variables
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Chapter 3

Information

3.1 Information

Not a good question: How much information is there in X? Better questions: The infor-

mation in X about random variable Y?

Definition 3.1.1. The (mutual) information given by X about Y is defined as

I(X:Y):=H(Y)-H(Y | X)

Definition 3.1.2. Y = outcome of a fair 6-sided die. X = oddity of the outcome. We

have

H(Y)=logy,6, HY | X) =logy,3 = I(X;Y) =1log, 6 —logy3 =1log,2=1.

Lemma 3.1.1. Suppose X,Y are discrete random variables. Then

1. I(X;Y) >0, = 0iff X,Y independent.
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2. We have alternate formulas

Zp )logp(y) + > p(w, y) log p(y|x)

z,y

_ Zp z,y)logp(y) + > p(z,y)logp(ylz)

N PO
—gp( w)log = s
(

p(z,y)
= Zp @) log eyt

This shows that I is symmetric: I(X;Y) = I1(Y; X).

3. From above,

== plz,y)logp(x) = > p(z,y)logp(y) + > _ plx,y)logp(z,y)
:H(X)+H(Y) ~H(X,Y).

4. We can view information as an expectation:

I(X;Y)=E {log p(;’(Y:)X)} —F {log W} —F {log pp(X’ Y) ] .

5. We can view information with respect to divergence:

I(X,Y) = D(pxvllpxpy)-

Remark. Alternate notation I,(X,Y), Ix.y (p), I(p).

What happensif p(z,y) = 0,orp(z) =0,0rp(y) = 0? p(x) =0orp(y) =0 = p(z,y) =
0.

Remark. I(X;Y) = oo is possible. Suppose H(Y) = oo and Y is a function of X. Then
I(X;Y)=HY)-HY | X)=00—-0= .

Information for more variables

[(X,Y;V,W,2) = H(X,Y) — H(X,Y | V,W, 2)

Relations between information entropy

1. I(X;Y)=H(X)-H(X |Y)=H(Y) - HY | X).
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2. I(X;Y) < H(X), =iff X is a function of Y.
3. I(X; X) = H(X).
4. I(X;9(X)) = H(9(X)).

3.2 Conditional Information

Recall that we have two concepts of conditional entropy.

HX|Y=y),HX|Y)= Zp HX|Y =y)

We are going to use the same approach for conditional information.

Definition 3.2.1. Suppose X, Y, Z are two discrete random variables,

p(ry | Z = 2)
p(x|Z = 2)pWy|Z = z)

I(X;Y|Z=2)= prylog

z,y

I(X;Y | Z2)= Zp I(X;Y | Z =2).

Lemma3.21 1. I(X;Y |Z=2)>0
2. I(X;Y | Z) > 0,=0iff X, Y are conditionally independent given Z.
3 I(X;Y |Z)=H(X |Z)-H(X|Y,Z).
4 I(X;Y,2)=1(X;Z2)+ I(X;Y | Z)

chain rule of conditional information

I(X;YZ|U)=1(X;Z|U)+I(X;Y | Z,U).

3.3 Cryptography From Information Perspective

Ay = A and ‘Ax| = ‘AK| =N, pK(k) = 27N,]C € Ag.
If |K| < |Ax| then the crypto system is not perfect.

Fix © € |Ax|. For each y we have P(Y = y|X = z) = P(Y = y) > 0. Therefore for each
y, there must be some key k£ € K such that y = ex(z). It follows that |K| > |Y|. The

encryption is injective giving |Y| > |Ax|.
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3.4 Continuous Random Variables and Information

Definition 3.4.1. A random variable X is continuous if Pr(X = z) = 0 for all «.
We assume alphabet is R, X is absolutely continuous

Example 3.4.1. 1. Uniform

ﬁ a<xz<b
p(z) = .
0 otherwise
2. Gaussian
(2) 1 e,<w2—m>2
T) = o
b 2mo
3. Laplacian
(@) = <=7
p \/ia
4. Exponential
%e*§|x‘ x>0
p(z) =
0 <0

Definition 3.4.2. The support of a random variable X or of its probablity distribution is
defined by
S:i={x:Pr(X =xzxe)>0,Ve>0}.

Definition 3.4.3. Conditional probability

Pr(F|X:x):m.

When X is continuous,

Pr(F| X =z)=limPr(F| X = £9)
0—0

Suppose Y = 3X

) B Py =3]| X =140)
L=PrY =3| X =1 =lm—F 715

= 0, contradition

So we use
Pri e Fl|X=z)=limlimPr(Y € F5| X =z te¢)

e—=+06—0
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where

Fs ={y|lly — || forsomey € F}.

Generalized sum - to represent, sum, integral, and a mixture thereof.

3.5 Differential Entropy

Recall that for continuous random variable, the entropy is oo, which is not very interest-

ing. We recall the definition of information

I(X;Y) // ))d dy.
// (z,y)log p(x dzdy—!—// (z,y)logp(z|y) dz dy

77/ (2)log p(x) der// z,y) log p(zly) de dy

We can rewrite it as

The first term is defined as differential entropy, denoted by H,;(X ), and the second term
is conditional differential entropy, denoted by Hy(X|Y').

We have
I(X;Y) = Ha(X) — Hy(X[Y).

0<z<A
, then H;(X) = log A.

otherwise

S pim

Example 3.5.1. Suppose px(z) =
Example 3.5.2. Suppose X is Gaussian with variance o2, then

1
Hy(X) = 3 log 2mea?.

But H;(X) can be negative and even —ooc.
Hy(X) > Hy(X|Y),= 0iff X,Y independent.
WhenY = aX, a > 0, then Hy(Y) = Hy(X) + log a.

Differential entropy is not a measure of true randomness and uncertainty. We'll see it is
a relative measure.

Back to typical sequences.
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Suppose X1, X5, ... 1ID continuous rv’s with pdf p, then
1N
N _ . - _
T,. = {x i ;:1 s(z;) = E[s(X)] = Hd(X)}
And by LLN,

Pr(X e TS]\Q) — las N — oo, p(z) = 27 NHa(XEN for 4 ¢ Tgs.

Pr(X e TéNg) = / p(z) dz
7]

- 2—NHd(X):|:NE/ 1 dx

N
Ts,s

- 2—NHd(X)iNE VOI(TSJ,VE)

We also have
|T6]Vg| 2 PI‘(K c TSIVE)QNHd(X)iQNE - 2NHd(X):t2N€

So |TN.| = 2NVHa(X) s the size(vol) of a smallest set with probability ~ 1.

3.6 Properties of Differential Entropy

Differential entropy decreases as probabilities aggregate

Suppose X is supported on S, then Hy(X) < log|S|. Hq(aX + b) = Hy(X) + loga.
Hy x (p) is convex N.
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Chapter 4

Estimation, Decision

4.1 Estimation Theory

Definition 4.1.1. Suppose two random variables X,Y with alphabet Ax, Xy. An esti-
mation rule r : Ay — Ax such that when the observed value of Y is y, the estimate of X
is r(y). When viewed as a function applied to the random variable Y/, the estimate is a
random variable (V") that we will often denote X.

Definition 4.1.2. Average distortion of an estimation rule r with respect to a distortion

functions d is
d= ) EldX,r(y))]Y = ylpy (y).

Usually, Hamming distortion is used (not to be confused with Hamming distance):

Suppose X is discrete.

Bayes rule
PX(fE)PwX(Z/\l')
argmax ———————
T by (y)

Example 4.1.1. Y = X + N with X, N independent Gaussian variables with mean 0.
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_ E[XY
1= % (1= pt),p = S

L0y
The MMSE estimate is linear.

In many situations, the MMSE estimation r*(y) = E[X|Y = y] is too complicated or
unknown. In such cases, we often seek the best linear (technically, affine) estimate

r.(y) =ay+b
choose a, b to minimize E[(X — r.(Y))]%
The best linear estimate

* g *
i (y) = pﬁ(y ~E[Y]+EX), d}=0%(1-p%

We don’t need to know p(z|y), p(y|z), p(z).
Bayes Estimation: assume pxvy, d(z, &).
Much of statistics considers estimation when only py|x is known.

Maximum Likelihood Rule:

ryr(y) = arg max py | x (y|r)
It is usually used when there is no a prior probablity distribution for X. We do not have
an average distortion for this rule.

4.2 Decision

Lemma 4.2.1 (Fano’s Lemma, decision theory). |Ax| < oo finite alphabet. For any decision
rule r for deciding from 'Y we have

H(X|Y) < 5 (pe) +pelog(Q — 1) =: Z(pg).

Z (pg) (called Fano's function) peaks at pg = % with maximum log, Q.

Consider its inverse ﬁél(pE) on [0, %] Since H(X|Y) = H(X) — I(X;Y), then as
I(X;Y) affects the lower bound of error probability.

Make an observation Y, want to know X, X = (V) estimate decision.

29



Decision Yiwei Fu
H(X|Y =y) < A (pxy(aly)) + (1 — px|v(aly))log(Q — 1)
H(X|Y =y) <1 —pxy(r(®ly) + (1 —pxy (r(y)ly)) log(Q — 1)
= (Pr(X #r(Y)|Y =y)) +Pr(X #r(Y)]Y =y)log(Q — 1)
= ZoPr(X #r(Y)|Y =y))
Meanwhile,

H(X|Y) =

Fano lower bound to MSE

Zp

H(X|Y =y)

< ZJQ Pr(X £ (Y)Y =)

(ZPr X #r( |Y—y>>

FoPr(X #r(Y))) = Zo(pe)-

< F

If X is real-valued and r(Y") is an estimate of X then

1 -
Hy(X|Y) < 3 log(2red), 4 =E[(X —r(Y))]
T L og2ma(x1y) _ 1 gagmax)-1(xiv))
~ 27e 2me
Proof. Recall that
1
Hy(X) < 3 log(2mec%).

Fix avalue Y = y, then

Hy(X|Y =y) <

M\H[\D\»—

log 2meB[(X — E[X|Y = y])’|Y =]

log 2meE[(X

30
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Averaging over y we have

Hy(X|Y) = EPY JHa(X|Y =y)

oty )5 log (2reB[(X — () ¥ = ])

| /\

3 log (m > oy (WE(X —r(V)? Y = y]> = %log (2med) |

Lower bound to per-letter error probability

Suppose we have a rule for deciding X~ = (X3,..., Xy) from Y with |[Ax| = Q. Dis-
tortion = per letter probability

_ 1 &
dL:NZ 7&7"1 )

Fano lower bound for py, g

N

N
1 _
HXN|Y) < Z (X.lY) < Zopre). pLEz%1< > i X|Y>

Fano lower bound to per-letter MMSE If R is a rule for estimating Xi,..., Xx (real-
valued) from Y, then

- 1
Z (V)2 > 2R B Ha(XalY)
i1 2me

Z\H

Block converse

When an FFB block source code with source length K and code length Lrate = £ < H,
then
pBE > Fox (K(HT))

Ui,..., Uk, encoder, Z; ..., Zy, decoder, Ul ceey (7K.

HUX|zLY = HUR) - (UK, z") > KH - KT,
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By Fano’e lemma,

per—letter converse

When an FFB block source code with source length K, code length L, rate 7 = % < H,
then
pLe > Fo (H—T)

Subsection 9.9.2: If a lossless source code has rate close to H then the bits it produces are
approximately IID equiprobable D(pz, ... z.|prip) = 0.

upper bound to error probablity of an optimal decision rule
H(X) > = 1ngmax

H(XY =y) > —logmaxpxy (2y) = —logpx|y (r* (y)[Y = y)

Average over y,

H(X|Y) = E}w H(X|Y =y)

> — ZPY Jogpx |y (r(y)|Y =y)
> —log (Zpy(y)pxw(r(y)ly)>
> —logPr(r(Y) = X) = —log(l — pg).

H(X|Y) > —log(l — pp) = pp < 1—27HEM

Upper bound to MMSE for estimating X from Y.
Special case: Y = X + V, X,V independent.

We have
I[(X:Y) = Ha(Y) — Ha(Y|X).

Hy(Y) < = log2meo? = log 2re(o% + o%)

1\3\»—\
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1
Hy(Y|X) = Hy(X +VI|X) = Hy(V|X) = Hy(V) = 5 log 2meaiyy

channel code scenario
data -> encoder -> noisy channel -> decoder -> data reproductions

Data: bits from binary symmetric source (BSS) Z1, Zs, ..., Z;’s are independent, identi-
cal, binary {0, 1}, equiprobable.

Channel: Discrete time system, with input alphabet Ax, output alphabet Ay, and a
stochastic input/output characterized by transition distribution g.

Example: (BSC).
Example 4.2.1 (Binary symmetric channel (BSC)).
l—¢ y=2,0<e<0.5

€ Yy # x.

Transition diagram:

Additive model: Y = X @ V, X,V independent, and py (1) = &,py(0) =1 — €.

Example 4.2.2 (Additive Gaussian channel).

1 _(y—=)?
AX:AY:Ra Q(y|$)=me oy <~ Y:X+MVNU(0,U‘%)
|4

Stationary memoryless,

Definition 4.2.1 (Memoryless). Given X;, a memoryless channel Y; is independent of
X,’sand Y}'s.

If the input X, ..., X,,, the probability distribution of output is
p(y™1e™) = q(urlz1)a(velw2) - qlynlon).

From now on we always assume this condition.

Performance: rate: # z bits per channel symbol. large is desired. accuracy:

K
1 A
pre = lim 7 Zi:l Pr(Ze # Zn)

Question: what is an achievable value for the (rate, accuracy) pair?
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