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Chapter 1

Source Codes

1.1 Lossless Coding

Lossless coding is a type of data compression.

GOAL to encode data into bits so that

1. bits can be decoded perfectly or with very high accuracy back into original data;

2. we use as few bits as possible.

We need to model for data, a measure of decoding accuracy, a measure of compactness.

MODEL FOR DATA

Definition 1.1.1. A source is a sequence of i.i.d (discrete) random variables U1, U2, . . .

We would like to assume a known alphabet A = {a1, a2, . . . , aQ} and known probability
distribution either through probability mass functions pU (u) = Pr[U = u].

Definition 1.1.2. Source coding

PERFORMANCE MEASURES A measure of compactness (efficiency)

Definition 1.1.3. Encoding rate, also called rate, is the average number of encoded bits
per data symbol.

There are two versions of average rate:

1. Emprical average rate

〈r〉 := lim
N→∞

1

N

N∑
k=1

Lk(U1, . . . , Uk),
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2. Statistical average rate

r := lim
N→∞

1

N

N∑
k=1

E[Lk(U1, . . . , Uk)]

where LK is the number of bits out of the encoder after Uk and before Uk+1.

Definition 1.1.4. The per-letter frequency of error is defined as

〈FLE〉 := lim
N→∞

1

N

N∑
k=1

I(Ûk = Uk)

and per-letter error probability is defined as

pLE := lim
N→∞

1

N

N∑
k=1

E[I(Ûk = Uk)] = lim
N→∞

1

N

N∑
k=1

Pr(Ûk = Uk)

1.1.1 Fixed-length to Fixed-length Block Codes (FFB)

characteristics

Definition 1.1.5. A code is perfectly lossless (PL) if the β(α(u)) = u for all u ∈ AkU (the set
of all sequences u1, . . . , uk).

In order to be perfectly loss, α must be one-to-one. Encode must assign a distinct code-
word (L bits) to each data sequences. rate = L/K. We seek R∗PL(k) the smallest rate of
any PL code.

Number of sequences of size k = Qk, and number binary sequence of size L = 2L. We
need 2L � QK .

r =
L

k
≥ k log2Q

k
= log2Q

Choose dk log2Qe, then we have

R∗PL(k) =
dk log2Qe

k
≤ k log2Q+ 1

k
= log2Q+

1

k
.

log2Q ≤ R∗PL(k) ≤ log2Q+
1

k

Let R∗PL be the least rate of any PL FFB code with any k. R∗PL(k)→ log2Q as k →∞.

R∗PL = infk R
∗
PL(k)

2



Lossless Coding Yiwei Fu

Now we want rate less and log2Q almost lossless codes.

R∗AL = inf{r, there is an FFB code with r̄ ≤ r and arbitrarily small PLE}

= inf{r, there is an FFB code with r̄ ≤ r and PLE < δ for all δ > 0}

Instead of per-letter probability PLE , we focus on block error probability PBE = Pr(Û 6=
U)

Lemma 1.1.1. PBE ≥ PLE ≥ PBE
k

Proof. See homework. �

To analyze, we focus on the set of correctly encoded sequences. G = {u : β(α(u)) = u}

Then we have
PBE = 1− Pr[U ∈ G], |G| ≤ 2k, L ≥ dlog2 |G|e .

QUESTION How large is the smallest set of sequences with length k form AU with prob-
ability ≈ 1?

We need to use weak law of large numbers (WLLN).

Theorem 1.1.1. SupposeAx = {1, 2, . . . , Q}with probability p1, . . . , pQ. Given u = (u1, . . . , uk) ∈
AkU .

nq(u) := #times aq occurs in u, fq(u) =
nq(u)

k
= frequency

Fix any ε > 0,
Pr[fq(u)

.
= pq ± ε]→ 1 as k →∞.

Moreover,
Pr[fq(u)

.
= pq ± ε, q = 1, . . . , Q]→ q as k →∞.

NOTATION a
.
= b± ε ⇐⇒ |a− b| ≤ ε

Consider subset of AkU that corresponds to this event x.

Tk = {u : fq(u)
.
= pq ± ε, q = 1, . . . , Q}.

Pr[U = u] = p(u1)p(u2) . . . p(uk).

By WLLN, Pr(Tk)→ 1 as k →∞.

KEY FACT all sequences in Tk have approximately the same probability.
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For u ∈ Tk,

p(u) = p(u1)p(u2) . . . p(uk)

= p
n1(u)
1 p

n2(u)
2 . . . p

nk(u)
k

= p
kf1(u)
1 p

kf2(u)
2 . . . p

kfk(u)
k

≈ p̃k where p̃ = pp11 p
p2
2 . . . p

pQ
Q .

So we have |Tk| ≈ 1
p̃k

.

Then we have
r =

log2 |Tk|
k

= −k log2 p̃

k
= − log2 p̃.

Is that rate good? Can we do better? Can we have a set S with probability ≈ 1 and
significantly smaller?

Since Pr(U ∈ AkU \ Tk) ≈ 0 =⇒ Pr(U ∈ S) ≈ Pr(U ∈ S ∩ Tk) ≈ |S|
|Tk| . So when k is large,

Tk is the smallest set with large probability. And R∗AL ≈ − log p̃.

How to express p̃.

− log p̃ = − log

Q∏
i=1

ppii

= −
Q∑
i=1

pi log pi =: entropy = H.

Some properties of H :

1. its unit is bits

2. H ≥ 0.

3. H = 0 ⇐⇒ pq = 1 for some q.

4. H ≤ log2Q.

5. H = log2Q ⇐⇒ pq = 1
Q for all q.

Identify the set that WLLN says has probability → 1. Suppose X1, X2, . . . i.i.d. real-
valued variables.

T = {x1 . . . xn︸ ︷︷ ︸
x

∈ ANX :
1

N

N∑
i=1

xi
.
= x± ε}

is called a typical set. Pr(X ∈ T ) ≈ 1 when N is large.

Now suppose X1, X2, . . . i.i.d. Ax-valued random variables, function g : Ax → R. Con-
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sider Y1, Y2, . . . with Yi = g(Xi). Yi’s are i.i.d. random variables.

If E[g(X)] is finite than we can apply WLLN that

Pr

(
1

N

N∑
i=1

Yi
.
= E[Y ]± ε

)
→ 1 as N →∞.

Typical sequences wrt g:

TNx,pλ,g,ε =

{
x :

1

N

N∑
i=1

g(xi)
.
= g(X)± ε

}
.

If E[g(X)] is finite then by WLLN we have

Pr(X ∈ Tg)→ 1 as N →∞.

Example 1.1.1 (Indicator function). Suppose F ⊂ AX , and g(x) =

1 x ∈ F

0 x /∈ F
. Then

1
N

∑N
i=1 g(xi) = fF (x). Now

Tg = {x : fF (x)
.
= Pr(X ∈ F )± ε}.

By WLLN,

Pr(X ∈ Tg)→ 1 as N →∞, =⇒ Pr(nF (X)
.
= E[x]± ε)→ 1.

Example 1.1.2. Ax = R, g(x) = x2. Tg = {x :}

Theorem 1.1.2. Now suppose M functions g1, g2, . . . , gM . Fix ε. Then

Tg1,g2,...,gM =

M⋂
i=1

Tgi .

Pr(X ∈ Tg1,g2,...,gM )→ 1 as N →∞.
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Proof.

Pr(X /∈ Tg1,g2,...,gM ) = Pr

(
X ∈

(
M⋂
i=1

Tgi

)c)

= Pr

(
X ∈

(
M⋃
i=1

T cgi

))

≤
M∑
i=1

Pr(X ∈ T cgi)→ 0 as N →∞. �

IMPORTANT APPLICATION

SupposeAx = {a1, . . . , aQ} a finite alphabet with probability p1, . . . , pQ. The gq(x) be the
indicator of aq . Tq = {x : fq(x)

.
= pq ± ε}. And T̃ =

⋂Q
i=1 Ti = {x : ∀q, fq(x)

.
= pq ± ε}.

T̃NX,pX ,ε very typical sequence. We have

Pr(X ∈ T̃ )→ 1 as N →∞.

If x ∈ T̃ , then x ∈ T̃g for any other g. Consider any real-valued g. If x ∈ T̃ε then x ∈ Tg,εc
for some c.

1

N

N∑
i=1

g(xi) =

Q∑
q=1

nq(x)

N
g(Qq) =

Q∑
q=1

(pq ± ε)q(aq) = E[g(X)] + ε

Q∑
q=1

g(Qq)

Pr(X ∈ T̃ )→ 1 as N →∞.

If x ∈ T̃ ,

p(x) = p(x1)p(x2) . . . p(xN )

= p
n1(x)
1 . . .

= p
f1(x)N
1 . . .

.
= p

(p1±ε)N
1 . . .

.
= 2N(

∑Q
q=1 pq log pq±ε

∑Q
q=1 log pq) .

= 2−NH±Nεc

Theorem 1.1.3 (Shannon-McMillian Theorem). SupposeX1, X2, . . . i.i.d,Ax = {a1, . . . , aQ}
with probability p1, . . . , pQ. Then

1.
Pr(X̃ ∈ T̃Nε )→ 1 as N →∞.

6



Shannon-McMillian Theorem Yiwei Fu

2. If x ∈ T̃Nε , p(x)
.
= 2−NH±Nεc.

3.
∣∣∣T̃Nε ∣∣∣ .= Pr(X ∈ T̃Nε )2N(H±εx).

Proof. �

1.2 Shannon-McMillian Theorem

Is T̃ essentially the smallest set with probability ≈ 1?

Yes. Let S ∈ ANx . We have

Pr(X ∈ S = Pr(X ∈ S∩T̃ )+Pr(X ∈ S∩T̃ c)=̈|S∩T̃ |2−NH±2Nεc+Pr(T̃ c)→ 0 as N →∞.

Theorem 1.2.1. For every ε > 0, there is a sequence bε,1, bε,2, . . . s.t. bε,N → 0 as N → ∞,
bε,B ≥ 0.

For any N and any S ⊂ ANX ,

|S| ≥ (Pr(X ∈ S)− bε,N ) 2NH−Nεc.

An in hindsight shortcut

Let us directly consider

TNS,ε =
{
x : p(x)

.
= 2−N(H±ε)

}
=

{
x : − 1

N
log p(x)

.
= H ± ε

}
=

{
x : − 1

N

N∑
i=1

log p(xi)
.
= H ± ε

}

compare T̃Nε and TNs,ε.

Claim: T̃Nε ⊂ TNs,ε where c = −;
∑Q
q=1 log pq .

Suppose x ∈ T̃Nε . Show if it is also in TNs,ε. Check the following p(x)
.
= 2−NH±Nεc,

− log p(x)
.
= NH ±Nεc.

7
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− log p(x) = − log

N∏
i=1

p(xi)

= − log

Q∏
q=1

pnq(x)
q

= − log

Q∏
q=1

pNfq(x)
q

.
= − log

Q∏
q=1

pN(pq±ε)
q

.
= −

Q∑
q=1

N(pq ± ε) log pa

.
= NH ±Nε

C∑
q=1

log pk

.
= NH ±Nεc.

Extreme example:

Ax = {0, 1}, p0 = p1 = 1
2 . H = 1.

p(x) = 2−N .

TNs,ε =
{
x : p(x) = 2−N(H±ε) = 2−N

}
= ANX .

T̃Nε =
{
x : n1(x

.
= N

(
1
2 + ε

)
)
}

.

|TNs,ε|=̈2N(H±ε), |T̃Nε |=̈2N(H±2εc).

Ts is called probability typical. T̃ is called frequency typical.

Example Ax = {0, 1}, p1 = 1
4 , p0 = 3

4 . T̃Nε =
{
x : f1(x)

.
= 1

4 + ε
}

.

TTs,ε =
{
x : f1(x) = 1

4 ±Nε log 1−p1
p1

}
Typical sequences for an infinite alphabet

There are two cases: Ax is countably infinite / random variables are continuous

In the first case, frequency typical approach doesn’t work. Probabilistic typical approach
works just as is. H = −

∑∞
q=1 pq log pq can be infinite.

Let Sδ,N = size of the smallest set of N sequences form Ax with probability at least 1− δ.
Then for any 0 < δ < 1 and any h, Sδ,N

2Nh
→∞ as N →∞.

8
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1.3 Fixed Length to Variable Length (FVB) Lossless Source

codes

Recall that FFB perfectly lossless hasR∗PL = log2 |Ax|, and FFB almost lossless hasR∗AL =

H .

FVB perfectly lossless R∗V L ≤ log2 |Ax|.

Suppose we have a source with Ax = {a, b, c, d}with probability
{

1
2 ,

1
4 ,

1
8 ,

1
8

}
.

p(u) u code1 code2 code3 code4 code5 code6
1
2 a 00 0 0 0 0 0
1
4 b 01 10 10 10 1 01
1
8 c 10 110 10 11 01 011
1
8 d 11 111 11 111 10 0111

Rate 2 1.75 1.5 1.625 1.25 1.875

We can see that code 3-5 are all bad.

Code 6 has an advantage that you know 0 represents the start of a codeword. We will
see later why (Example 1.4.2).

FVB source code is characterized by

• source length k

• codebook of binary codewords C =
{
v1, v2, . . . , vQK

}
, Q = |AU |.

• encoding rule α : AKU → C

• decoding rule β : C → AKU .

The encoder operates in block fashion. The decoder does not.

Distinguish codes that look like code2 and codes that look like code6.

Definition 1.3.1. A codebook C is prefix-free if no codeword is the prefix of another.

A prefix-free code is called a prefix code. We will stick to prefix codes until states other-
wise. (instantaneously decodable)

We like to draw binary tree diagrams of code.

Code 1:
233

A prefix is perfectly lossless if and only ifα is 1-to-1. The rate: r(c) = L
K = 1

K

∑
u p(u)L(u)

9
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(length of codeword assigned to u)

R∗V L(k) = min {r(c) : c is perfectly lossless FVB with source length k} .

R∗V L = inf {r(c) : c is PL FVB prefix code with any source length} = inf
K
R∗V L(k).

How does one design a prefix code to have small or smallest rate?

Focus first k = 1. Shannon’s idea: Lq ≈ − log2 pq .∑Q
q=1 pqLq ≈ −

∑Q
q=1 pq log pq = H .

Question. Is there a prefix code with Lq ≈ − log pq for q = 1, 2, . . . , Q? Could there be
prefix codes with even smaller rate?

Theorem 1.3.1 (Kraft inequality theorem). There is a binary prefix code with lengthL1, L2, . . . , LQ

iff the Kraft sum
Q∑
q=1

2−Lq ≤ 1.

Proof. Suppose v1, . . . , vQ is a prefix code with length L1, . . . , LQ. Let Lmax = maxq Lq .

From the tree, the number of sequences of length Lmax prefixed by any codeword, is∑Q
q=1 2Lmax−Lq ≤ 2Lmax =⇒

∑Q
q=1 2−Lq ≤ 1. So the Kraft inequality holds. �

Now suppose
Lq = d− log2 pqe , q = 1, . . . , Q. (1.3.1)

Is there a code with these lengths? Check Kraft.

Q∑
q=1

2−Lq =

Q∑
q=1

2−d− log pqe

≤
Q∑
q=1

2−(− log pq)

≤
Q∑
q=1

2log pq

≤
Q∑
q=1

pq = 1.

So the Kraft inequality holds. ∃ a prefix code with length L1, . . . , LQ given by (1.3.1),
called Shannon-Fano code.

10
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Now the question is how good is this Shannon-Fano Code?

For the Shannon-Fano code, the rate (average length) is

LSF =

Q∑
q=1

pq d− log pqe .

We have the following bounds:

H =

Q∑
q=1

pq(− log pq) ≤ LSF <
Q∑
q=1

pq(− log pq + 1) = H + 1.

Question. Can we do better now?

We will show that L ≥ H for any prefix code.

Let C be a prefix code with length L1, . . . , LQ. Take the difference L−H =
∑Q
q=1 pqLq +∑Q

q=1 pq log pq .

L−H =

Q∑
q=1

pqLq +

Q∑
q=1

pq log pq

= −
∑
q

pq log
2−Lq

pq

= −
∑
q

pq ln
2−Lq

pq

1

ln(2)

≥ −
∑
q

pq

(
2−Lq

pq
− 1

)
1

ln(2)

≥ − 1

ln(2)

∑
q

2−Lq +
∑
q

pq
1

ln(2)
=

1

ln 2
(1− 1) = 0.

In homework we will that that L can get very close to H + 1.

Now allow k ≥ 1. WE have a C =
{
v1, . . . , vQk

}
of length L1, . . . , LQk . We want small

r(c) =
L

K
=

∑
u p(u)L(u)

k
.

Shannon-Fano code achieve that

Hk ≤ LSF < Hk + 1 =⇒ Hk

k
≤ rSF =

LSF
k

<
Hk

k
+

1

k
.

11
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Since Hk = kH we have
H ≤ rSF < Hk +

1

k
.

Similarly we have for any prefix code, we have

r =
L

K
≥ Hk

k
= H.

This leads to a new coding theorem.

Theorem 1.3.2. Given i.i.d. source U with alpha AU and entropy H . We have

1. For every k, R∗V L ≤ R∗V L(k) < H + 1
k .

2. For every k, R∗V L(k) ≥ R∗V L ≥ H .

Combined we have
∀k ∈ Z>0, H ≤ R∗V L(k) < H +

1

k

and
R∗V L = H.

1.4 Huffman’s Code Design

Given p1, . . . , pQ, it finds a prefix code with smallest L.

Algorithm 1.4.1 Huffman Code
Input: Alphabet probability {pi|i = 1, . . . , Q}, WLOG assume p1 ≥ p2 ≥ . . . ≥ pQ.
Output: FVB Codebook for alphabet {ai|i = 1, . . . , Q}.

1: function HUFFMAN(PQ = {pi|i = 1, . . . , Q})
2: if Q = 2 then return {0, 1}
3: end if
4: p′Q−1 ← pQ−1 + pQ
5: PQ−1 ← (PQ \ {pQ−1 + pQ}) ∪

{
p′Q−1

}
6: cQ−1 ← HUFFMAN(PQ−1) =:

{
v1, . . . , vQ−1

}
7: cQ ←

{
v1, . . . , vQ−2, vQ−10, vQ−11

}
8: end function

Proposition 1.4.1. If cQ−1 is optimal for PQ−1 then cQ is optimal for PQ.

Example 1.4.1.

We found that

12
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But there is a tighter upper bound

L
∗ ≤


H + pmax pmax <

1

2

H + pmax + 0.086 pmax ≥
1

2
.

Hence

R∗V L(k) ≤


H +

pkmax

k
(pmax)k <

1

2

H +
pkmax

k
+

0.086

k
(pmax)k ≥ 1

2
.

Up till now we’ve only focused on i.i.d RV’s. Now suppose RV’s are dependent, then

Hk

k
<
kH

k
.

For a stationary random process,
Hk

k
↘ H∞.

For example, English has
H1 ≈ 4.08, H∞ ≈ 1.

The bits produced by a good lossless source code (r ≈ H) are approximately i.i.d.
equiprobable.

Synchronization and transmission entropy

Example 1.4.2. Suppose {01, 001, 101, 110} for {a, b, c, d}.

u = ddddddddd . . . =⇒ z = 110110110110110110 . . .

(if one leading 1 is missing) z′ = 101101101101 . . . =⇒ û = ccccccc . . .

Now if {1, 01, 001, 000} for {a, b, c, d}. Then the same problem will not happen.

1.5 Buffering

Suppose the source is outputting at R symbols per second. The encoder would have Rr
bits per second.

Buffer overflow happens when a long sequence of low probability symbols are encoded.

Buffer underflow happens when a long sequence of high probability symbols are en-

13
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coded. Buffer will be empty. Include an additional codeword in codebook called a
“flag”. Insert this codeword when buffer becomes empty.

We focused prefix codes. There are some non prefix codes that can be decoded losslessly.

Definition 1.5.1. A code is separable if any finite sequence of codewords is different from
any other finite sequence of codewords.

Remark. Prefix codes are separable. And determining if a non prefix code is separable is
not easy.

Could prefix codes have smaller I?

McMillian’s theorem says that Kraft inequality holds for separable codes. If you have
a separable code whose codeword satisfy Kraft, then there is a prefix code with same
lengths.

Lossless coding for source with infinite alphabet.

Suppose An = {1, 2, 3, . . .}.

1. FFB codes can’t have finite rate if perfectly lossless

2. AL FFB then SM theorem

3. FVB. Current approach is based on Kraft inequality. It still holds for infinite case.
(See Apppendix). But Huffman’s optimal design does not apply.

Other forms of variable length lossless source codes.

1. Run-length coding

2. Dictionary coding

1.6 Universal Source Coding

Suppose you are to encode 106 symbols from alphabet A = {a, b, c, d}. We can calcu-
late na(u), nb(u), nc(u), nd(u) and similarly, frequencies. Then we can apply Huffman or
Shannon-Fano code.

14



Chapter 2

Entropy

The star of this chapter is
lnx ≤ x− 1

2.1 Entropy

Entropy
H := −

∑
x

p(x) log p(x)

is a measure of randomness or uncertainty.

Hq := −
∑
x

p(x) logq p(x), Hq = Hr
1

logr q
.

H(X) = E[log pX(X)]

Remark. 1. H(X) ≥ 0 and H(X) = 0 ⇐⇒ p(x) = 1 for some x.

2. H(X) =∞ if X is continuous or has continuous component.

3. H(X,Y ) ≥ H(X)

4. H(X,Y ) = H(X) +H(Y ) if X and Y are independent.

5. H(X1, X2, . . . , Xn) = H(Xσ(1), . . . , Xσ(n)) for any σ ∈ Sn.

Divergence is a measure of dissimilarity of two probability distribution.

Definition 2.1.1. Suppose p and q are probability mass functions. The divergence from p

15
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to q is

D(p‖q) =
∑
x

p(x) log
p(x)

q(x)

Remark. 1. p = q =⇒ D(p‖q) = 0

2. It is not symmetric. D(p‖q) 6= D(q‖p). You can make symmetric by taking the sum,
but then it is not nicely related to information theory.

What if p(x) = 0 for some x? We take 0 log 0
q(x) = 0. So if ∃x s.t. q(x) = 0 and p(x) 6= 0.

Then D(p‖q) =∞.

When alphabet Ax is infinite, D(p‖q) can be∞ even when p(x) > 0 and q(x) > 0 for all
x ∈ Ax.

Is
∑
x p(x) log p(x)

q(x) is always defined? Write

∑
x

p(x) log
p(x)

q(x)
=

∑
x,p(x)>q(x)

log
p(x)

q(x)
+

∑
x,p(x)<q(x)

log
p(x)

q(x)

We will show later that the second term is never −∞, so it is always well-defined.

Proposition 2.1.1 (Divergence inequality). For any p, q,

D(p‖q) ≥ 0, D(p‖q) = 0 ⇐⇒ p = q.

Proof.

D(p‖q) =
∑
x

p(x) log
p(x)

q(x)

=
∑
x

p(x) ln
p(x)

q(x)

1

ln 2

= −
∑
x

p(x) ln
q(x)

p(x)

1

ln 2

≤ −
∑
x

p(x)
q(x)− p(x)

p(x)

1

ln 2

≤ −

(∑
x

p(x)− q(x)

)
1

ln 2
= 0

For first equality, ⇐= is clear. Now suppose D(p‖q) = 0. Then

ln
q(x)

p(x)
=
q(x)

p(x)
− 1 =⇒ p(x) = q(x)for all x with p(x) > 0.

�

16
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Let’s rewrite the divergence inequality a little bit.

0 ≤ D(p‖q) =
∑
x

p(x) log
p(x)

q(x)
= −H(x)−

∑
x

p(x) log(qx)

H(x) ≤ −
∑
x

p(x) log(qx)

with =⇐⇒ p = q. −
∑
x p(x) log(qx) is called cross entropy.

Definition 2.1.2. The cross entropy of p with respect to q is

Hc(p, q) := −
∑
x

p(x) log q(x).

Cross-entropy inequality: for any p, q

Hp(X) ≤ Hc(p, q)

with =⇐⇒ p = q.

Remark.
D(p‖q) = Hc(p, q)−Hp(X) ⇐⇒ Hc(p, q) = Hp(X) +D(p‖q).

Definition 2.1.3. Variation distance

V (p, q) =
∑
x

|p(x)− q(x)|

How does D(p‖q) compare to V (p, q)?

Proposition 2.1.2 (Pinsker’s inequality).
V (p, q) ≤

√
(2 ln 2)D(p‖q).

So small D(p‖q) =⇒ small V (p, q) even when |Ax| = ∞. On the other hand the converse is
not true.

Lemma 2.1.1. If there exists 0 < δ < 1 such that |p(x)−q(x)|
p(x) ≤ δ for all x s.t. p(x) > 0 then

D(p‖q) ≤ δ

1− δ
1

ln 2

If D(p‖q) ≈ 0 then p ≈ q, meaning V (p, q) ≈ 0.

17
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If p, q are percentage wise close, then D(p‖q) ≈ 0.

Log-sum inequality

Suppose u1, u2, . . . , un, v1, . . . , vn nonnegative. Then

∑
i

ui log
ui
vi
≥

(∑
i

ui

)
log

∑
i ui∑
i vi

.

This is a generalization of divergence inequality.

2.2 Basic Properties of Entropy

Proposition 2.2.1.

H(XN ) ≤
N∑
i=1

H(Xi)

with =⇐⇒ X1, . . . , XN are independent.

Proof.
H(XN ) ≤ HL(p, q)

where p is probability mass function of X1, . . . , XN . Choose

q(x1, . . . , xn) = p(x1)p(x2) . . . p(xn). �

Since we are dealing with discrete random variables, it is useful to think about probabil-
ity mass function as a set of probabilities {p1, p2, . . .}. Write

H(p1, p2, . . .) = −
∑
i

pi log pi

Let p′i = pi + pj , replace pi, pj with p′i and leave all others the same. We have

−pi log pi − pj log pj ≥ −(pi + pj) log(pi + pj)

i.e. entropy decreases when two probabilities are merged.

WLOG, assume pi < pj . Def 0 log 0 = 0.

Def
g(pi) = −(p′i − pi) log(p′i − pi)− pi log pi = −pi log pi − pj log pj

18
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So
−(pi + pj) log(pi + pj) = g(0).

Differentiate g:
g′ = log(p′i − pi)− log(pi).

Since pi < 1
2p
′
i, g
′ > 0, g is increasing. So any pi > 0 have g(pi) > g(0).

Proposition 2.2.2. If X is Q-ary with Q <∞ then

H(X) ≤ log2Q

Proof. Let q(x) = 1
Q .

H(X) ≤ Hc(p, q) = −
∑
x

p(x) log p(x)

=
∑
x

p(x) log2Q = log2Q. �

Proposition 2.2.3. Suppose Y = g(X). Then

H(Y ) = H(g(X)) ≤ H(X)

and =⇐⇒ g is one-to-one (probabilistically).

Proof.
H(Y ) =

∑
y

p(y) log p(y)

where p(y) =
∑
x,g(x)=y p(x). �
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pi = qi(1− q), i = 0, 1, 2, . . ., then

H(X) = −
∞∑
i=0

pi log pi

= −
∞∑
i=0

qi(1− q) log qi(1− q)

= −
∞∑
i=0

qi(1− q) (i log q + log(1− q))

= − log q

∞∑
i=0

qi(1− q)i−
∞∑
i=0

qi(1− q) log(1− q)

= − log q · q(1− q) d

dq

∞∑
i=0

qi − log(1− q)

= − log q · q(1− q) 1

(1− q)2
− log(1− q)

= − log q · q

1− q
− log(1− q) =

−q log(q)− (1− q) log(1− q)
1− q

= H (Q)
1

1− q
<∞.

pi = α
i(ln i)2 , i = 2, 3, . . ., then

H(X) = −
∞∑
i=2

α

i(ln i)2
log

(
α

i(ln i)2

)

= − logα+

∞∑
i=2

α

i(ln i)2

ln i

ln 2
+

∞∑
i=2

2α

i(ln i)2

ln ln i

ln 2

= − logα+∞+ something positive

=∞.

Fact:
∞∑
i=2

1

i(ln i)r
=

<∞ r > 1

=∞ r ≤ 1

2.3 Conditional Entropy

H(X | Y ) =
∑
x,y

p(x, y) log p(x|y) ≥ 0

with equality iff X is a function of Y .

20
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H(X | Y ) ≤ H(X)

with equality iff X,Y are independent.

chain rule:
H(X,Y ) = H(X) +H(Y | X) =⇒ H(X,Y ) ≥ H(X)

Conditional lossless source coding

2.4 Convexity

Goal: entropy is a concave (convex ∩).

Extended definition of entropy

Definition 2.4.1.
H(x) = sup

finite quantizersQ
H(Q(x))

where finite quantizer is a function Q : A→ B, | {Q(x) : x ∈ A} | <∞.

This gives normal definition for discrete random variables and ∞ for continuous and
mixed random variables

21



Chapter 3

Information

3.1 Information

Not a good question: How much information is there in X? Better questions: The infor-
mation in X about random variable Y ?

Definition 3.1.1. The (mutual) information given by X about Y is defined as

I(X;Y ) := H(Y )−H(Y | X)

Definition 3.1.2. Y = outcome of a fair 6-sided die. X = oddity of the outcome. We
have

H(Y ) = log2 6, H(Y | X) = log2 3 =⇒ I(X;Y ) = log2 6− log2 3 = log2 2 = 1.

Lemma 3.1.1. Suppose X,Y are discrete random variables. Then

1. I(X;Y ) ≥ 0, = 0 iff X,Y independent.
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2. We have alternate formulas

I(X;Y ) = −
∑
y

p(y) log p(y) +
∑
x,y

p(x, y) log p(y|x)

= −
∑
x,y

p(x, y) log p(y) +
∑
x,y

p(x, y) log p(y|x)

=
∑
x,y

p(x, y) log
p(y|x)

p(y)

=
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

This shows that I is symmetric: I(X;Y ) = I(Y ;X).

3. From above,

I(X;Y ) = −
∑

p(x, y) log p(x)−
∑

p(x, y) log p(y) +
∑

p(x, y) log p(x, y)

= H(X) +H(Y )−H(X,Y ).

4. We can view information as an expectation:

I(X;Y ) = E
[
log

p(Y | X)

p(Y )

]
= E

[
log

p(X | Y )

p(X)

]
= E

[
log

p(X,Y )

p(X)p(Y )

]
.

5. We can view information with respect to divergence:

I(X,Y ) = D(pXY ‖pXpY ).

Remark. Alternate notation Iφ(X,Y ), IX;Y (p), I(p).

What happens if p(x, y) = 0, or p(x) = 0, or p(y) = 0? p(x) = 0 or p(y) = 0 =⇒ p(x, y) =

0.

Remark. I(X;Y ) = ∞ is possible. Suppose H(Y ) = ∞ and Y is a function of X . Then
I(X;Y ) = H(Y )−H(Y | X) =∞− 0 =∞.

Information for more variables

I(X,Y ;V,W,Z) = H(X,Y )−H(X,Y | V,W,Z)

Relations between information entropy

1. I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X).
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2. I(X;Y ) ≤ H(X), = iff X is a function of Y .

3. I(X;X) = H(X).

4. I(X; g(X)) = H(g(X)).

3.2 Conditional Information

Recall that we have two concepts of conditional entropy.

H(X | Y = y), H(X | Y ) =
∑
y

p(y)H(X | Y = y)

We are going to use the same approach for conditional information.

Definition 3.2.1. Suppose X,Y, Z are two discrete random variables,

I(X;Y |Z = z) =
∑
x,y

p(x, y) log
p(xy | Z = z)

p(x|Z = z)p(y|Z = z)
.

I(X;Y | Z) =
∑
z

p(z)I(X;Y | Z = z).

Lemma 3.2.1. 1. I(X;Y | Z = z) ≥ 0

2. I(X;Y | Z) ≥ 0, = 0 iff X,Y are conditionally independent given Z.

3. I(X;Y | Z) = H(X | Z)−H(X | Y,Z).

4. I(X;Y,Z) = I(X;Z) + I(X;Y | Z)

chain rule of conditional information

I(X;Y Z | U) = I(X;Z | U) + I(X;Y | Z,U).

3.3 Cryptography From Information Perspective

AX = AK and |AX | = |AK | = 2N . pK(k) = 2−N , k ∈ AK .

If |K| < |AX | then the crypto system is not perfect.

Fix x ∈ |AX |. For each y we have P (Y = y|X = x) = P (Y = y) > 0. Therefore for each
y, there must be some key k ∈ K such that y = eK(x). It follows that |K| ≥ |Y |. The
encryption is injective giving |Y | ≥ |AX |.
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3.4 Continuous Random Variables and Information

Definition 3.4.1. A random variable X is continuous if Pr(X = x) = 0 for all x.

We assume alphabet is R, X is absolutely continuous

Example 3.4.1. 1. Uniform

p(x) =

 1
b−a a ≤ x ≤ b

0 otherwise

2. Gaussian
p(x) =

1√
2πσ

e−
(x−m)2

2σ2

3. Laplacian

p(x) =
1√
2σ
e−
√

2
σ |x|

4. Exponential

p(x) =


√

2
σ e
−
√

2
σ |x| x ≥ 0

0 x < 0

Definition 3.4.2. The support of a random variable X or of its probablity distribution is
defined by

S := {x : Pr(X
.
= x± ε) > 0,∀ε > 0} .

Definition 3.4.3. Conditional probability

Pr(F | X = x) =
Pr(F,X = x)

Pr(X = x)
.

When X is continuous,

Pr(F | X = x) = lim
δ→0

Pr(F | X .
= x± δ)

Suppose Y = 3X

1 = Pr(Y = 3 | X = 1) = lim
δ=0

Pr(Y = 3 | X .
= 1± δ)

Pr(X
.
= 1± δ)

= 0, contradition

So we use
Pr(Y ∈ F | X = x) = lim

ε→0
lim
δ→0

Pr(Y ∈ Fδ | X
.
= x± ε)
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where
Fδ = {y | ‖y − y′‖ for some y′ ∈ F} .

Generalized sum –
∑

to represent, sum, integral, and a mixture thereof.

3.5 Differential Entropy

Recall that for continuous random variable, the entropy is∞, which is not very interest-
ing. We recall the definition of information

I(X;Y ) =

∫ ∫
p(x, y)

log p(x|y)

log p(x)
dx dy.

We can rewrite it as

I(X;Y ) = −
∫ ∫

p(x, y)log p(x) dx dy +

∫ ∫
p(x, y) log p(x|y) dx dy

= −
∫
p(x)log p(x) dx+

∫ ∫
p(x, y) log p(x|y) dx dy

The first term is defined as differential entropy, denoted by Hd(X), and the second term
is conditional differential entropy, denoted by Hd(X|Y ).

We have
I(X;Y ) = Hd(X)−Hd(X|Y ).

Example 3.5.1. Suppose pX(x) =

 1
∆ 0 ≤ x ≤ ∆

0 otherwise
, then Hd(X) = log ∆.

Example 3.5.2. Suppose X is Gaussian with variance σ2, then

Hd(X) =
1

2
log 2πeσ2.

But Hd(X) can be negative and even −∞.

Hd(X) ≥ Hd(X|Y ),= 0 iff X,Y independent.

When Y = αX , α > 0, then Hd(Y ) = Hd(X) + logα.

Differential entropy is not a measure of true randomness and uncertainty. We’ll see it is
a relative measure.

Back to typical sequences.
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Suppose X1, X2, . . . IID continuous rv’s with pdf p, then

TNs,ε =

{
x :

1

N

N∑
i=1

s(xi)
.
= E[s(X)] = Hd(X)

}

And by LLN,

Pr(X ∈ TNs,ε)→ 1 as N →∞, p(x)
.
= 2−NHd(X)±Nε, for x ∈ TNs,ε.

Pr
(
X ∈ TNs,ε

)
=

∫
TNs,ε

p(x) dx

.
= 2−NHd(X)±Nε

∫
TNs,ε

1 dx

.
= 2−NHd(X)±Nε vol(TNs,ε)

We also have
|TNs,ε| =̈ Pr(X ∈ TNs,ε)2NHd(X)±2Nε =̈ 2NHd(X)±2Nε

So |TNs,ε| ∼= 2NHd(X) is the size(vol) of a smallest set with probability ≈ 1.

3.6 Properties of Differential Entropy

Differential entropy decreases as probabilities aggregate

Suppose X is supported on S, then Hd(X) ≤ log |S|. Hd(aX + b) = Hd(X) + log a.
Hd,X(p) is convex ∩.
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Chapter 4

Estimation, Decision

4.1 Estimation Theory

Definition 4.1.1. Suppose two random variables X,Y with alphabet AX , XY . An esti-
mation rule r : AY → AX such that when the observed value of Y is y, the estimate of X
is r(y). When viewed as a function applied to the random variable Y , the estimate is a
random variable r(Y ) that we will often denote X̂ .

Definition 4.1.2. Average distortion of an estimation rule r with respect to a distortion
functions d is

d := –
∑
y

E[d(X, r(y))|Y = y]pY (y).

Usually, Hamming distortion is used (not to be confused with Hamming distance):

d(x, x̂) = 1x 6=x̂

Suppose X is discrete.

Bayes rule

arg max
x

pX(x)pY |X(y|x)

pY (y)

Example 4.1.1. Y = X +N with X,N independent Gaussian variables with mean 0.

r∗(y) =
σ2
X

σ2
X + σ2

N

y

28



Decision Yiwei Fu

d = σ2
X(1− ρ2), ρ :=

E[XY ]

σxσy
.

The MMSE estimate is linear.

In many situations, the MMSE estimation r∗(y) = E[X|Y = y] is too complicated or
unknown. In such cases, we often seek the best linear (technically, affine) estimate

r∗L(y) = ay + b

choose a, b to minimize E[(X − rL(Y ))]2.

The best linear estimate

r∗L(y) = ρ
σX
σY

(y − E[Y ] + EX), d∗L = σ2
X(1− ρ2)

We don’t need to know p(x|y), p(y|x), p(x).

Bayes Estimation: assume pXY , d(x, x̂).

Much of statistics considers estimation when only pY |X is known.

Maximum Likelihood Rule:

rML(y) = arg max
x

pY |X(y|x)

It is usually used when there is no a prior probablity distribution for X . We do not have
an average distortion for this rule.

4.2 Decision

Lemma 4.2.1 (Fano’s Lemma, decision theory). |AX | <∞ finite alphabet. For any decision
rule r for deciding from Y we have

H(X|Y ) ≤H (pE) + pE log(Q− 1) =: F (pE).

F (pE) (called Fano’s function) peaks at pE = Q−1
Q with maximum log2Q.

Consider its inverse F−1
Q (pE) on

[
0, Q−1

Q

]
. Since H(X|Y ) = H(X) − I(X;Y ), then as

I(X;Y ) affects the lower bound of error probability.

Make an observation Y , want to know X , X̂ = r(Y ) estimate decision.
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H(X|Y = y) ≤H (pX|Y (a|y)) + (1− pX|Y (a|y)) log(Q− 1)

H(X|Y = y) ≤H (1− pX|Y (r(y)|y)) + (1− pX|Y (r(y)|y)) log(Q− 1)

= H (Pr(X 6= r(Y )|Y = y)) + Pr(X 6= r(Y )|Y = y) log(Q− 1)

= FQ(Pr(X 6= r(Y )|Y = y))

Meanwhile,

H(X|Y ) =
∑
y

p(y)H(X|Y = y)

≤
∑
y

FQ(Pr(X 6= r(Y )|Y = y))

≤ FQ

(∑
y

Pr(X 6= r(Y )|Y = y)

)
= FQ(Pr(X 6= r(Y ))) = FQ(pE).

Fano lower bound to MSE

If X is real-valued and r(Y ) is an estimate of X then

Hd(X|Y ) ≤ 1

2
log(2πed), d = E[(X − r(Y ))2]

d ≥ 1

2πe
22Hd(X|Y ) =

1

2πe
22(Hd(X)−I(X;Y )).

Proof. Recall that

Hd(X) ≤ 1

2
log(2πeσ2

X).

Fix a value Y = y, then

Hd(X|Y = y) ≤ 1

2
log 2πeE[(X − E[X|Y = y])

2 |Y = y]

≤ 1

2
log 2πeE[(X − r(Y ))

2 |Y = y]
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Averaging over y we have

Hd(X|Y ) = –
∑
y

pY (y)Hd(X|Y = y)

≤ –
∑
y

pY (y)
1

2
log
(

2πeE[(X − r(Y ))
2 |Y = y]

)
≤ 1

2
log

(
2πe –

∑
y

pY (y)E[(X − r(Y ))
2 |Y = y]

)
=

1

2
log
(
2πed

)
�

Lower bound to per-letter error probability

Suppose we have a rule for deciding XN = (X1, . . . , XN ) from Y with |AX | = Q. Dis-
tortion = per letter probability

dL =
1

N

N∑
i=1

Pr(Xi 6= ri(Y ))

Fano lower bound for pLE

1

N
H(XN |Y ) ≤ 1

N

N∑
i=1

H(Xi|Y ) ≤ FQ(pLE), pLE ≥ F−1
Q

(
1

N

N∑
i=1

H(Xi|Y )

)
.

Fano lower bound to per-letter MMSE If R is a rule for estimating X1, . . . , XN (real-
valued) from Y , then

dL =
1

N

N∑
i=1

E(Xi − ri(Y ))2 ≥ 1

2πe
22 1

N

∑N
i=1Hd(Xi|Y )

Block converse

When an FFB block source code with source lengthK and code lengthL rate r = L
K ≤ H ,

then
pBE ≥ F−1

QK
(K(Hr))

U1, . . . , UK , encoder, Z1 . . . , ZL, decoder, Û1 . . . , ÛK .

H(UK |ZL) = H(UK)− I(UK ;ZL) ≥ KH −Kr,
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By Fano’e lemma,

pBE ≥ F−1
QK

(
H(UK |ZL)

)
≥ F−1

QK
(K(H − r))

per-letter converse

When an FFB block source code with source length K, code length L, rate r = L
K < H ,

then
pLE ≥ F−1

Q (H − r)

Subsection 9.9.2: If a lossless source code has rate close to H then the bits it produces are
approximately IID equiprobable D(pZ1,...,Zn‖pIID) ≈ 0.

upper bound to error probablity of an optimal decision rule

H(X) ≥ − log pmax

H(X|Y = y) ≥ − log max
x

pX|Y (x|y) = − log pX|Y (r∗(y)|Y = y)

Average over y,

H(X|Y ) = –
∑
y

pY (y)H(X|Y = y)

≥ − –
∑
y

pY (y) log pX|Y (r(y)|Y = y)

≥ − log

(
–
∑
y

pY (y)pX|Y (r(y)|y)

)
≥ − log Pr(r(Y ) = X) = − log(1− pE).

H(X|Y ) ≥ − log(1− pE) =⇒ pE ≤ 1− 2−H(X|Y )

Upper bound to MMSE for estimating X from Y .

Special case: Y = X + V , X,V independent.

We have
I(X;Y ) = Hd(Y )−Hd(Y |X).

Hd(Y ) ≤ 1

2
log 2πeσ2

Y =
1

2
log 2πe(σ2

X + σ2
V )
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Hd(Y |X) = Hd(X + V |X) = Hd(V |X) = Hd(V ) =
1

2
log 2πeσ2

V γV

channel code scenario

data -> encoder -> noisy channel -> decoder -> data reproductions

Data: bits from binary symmetric source (BSS) Z1, Z2, . . . , Zi’s are independent, identi-
cal, binary {0, 1}, equiprobable.

Channel: Discrete time system, with input alphabet AX , output alphabet AY , and a
stochastic input/output characterized by transition distribution q.

Example: (BSC).

Example 4.2.1 (Binary symmetric channel (BSC)).

AX = AY = {0, 1}, q(y|x) =

1− ε y = x, 0 < ε < 0.5

ε y 6= x.

Transition diagram:

Additive model: Y = X ⊕ V , X,V independent, and pV (1) = ε, pV (0) = 1− ε.

Example 4.2.2 (Additive Gaussian channel).

AX = AY = R, q(y|x) =
1√

2πσV
e
− (y−x)2

σ2
V ⇐⇒ Y = X + V, V ∼ η(0, σ2

V ).

Stationary memoryless,

Definition 4.2.1 (Memoryless). Given Xi, a memoryless channel Yi is independent of
Xj ’s and Yj ’s.

If the input X1, . . . , Xn, the probability distribution of output is

p(yN |xN ) = q(y1|x1)q(y2|x2) . . . q(yN |xN ).

From now on we always assume this condition.

Performance: rate: # z bits per channel symbol. large is desired. accuracy:

pLE = lim
k→∞

1

K

K∑
i=1

Pr(Ẑk 6= Zn)

Question: what is an achievable value for the (rate, accuracy) pair?
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