
Gluing Polygons Final Draft

Kaushik Damle, Yiwei Fu, Zachary Halberstam

February 2021

Abstract

Gluing the edges of polygons can produce a variety of surfaces. We formalize the process and discuss

how to determine which surfaces are obtained by glued n-gons, as well as the frequencies with which

different surfaces occur.

1 Introduction

A popular exploration at math circles is gluing the edges of a square. The process is easy enough to understand

and communicate intuitively, and the results are quite interesting. Often, an image like Figure 1.1 is used

to represent a gluing. The two sides with one arrow each, and the two sides with two arrows each, are to

be “glued together” so that the arrows line up. Students then investigate which surfaces are obtained as the

result of these gluing diagrams. As shown in Figure 1.2, the gluing diagram in Figure 1.1 yields a torus when

glued. Other surfaces, including the Mobius strip and Klein bottle, can be obtained as gluings of squares,

and math circles proceed in a variety of different directions, including cutting and pasting physical surfaces or

attempting to play simple games such as Tic-Tac-Toe or chess on these glued squares. They rarely, however,

formalize the process of gluing or investigate which surfaces are obtained for gluing n-gons for n ą 4.

This paper investigates the general question of gluing the edges of an n-gon together. Section 2 formalizes

the process of gluing an n-gon and addresses topological questions. Section 3 presents results that allow us

to reduce gluings of the n-gon to gluings of polygons with fewer sides. Section 4 is devoted to non-orientable

glued polygons, which are significantly less intuitive. Section 5 discusses which surfaces can be obtained as

glued n-gons. Section 6 explores the combinatorial properties of orientable fully glued n-gons. Section 7 gives

directions for future study. We also include an appendix, which contains a link to an interactive website where

the reader can run simulations about glued polygons, as well as Java code that determines the genus of an

orientable glued polygon.

Figure 1.1: Sample gluing diagram
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Figure 1.2: The procedure for obtaining a torus from the diagram in Figure 1.1

2 Initial Definitions and Topological Preliminaries

In this section, we formalize the process of gluing the edges of polygons. We must make careful definitions to

obtain a reasonable set of glued polygons. Proceeding intuitively would lead us with several questions that

might affect our results. What if we tried to glue the edges of a self-intersecting polygon? What topology do

we have on a polygon, before it is glued? What does it mean, topologically, to glue? What if we only glued

some points of two edges together, or glued three edges all together, or glued two edges in a non-continuous

manner?

We define the n-gon, gluings, and glued polygons. We then discuss some relevant topological results. We

give a simple sufficient condition for two glued polygons to be homeomorphic 1 and a necessary and sufficient

condition for glued polygons to be orientable. 2

Definition 2.1. For n P N, the topological n-gon Pn is the disc tpx, yq P R2 : x2 ` y2 ď 1u, with the

subspace topology inherited from R2. The vertices are vi :“ pcosp2πi{nq, sinp2πi{nqq, and the edges are

defined by ei :“ tpcosx, sinxq : 2πpi´ 1q{n ď x ď 2πi{nu, for 1 ď i ď n.

Figure 2.1: The topological hexagon and the regular hexagon

In other words, Pn is the disc, and its edges are arcs that partition the perimeter of the disc. This may

seem strange at first, but this is homeomorphic to a regular polygon with n edges. We use the disc since it is

1Two topological spaces are homeomorphic when there is a continuous bijection with continuous inverse between the two
topological spaces. This is an isomorphism in the category of topological spaces.

2A topological manifold is orientable when there is a continuous selection of outward normal vectors along the manifold.
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easier to define for general n and to refer to arbitrary edges. Many of our pictures in this document will draw

the topological n-gon as an n-gon with edges as straight lines, which is, again, homeomorphic to the topological

n-gon but somewhat easier to draw and visualize. We do not give an explicit homeomorphism between the

topological n-gon and the regular n-gon. Figure 2.1 shows the topological hexagon and the regular hexagon,

with edges and vertices labeled.

Next, we seek to define a glued polygon. We first define a term for a set of choices of edges paired

together, which will be useful to have a name for throughout the paper.

Definition 2.2. Given the topological n-gon Pn, a grouping of its edges is a set of ordered pairs of edges

tpei1 , ej1q, . . . , peim , ejmqu, for some m P N, such that every edge of Pn is included in at most one ordered pair.

A complete grouping is a grouping that includes every edge of Pn.

With this definition, we define a glued polygon.

Definition 2.3. Given even n, the topological n-gon Pn, and a grouping of edges tpei1 , ej1q, ..., peim , ejmqu with

continuous bijections (gluing functions) fikjk : eik Ñ ejk with continuous inverses fjkik , the glued polygon

is defined as Pn{ „, where „ is defined so that a „ a and a „ b if there exists k such that fikjkpaq “ b or

fjkikpaq “ b. The polygon is called fully glued if the grouping of edges is a complete grouping.

We devote the majority of our attention to fully glued polygons. Note that a topological n-gon being

fully glued implies n must be even, since it means the edges must be able to all be paired up. However, glued

polygons which are not fully glued are helpful as intermediates in proving some theorems, especially in Section

3.

Now, we show there is a nice condition on the gluing functions that tells us when two different sets of

gluing functions yield the same surface. This condition also tells us when the glued polygon is orientable.

Let h : r0, 2πs Ñ BPn be given by hpxq “ pcosx, sinxq, and note hpxq is continuous and that the

restrictions of h with domain r2πpi´ 1q{n, 2πi{ns and range ei are invertible.

Definition 2.4. Given a continuous bijection fij : ei Ñ ej , call fij twisted if h´1 ˝ fij ˝ h : r2πpi ´

1q{n, 2πi{ns Ñ r2πpj ´ 1q{n, 2πj{ns is increasing, and untwisted otherwise (i.e. it is decreasing). If fij is

twisted, we also call the pair pei, ejq twisted.

We now show that, given a grouping of edges, and choices for which pairs should be twisted and which

pairs should be untwisted, we can find gluing functions to realize those choices. For this, it helps to define a

way to add extra information to a grouping.

Definition 2.5. A signed grouping is a set of the form tpei1 , ej1 , s1q, ..., peim , ejm , smqu, where si P t´1, 1u

for all i and tpei1 , ej1q, ..., peim , ejmqu is a grouping.

We use a sign of ´1 to represent a twisted gluing function, and a sign of 1 to represent an untwisted

gluing function. In what follows, we show that the signs are all that matters topologically for a gluing.

Theorem 2.1. Given Pn and a signed grouping of edges tpei1 , ej1 , s1q, ..., peim , ejm , smqu, there exists a family

of continuous bijections fikjk : eik Ñ ejk such that fikjk is twisted if and only if sk “ ´1.

Proof. We will define fikjk so that h´1 ˝ f ˝ h is linear, with slope 1 if fikjk is untwisted and slope ´1 if fikjk
is twisted. Let fikjk “ h ˝ g ˝ h´1, where g : r2πpik ´ 1q{m, 2πik{ms Ñ r2πpjk ´ 1q{m, 2πjk{ms is defined as

gpxq “ x` p2πpjk ´ ikq{mq if sk “ 1 and gpxq “ ´x` p2πpjk ´ ik ` 1q{mq if sk “ ´1. Then h´1 ˝ f ˝ h is g,

which is decreasing if sk “ ´1 and increasing otherwise, so fikjk is indeed twisted if and only if sk “ ´1.
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Figure 2.2: Two twisted gluing functions in the 6-gon between e1 and e4. Let the functions be such that the
points of the same color are mapped to each other.

The next theorem states that choices of gluing functions do not matter, as long as the gluing functions

are all either twisted or untwisted for the same pairs of edges.

Theorem 2.2. Given Pn and a grouping of edges tpei1 , ej1q, ..., peim , ejmqu, and two families of continuous

bijections fikjk , gikjk : eik Ñ ejk , such that fikjk is twisted if and only if gikjk is, the glued polygons resulting

from the fikjk ’s and the gikjk ’s are homeomorphic.

Proof. We show that replacing fi1j1 with gi1j1 does not change the surface topologically. This will show the

desired result, since it shows we can replace the fikjk with gikjk one by one without affecting the homeo-

morphism class of the surface. Essentially, the continuous compressing and stretching involved by switching

gluing functions results in a homeomorphism. Figure 2.2 gives a colorful visualization for two different gluing

functions in the same directions. In this figure, points of the same color are mapped to each other (treating

the colors used in the picture as a perfect spectrum). Continuously stretching and compressing portions of e1

in the first hexagon to get the gluing function as depicted in the second hexagon results in a homeomorphism.

The rest of the proof attempts to state this a bit more formally.

Let S1 “ Pn{ „1, where a „1 b if a “ b or fikjkpaq “ b or fikjkpbq “ a for some k. Then, let S2 “ Pn{ „2,

where „2 is defined by replacing fi1j1 with gi1j1 . Define the function φ : S1 Ñ S2 to be the identity away

from trps1 : p P ei1u, where rps1 denotes the equivalence class of p P P6 in S1. On trps1 : p P ei1u, define

φprpsq “ rg´1
i1j1
pfi1j1ppqqs2. (rqs2 is the equivalence class of q P P6 in S2.) We have rps1 “ rfi1j1ppqs1, and

rg´1
i1j1
pfi1j1ppqqs2 “ rgi1j1pg

´1
i1j1
pfi1j1ppqqqs2 “ rfi1j1ppqs2 so this gives φprfi1j1ppqs1q “ rfi1j1ppqs2. Now, we

extend φ so that φ is continuous and bijective, φ is the identity outside a specific neighborhood of trps1 : p P

ei1u, and φ is as we’ve defined it on trps1 : p P ei1u. (This can be made completely rigorous by using a partition

of unity.)

Finally, we show that twistedness is the only condition needed to determine when a glued polygon is

orientable.
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Figure 2.3: For the untwisted gluing, on top, the outward normal vectors agree over the seam, and the surface
is orientable. For the twisted gluing, on the bottom, the outward normal vectors disagree across the seam,
and the surface is not orientable.

Theorem 2.3. The glued polygon Pn{ „ is orientable if and only if all of the gluing functions are untwisted.

Proof. Outward normal vectors are well-defined away from the places of gluing (“seams”). At the seams, if

any gluing function is twisted, passing a normal vector over that seam will reverse its direction. If every gluing

function is untwisted, normal vectors may be passed over every seam without changing their directions, so

outward normal vectors exist over the entire glued polygon Figure 2.3 shows how untwisted gluing functions

respect orientation and twisted gluing functions do not.

Together, Theorem 2.1, Theorem 2.2, and Theorem 2.3 imply the following extremely important corollary.

Corollary 2.3.1. Given Pn for n even, each pairing of the edges tpei1 , ej1q, ..., pein{2 , ejn{2qu determines exactly

one orientable glued polygon, up to homeomorphism.

Proof. By Theorem 2.3, a gluing with this edge pairing is orientable if and only if all the gluing functions are

untwisted. By Theorem 2.1, there is a gluing with the edge pairing with all of the gluing functions untwisted.

Finally, by Theorem 2.2, the surfaces obtained for any set of gluing functions such that all of them are untwisted

are all homeomorphic.

Finally, we show an important property of fully glued polygons, which makes them the most compelling

to study.

Theorem 2.4. Let Pn{ „ be a fully glued polygon, for n even. Then, Pn{ „ is a compact 2-manifold without
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Figure 2.4: Charts of the image of an interior point of Pn, a point on an edge in Pn, and a vertex in Pn in a
fully glued n-gon.

Figure 2.5: Some ways a point in a glued polygon can fail to have a neighborhood homeomorphic to a
neighborhood in R2. None of these failures are possible in a fully glued n-gon.

boundary.3.

Proof. Any quotient space of a compact space is compact, and Pn is compact, so the fully glued polygon must

be compact. To see that Pn{ „ is a manifold, we show there are charts around rps, where rps P Pn{ „ is an

equivalence. If p is in the interior of Pn, we can simply use a neighborhood of p in Pn as a chart. If p is on

an edge ei, the chart is obtained by stitching together neighborhoods on both sides of the glued edge, which

correspond to neighborhoods of p and fppq, where f is a gluing function on ei. (f exists because the gluing

function is fully glued.) If p is a vertex, the chart is obtained by stitching together neighborhoods of all of the

vertices q with rqs “ rps, which has to produce a single neighborhood since the polygon is fully glued. The

charts for each type of point are showed in Figure 2.4. Figure 2.5 shows some situations in which this result

might fail for a polygon that is not fully glued.

3 Reduction Approach

In this section, we are going to focus on the orientable gluing. Since there is no twisted edges, we can simply

identify a pair by the edges, say pe1, e2q, without paying attention to the twistedness. Starting from a square,

3A k-manifold without boundary is a topological space where each point has an open neighborhood homeomorphic to an
open subset of Rk.
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e1

e2

Figure 3.1: An adjacent pair.

we already know that gluing adjacent edges of a square gives a sphere, while gluing opposite edges gives a

torus. It turns out that these two scenarios are indeed the building block of all orientable gluings.

Firstly, we need to a way to describe our pairs in a grouping:

Definition 3.1. A pair in a grouping is called an adjacent pair if it pairs two neighboring edges.

Definition 3.2. A set of two pairs in a grouping is called a set of cross-pairs if two pairs are “diagonal” to

each other. That is, if we connect between the midpoints of edges in each pair, two lines will intersect with

each other.

Remark. See Figure 3.1 and Figure 3.2. Notice that since we are using topological n-gon, we can assume the

polygon is convex.

ei1

ei2

ej1

ej2

Figure 3.2: A set of cross-pairs.

Definition 3.3. Consider two topological surface S1, S2. The connected sum of surface S1, S2 is obtained

by removing one disk from each surface, and gluing the surfaces after the cut along the border.

Remark. See Figure 3.3. For orientable surfaces, it is easy to visualize that two surfaces are just ”attached”

to each other.

Lemma 3.1. The connected sum of any topological surface S and a sphere is S itself.

Proof. We need to find a homeomorphism f between S and the connected sum S1, which is not difficult to

obtain. Firstly, we take a identity map id restricted to the SzD where D is the removed closed disk. In

addition, after removing a disk, the sphere is homeomorphic to a disk. So we can choose any homeomorphism

g between disks such that the map is continuous on BSzD. Then we have

f “ id |SzD `g : S Ñ S1

a homeomorphism.

As Figure 3.3 shows, the connected sum of a torus and a sphere is a torus, since we can easily “shrink”
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Figure 3.3: Connceted sum of a torus and a sphere.

the cap of the sphere into a disk.

Theorem 3.1 (Decomposition of Orientable Grouping). Any orientable surface obtained by a grouping G on

an n-gon is homeomorphic to the connected sum of some number of tori.

In order to prove this, we will use the reduction approach to convert any orientable n-gon grouping into

connected sum of a torus/sphere and the surface determined by a grouping on n1-gon, where n1 ă n.

Firstly, we look at the somewhat trivial case.

Lemma 3.2 (Adjacent pair reduces grouping trivially). An adjacent pair of edges gives a surface determined

by sub-grouping P 1, where P 1 is obtained by removing the adjacent pair.

Proof. This is best illustrated by a picture(Figure 3.4), that we can just simply glue the two adjacent edges

together. Since the remaining edges forms a closed curve, we obtain a grouping of pn´2q-gon from the original

n-gon.

Figure 3.4: A simple reduction case.

Lemma 3.3 (Cross-pairs also reduce grouping). A set of cross-pairs in a n-gon gives a connected sum of a

torus and the surface determined by P 1, where P 1 is a grouping on pn´ 4q-gon.
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Proof. Without loss of generality, we label the vertices of these edges

vi, vi`1, vj , vj`1, vm, vm`1, vn, vn`1

as in Figure 3.5.

In the first step we glue one pair of edges. Then we can see that pvi`1, . . . , vn, vn`1, . . .q forms a polygon

that is the boundary of the a disk removed from a surface. Similarly, pvj`1, . . . , vm, vm`1, . . .q is also such

polygon.

When we glue the second pair together, vn coincides with vm`1, vn`1 coincides with vm. So the two

polygons in step 1 become one polygon, which is the boundary of both disks removed from an gluing of cross-

pairs and the gluing of polygon pvi`1, . . . , vn, . . . , vi, . . . , vm, . . . , vi`1q. Notice that since we go from vn to vi,

vn coincides with vm`1. Similarly we can go from vn back to vi`1, as in Figure 3.6. So by definition we have

a connected sum of a torus and a surface obtained by a new grouping G1 on a pn´ 4q-gon.

Figure 3.5: First step of gluing.

Figure 3.6: Second step of gluing.

Remark. Notice that the grouping G1 on the pn ´ 4q-gon is not a simple case where we can just “ignore”
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Figure 3.7: The change is in the order of the segments.

the chosen cross-pairs and the connected the remaining segments in its original order. However, it is not

hard to find how the new grouping G1 is obtained. Suppose the cross-pairs partitions the polygon into four

segments A,B,C,D respectively, the resulting grouping should be determined by ADCB, see Figure 3.7. In

each section, the order of edges is preserved.

Lemma 3.2 and Lemma 3.3 helps us to identify part of the resulting surface from a grouping G and

leave the unsolved grouping G1 to be performed on a polygon with lower number of sides. Hence, we call

this a reduction. An adjacent pair and a set of cross-pairs are called reduction group. Now we generalize

our reduction approach to all orientable edge groupings so that we can more easily analyze more complicated

gluings of polygon with much larger number of edges.

Theorem 3.2 (Existence of Reduction Group). For a given orientable grouping, there exists at least an

adjacent pair or a set of cross-pairs.

Proof. Suppose we have no set of cross pairs. We consider an edge pair pem, enq with m ă n. If there is no

edge between em, en, we’ve discovered an adjacent pair. Otherwise, suppose an edge ei where m ă i ă n. The

edge should belong to a pair pei, ejq. Since there is no cross pairs, we can’t have j ă m or j ą n. As a result,

we have m ă j ă n. Then we repeat the same process for ei, ej if there are edges between them. Since there is

finite edges between em, en. We will have eventually stop the process. Then the pair pei1 , ej1q we obtain when

we stop will be an adjacent pair.

In order to keep reduce the grouping, we need the following lemma:

Lemma 3.4. Every grouping obtained by performing reduction operations of an orientable grouping is ori-

entable.
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Proof. The lemma is easy to prove since an orientable grouping requires no twisted gluing, so any subset of

the grouping has no twisted gluing. The reduction operation only changes the relative position these edges,

so grouping obtained has no twisted gluing as well.

So we can prove Theorem 3.1 now.

Proof. Following Theorem 3.2, Lemma 3.2, and Lemma 3.3. For any orientable, we can find a reduction group,

obtain another orientable, then continue to find a reduction group. Since the number of edges in the grouping

is strictly decreasing, we will end up with just a square or a di-gon pairing, which is either a sphere or a torus.

The reduction operations only add tori to the surface, so every surface obtained by orientable grouping is a

connected sum of some tori.

We show a relatively simple yet non-trivial example of our reduction operation:

[a] [b] [c]

Figure 3.8: Wrapping for top/bottom edge pair results in square embedding in a torus

Example 3.1 (Octagon Gluing). When the octagon is wrapped around (Figure 3.8), we can see that the

removed disk on the torus has a boundary that is equivalent to a topological square (4´gon). So we can

obtain the gluing surface by the connect sum of two square gluings.

4 Non-Orientable Gluings

4.1 Digons

Note: throughout this section, we will use ei“lej to denote an untwisted gluing and eibej to denote a twisted

gluing of edges ei and ej . The digon, or the two sided polygon is the simplest case we shall consider. If we were

to use the traditional notion of a polygon, such an object would be impossible. Our definition of a topological

n-gon however, permits such an object. It may be useful, in some instances to visualize the digon as shown in

Figure 4.1.

It is not too difficult to see that the only two gluings possible for this polygon are: te1“le2u and te1be2u.

We shall refer to te1 “l e2u as the untwisted digon gluing and te1 b e2u as the twisted digon gluing.
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Figure 4.1: A digon

Figure 4.2: untwisted digons form spheres

4.1.1 Untwisted Digon Gluings

We know that te1 “l e2u is simply S2. In fact, an untwisted digon gluing can be viewed as the intermediate

step in the gluing of adjacent edges of a square. The resulting object has genus 0. This gluing is demonstrated

below in Figure 4.2.

4.1.2 Twisted Digon Gluings

Twisted digon gluings are a far more interesting gluing, and lead to a non-orientable 2-manifold called the real

projective plane, which we will denote by P pR2q. The projective plane can be defined as the quotient space

obtained by the equivalence relation that identifies diametrically opposite points on a disk.

Theorem 4.1. Any twisted digon forms RP 2

Proof. Let P be a topological 2-gon. Consider the twisted gluing function f : e1 Ñ e2 that maps a point on e1

to the point diametrically opposite to it on e2. The resulting polygon satisfies the definition of the projective

plane stated above. The result holds even if we had chosen a different twisted gluing function as a consequence

of Theorem 2.2

4.2 Visualizing Connected Sums

Although we do not have the framework to describe the gluings of the edge of polygon to the edge of a digon,

the idea proves to be quite useful for determining the genus of non-orientable surfaces through connected sums.
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Figure 4.3: Cutting a disk out of a polygon

The purpose of this section is to describe the notion of a connected sum as described in Definition 3.3. Recall

that to perform a connected sum of two 2-manifolds, we cut out a disk from each manifold and the glue the

resulting manifolds-with-boundary to each other along the newly created boundary. We will now demonstrate

how the connected sum operation can be represented using polygons. Let Pn be an n-gon with a gluing G

defined on it. We cut a disk in the middle of the polygon. The result is not a topological n-go, but if we

move the disk to the boundary of the n-gon, then we can ”pop” it out of one of the vertices, leaving us with

one edge e1 that is not part of the gluing G. When all the other sides have been glued together, e1 will be the

boundary that we will glue the other polygon’s boundary to. This procedure is illustrated in Figure 4.3.

4.3 Pitfalls

While this approach provides us with a nice visual representation of a connected sum of two manifolds, it is

unfortunately rather difficult to ascertain the genus of a glued polygon, or to show that two gluings yield the

same result. This is demonstrated in Figure 4.4 where we have the connected sum of a torus and RP 2 and

the connected sum of a klein bottle and RP 2. There is no good way to determine, using this method, whether

the surfaces will be equivalent to other. We hope to resolve this issue by extending our reduction rules on

orientable grouping onto non-orientable ones.

4.4 Reduction Approach, Revisited

We identify that grouping is non-orientable if and only if it includes a twisted pair. So we can also try apply

the reduction approach.

Theorem 4.2 (Twisted Pair Reduces Grouping). A twisted pair on a grouping G on a n-gon gives a connected

sum of a projective plane RP 2 and the surface determined by P 1, where P 1 is a grouping on pn´ 2q-gon.

Proof. As Figure 4.5 has shown, the twisted pair generates a Möbius strip, which has single boundary. This

would come to our aid, since the boundary is exactly a pn´ 2q-gon. In addition, the polygon is the boundary

of a disk removed from a projective plane. We conclude that the surface can be expressed as a connected sum

of a projective plane RP 2 and the surface determined by P 1, where P 1 is a grouping on pn´ 2q-gon.
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[a] [b]

Figure 4.4: Connected sum of a klein bottle and RP 2, torus and RP 2

Figure 4.5: Twisted pair generates a Möbius strip

Remark. Notice that here unlike orientable groupings, the ”twistedness” and relative edge order in a certain

segment are revsered. This would result in uncertainty that whether the grouping G1 would be orientable.

However, by Theorem 2.3, the existence of twisted pair signals the orientablity. Thus, if G1 is non-orientable,

we can still find twisted pairs and continue reduction operations. If G1 is orientable, we then apply orientable

reduction operations.

5 Attainable Surfaces

The results from the reduction approach let us make very powerful statements about which glued polygons can

be attained as gluings of the topological n-gon. In this section, we show those results, including an extremely

powerful theorem that classifies all complete gluings of the topological n-gon.

Theorem 5.1. If a surface S is homeomorphic to a glued k-gon, and n ą k is even, there is a glued n-gon

homeomorphic to S.
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Proof. We induct on n ´ k. Let tpei1 , ej1 , s1q, ..., peim , ejm , smqu be a signed grouping that gives a gluing

homeomorphic to S. We know from the results in Section 2 that a signed grouping determines a surface, since

different choices of gluing functions do not affect the topological object obtained. For the base case n´ k “ 0,

we may just use this signed grouping.

For the inductive step, suppose there is a gluing of the pn´ 2q-gon homeomorphic to S, given by

tpei1 , ej1 , s1q, ..., peim1 , ejm1 , sm1qu. Then the gluing of the n-gon given by tpei1 , ej1 , s1q, ..., peim1 , ejm1 , sm1q, pen´1, en, 1qu

is homeomorphic to S, by reducing the final two edges. By induction, the claim is proved.

Next, we have a theorem about the maximal genus that can be obtained for an orientable gluing.

Theorem 5.2. For n even, the maximal genus obtainable in an orientable fully glued n-gon is tn4 u, which is

always obtainable.

Proof. From Section 3, we know the genus for an orientable fully glued n-gon. Let the associated grouping be

tpei1 , ej1q, . . . , pein{2 , ejn{2qu. To attain the maximal genus, choose this grouping to be such that we can reduce

as many cross-pairs as possible. Every time we reduce cross-pairs, we add 1 to the genus, and, when there

are no more cross-pairs to be reduced, we are left with a sphere with k handles, where k is the number of

cross-pairs we reduced. We lose four edges with every reduction, so we can perform at most tn4 u reductions,

in which case the genus is tn4 u.

We can guarantee that we can perform tn4 u reductions by working backwards: start with one cross-pair

(and possibly two additional edges, if n is not divisible by 4) and repeatedly add four edges to get an edge

grouping that produces the previous edge grouping after reducing a cross-pair.

These two theorems give us the following important corollary.

Corollary 5.2.1. The genuses of orientable surfaces that can be obtained as fully glued n-gons are exactly the

integers between 0 and tn4 u, inclusive.

Proof. By Theorem 5.2, genus tn4 u can be obtained as a gluing of the n-gon, and for all m ă n even, tm4 u can

be obtained as a gluing of the m-gon. Therefore, by Theorem 5.1, tm4 u can be attained as a gluing of the

n-gon. Since every integer between 0 and tn4 u can be written as tm4 u for some 0 ď m ď n, all of these genuses

are attainable. No lower genus can be attained, since negative genus is not possible, and no higher genus can

be attained, since we showed tn4 u is the maximum.

We now show a theorem that completely categorizes complete gluings of topological n-gons.

Theorem 5.3 (Classification of fully glued n-gons). Let S be a fully glued topological n-gon, for n even. Then

S is homeomorphic to a sphere, a connected sum of k tori for some k ą 0, or a connected sum of k projective

planes for some k ą 0.

Remark. This theorem closely resembles the famous Classification of Closed Surfaces Theorem, which states

that every connected closed surface is homeomorphic to a sphere, a connected sum of tori, or a connected

sum of projective planes. This is not an accident. In a standard proof of the Classification of Closed Surfaces

Theorem, one first shows every closed surface can be triangulated (informally, that it can be cut into triangles).

This result is equivalent to the claim that every closed surface can be expressed as a glued polygon. (A glued

polygon representation is obtained from a triangulation of a surface by making cuts that divide the triangles

until we obtain a polygon.)
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Figure 5.1: This glued polygon is homeomorphic to both T 2#RP 2 and RP 2#RP 2#RP 2.

To prove Theorem 5.3, we first show a lemma, which is interesting in its own right.

Lemma 5.1. The connected sum of a torus and a projective plane is homeomorphic to the connected sum of

three projective planes.

Note that this lemma is not in the language of gluing polygons. It is purely a topological result. Moreover,

it is not particularly easy to show topologically. Our proof uses glued polygons, and shows that glued polygons

may be a powerful tool in simplifying some topological arguments.

Proof. To prove this lemma, we show both the connected sum of a torus and a projective plane and the

connected sum of three projective planes can be obtained by using the reduction approach on a specific glued

polygon. Consider a glued hexagon, that glues e1 to e3 twisted, e2 to e5 untwisted, and e4 to e6 untwisted.

(This glued hexagon is depicted in Figure 5.1.)

By reducing the cross-pairs pe2, e5q, pe4, e6q, we obtain that this surface, when glued, is homeomorphic

to the connected sum of a torus and a twisted digon, which is the connected sum of a torus and RP 2. This

reduction is shown in Figure 5.2.

We may also first reduce the twisted pair pe1, e3q. When we do this, this twists the edge e2 relative

to the other edges, resulting in a gluing of the 4-gon with opposite edges glued together and one edge pair

twisted. This reduction is shown in Figure 5.3. Then, reducing the remaining pair of twisted edges yields that

the gluing of the 4-gon reduces to the connected sum of two copies of RP 2. So, this reduction produces that

Figure 5.1 is homeomorphic to the connected sum of three copies of RP 2.

Therefore, the connected sums RP 2#RP 2#RP 2 and T 2#RP 2 must yield homeomorphic surfaces, since

they are obtained by the same glued polygon.

We can now prove Theorem 5.3, that a fully glued topological n-gon, for n even, is either a sphere, the

connected sum of tori, or the connected sum of projective planes.

Proof. We proceed by induction. The result is true for digons, for which there are two possibilities. A twisted

digon results in RP 2, as we know from the results of the “non-orientable gluings” section. An untwisted digon

is a sphere.

Now, suppose the result is true for n-gons, and moreover for m-gons for all m ď n. Then, we show the

result is true for pn` 2q-gons. Take a signed grouping G of the edges of the topological pn` 2q-gon. Then, if

G produces an orientable gluing, we know from the previous section there are either cross-pairs or an adjacent
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Figure 5.2: Reducing cross pairs in Figure 5.1 produces the connected sum of a torus and RP 2.

Figure 5.3: Reducing twisted pairs in Figure 5.1 produces the connected sum of RP 2 and a Klein bottle.

pair in G. If there is an adjacent pair in G, reduce them to obtain the connected sum of a sphere and a fully

glued n-gon, which is homeomorphic to a fully glued n-gon, which by inductive hypothesis is of the desired

form.

Otherwise, reduce two cross-pairs in G to obtain the connected sum of a torus with a fully glued pn´ 2q-

gon. If the fully glued pn ´ 2q-gon is a sphere, then G produces a gluing homeomorphic to the torus, and

if the fully glued pn ´ 2q-gon is a connected sum of k tori, then G produces a gluing homeomorphic to the

connected sum of k ` 1 tori. If the fully glued pn ´ 2q-gon is the sum of k ě 1 projective planes, then

we have that G produces a gluing homeomorphic to T 2#RP 2# ¨ ¨ ¨#RP 2 “ pT 2#RP 2q#RP 2# ¨ ¨ ¨#RP 2 “

pRP 2#RP 2#RP 2q#RP 2# ¨ ¨ ¨#RP 2, the connected sum of k ` 2 projective planes, by applying Lemma 5.1.

(The connected sum is associative.) However, this final case will not occur, since then G would produce a

nonorientable surface.

If G produces a nonorientable surface, we know by Theorem 2.3 there is a twisted pair of edges in G.

Then, reduce this twisted pair of edges to get the connected sum of RP 2 and a fully glued n-gon. If the fully

glued n-gon is a sphere, then we obtain the connected sum of a sphere and RP 2, which is just RP 2. If the

fully glued n-gon is a sum of k copies of RP 2, we obtain the connected sum of k ` 1 copies of RP 2.

Finally, if the fully glued n-gon is the sum of k tori, we repeatedly apply Lemma 5.1. The surface defined

by G is pRP 2#T 2q# ¨ ¨ ¨#T 2 “ pRP 2#RP 2#RP 2q#T 2# ¨ ¨ ¨#T 2 “ RP 2#RP 2#pRP 2#T 2q#T 2# ¨ ¨ ¨#T 2 “

RP 2#RP 2#pRP 2#RP 2#RP 2q#T 2# ¨ ¨ ¨#T 2 “ ¨ ¨ ¨ . Continuing in this manner, we ultimately obtain that

the surface defined by G is 2k copies of RP 2.

By induction, the claim is proved.
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6 Probabilities and Averages

We can start to discuss the probabilities of various genuses occurring for an orientable gluing of the n-gon, as

well as average genuses in an orientable glued n-gon. Since the genus of an orientable fully glued polygon is

determined by the complete grouping of the edges, we can refer to orientable fully glued polygons by complete

groupings. In what follows, a “random glued polygon” is an orientable fully glued polygon determined by

a random complete grouping of the edges, and anything about “averages” refers to an average across all

complete groupings of edges. We consider two complete groupings the same here if and only if the same pairs

of edges are included in the ordered pairs (though the order of the pairs, and the order within each pair, can

be permuted). Notably, two complete groupings that are different, but can be obtained from each other by

rotation or reflection, are considered different here.

First, we count some objects we may determine exactly.

Theorem 6.1. There are n!
2n{2pn2 q!

complete groupings of the edges of Pn, for n even.

Proof. We convert permutations to complete groupings. Given a permutation of the edges of Pn, convert it to

a complete grouping by pairing the first two edges, the third and fourth edge, and so on in the permutation.

This overcounts by a factor of 2n{2pn2 q!, since the pairs of edges can be freely shuffled with each other, and the

edges within each pair can switch their order. So, the final count is n!
2n{2pn2 q!

.

Now, we count how many complete groupings result in surfaces of genus 0.

Theorem 6.2. There are Cn{2 complete groupings of the edges of Pn that result in genus-0 surfaces when the

corresponding orientable fully glued n-gon is formed, where Cn{2 is the n{2th Catalan number.4

Proof. Among other things, the n{2th Catalan number is the number of ways to pair the n vertices of a convex

n-gon so that the lines joining the vertices do not intersect. Therefore, it also counts the number of ways to

pair the n edges of the topological n-gon together so that the lines joining the edges do not intersect. This is

the same as the condition that the n edges do not form any cross-pairs, so it is the condition for the pairing

to result in a genus-0 surface.

The previous two results give us an immediate corollary.

Corollary 6.2.1. The probability that a random orientable fully glued n-gon has genus 0 is
2n{2Cn{2p

n
2 q!

n! .

Note that the number of complete groupings resulting in genus-1 surfaces is not simply
`

n
4

˘

Cpn´4q{2.

A complete grouping corresponding to a genus-1 surface has a cross-pair, but no two disjoint cross-pairs.

However, such a grouping may have many different cross-pairs, so we cannot count these groupings by simply

selecting four elements to form a cross-pair in
`

n
4

˘

ways and then pairing the rest of the elements to not

intersect in Cpn´4q{2 ways. We do have a conjecture for the number of pairings of a topological n-gon that

result in a genus-1 surface, but the question gets even more complicated for higher genus, and experimental

results become a better option than trying to find a formula.

4The Catalan Numbers enumerate many different combinatorial objects, including the number of ways to properly arrange n
open and n closed parantheses so that at no point in the sequence are there more closed than open parantheses. The nth Catalan
number is 1

n`1

`2n
n

˘

.
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Conjecture 6.1. The number of complete groupings of edges of Pn that results in a genus-1 surface is

Cn´4
2

n´3
ÿ

i“1

ipn´ 2´ iq “
1

6

pn´ 1q!

pn2 ´ 2q!pn2 ´ 1q!

Intuition: suppose we have Pn, we fix one edge e1 to be one of the edges in the cross pair, then we

consider positions of the remaining edges of the cross pairs in the polygon.

Suppose e1 is paired with ej . To make cross pairs, ei and ej cannot be adjacent, so there are n ´ 3

choices for ej . So e1 and ej partition the remaining edges of the polygon into two parts of connected edges,

with one part having k edges, the other part having n´ 2´ k edges. We notice that k takes value between 1

and n ´ 3. Then we take randomly one edge from each part to fix a set of cross pairs. So in total, there are
řn´3

i“1 ipn´ 2´ iq choices of cross pairs.

After we fix a set of cross pairs, we can perform reduction on the polygon grouping, which gives us a

connected sum between a torus and a surface resulted from a grouping on Pn´4. Since we are looking for

genus-1 surfaces, we should have the grouping on Pn´4 rendering us a sphere. So for each choice of cross pairs,

we have Cpn´4q{2 ways to match the rest of edges. Each such grouping would be mapped one-to-one with a

grouping on Pn. Combined with the cross pairs we have in the first place, we have a complete grouping on Pn

that results in a genus-1 surface

Interestingly, it turns out that fixing e1 to be one of the edges in the cross pairs actually counts all

the cases. Fixing e1 in this way gives us the count in the conjecture. Table 1 suggests this count is accu-

rate. It shows the probability of a genus-1 surface being obtained, as predicted by the conjecture, as well

as experimentally-determined probabilities for some small values of n, showing that the count given by the

conjecture is very likely to be accurate, at least for these n.

Tn: number of groupings (per conjecture) of the n-gon that result in a torus.
Pn: number of ways to pair up the edges of an n-gon.

Sim.: program simulated proportion of groupings that yield toruses (1,000,000 trials.)
n 4 6 8 10 12 14
Tn 1 10 70 420 2310 12012
Pn 3 15 105 945 10395 135135
Tn

Pn
0.333 0.667 0.667 0.444 0.222 0.0889

Sim. 0.3326 0.666 0.667 0.445 0.223 0.0883

Table 1: Predicted frequency vs. simulation frequency

Now, we discuss experimental results for two very natural questions: what the probability a given glued

n-gon has the maximum possible genus is, and what the average genus for a glued n-gon is. Figure 6.1 shows

experimentally determined probabilities that a random 2k-gon has maximal genus for 1 ď k ď 50. We used a

program (with code replicated in the appendix) to test one million random glued polygons for each value of k

and to tabulate the experimental probability based on the number of these polygons with maximal genus. The

graph clearly shows that the probability the genus is maximal is greater for odd k than even k of comparative

magnitude, which is what we might predict, since the maximal genus of an orientable fully-glued 2k-gon is

greater relative to k when 4 divides 2k.

Figure 6.2 shows the experimentally determined average genus of an orientable fully glued 2k-gon, for

1 ď k ď 50. The average is estimated by taking the average genus across one million random orientable fully
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Figure 6.1: The probability that a randomly selected orientable fully glued 2k-gon has maximal genus, 1 ď
k ď 50

glued 2k-gons, for each k. This figure shows the increase to be strongly linear, especially after the first few

values.

7 Future Directions

7.1 Higher and Lower Dimensions

One natural question to ask is whether we can say anything about gluings of connected k-dimensional polytopes,

for k ‰ 2. These are gluings of the pk ´ 1q-dimensional faces of the polytopes, with bijections between the

faces and equivalence relations defined based on these bijections as we did for polygons.

For k ă 2, the question is completely trivial: For k “ 0, the only connected polytope is the single point.

Gluings might or might not be well-defined under different definitions, but if they are well-defined, the only

glued object we could obtain would be the single point itself. For k “ 1, the only connected polytope is a

single line segment. Gluing its pk´ 1q-dimensional faces, which are its endpoints, together gives the 1-sphere.

For k ě 3, the question is quite complicated. One major obstacle here that we did not encounter for the

polygons is the many different bijections there are between two-dimensional or higher-dimensional figures. We

will not be able to summarize up the important information about gluing functions with a condition as simple

as the twisted/untwisted condition. Also, manifolds of dimension ą 2 are significantly more complicated

than manifolds of dimension ď 2. One could investigate whether any general conclusions about gluings of

higher-dimensional figures can be drawn.

7.2 More edges glued together

In our definition for a glued polygon, we required every edge to be present exactly at most once in an edge

grouping. If we allowed edges to be present more than once, we would obtain more classes of glued polygons,
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Figure 6.2: The average genus of an orientable fully glued 2k-gon, for 1 ď k ď 50

in which three or more edges might all be glued on top of each other. One could try to categorize the surfaces

that are obtained by this broader class of gluings.

A Appendix

A.1 Website

You can calculate the genus, given a grouping, or generate a number of random trials of n-gon on the website

https://victorfu14.github.io/parts/index.html, hosted on the second author’s website.

A.2 Code

We have made a Java program that determines the genus of an orientable completely glued polygon. What

follows is the polygon class from that program. This class represents an orientable completely glued polygon

by an array signifying which edges are glued together. The genus method returns the genus of the glued

polygon. The reduceCrossPairs method is a helper method for the genus method.

import java.util.*;

class polygon

{

int numSides; // number of sides of the polygon. precondition: numSides is even

int[] sidePairings;

/** array of integers which represents which sides are glued together

* preconditions: sidePairings has length numSides, and contains the elements

* 1, 1, 2, 2, ..., numSides/2, numSides/2 in some order.

* two edges are glued together if the elements at the corresponding

* indices in the sidePairings array are the same
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* for instance, the array [1, 2, 1, 2] represents the gluing of the 4-gon where the first and

* third edges, and second and fourth edges, are glued together. This is a torus.

* from our work in the paper, the sidePairings array describes a complete grouping of the

* n-gon, and therefore describes all of the relevant information for an orientable gluing.

*/

public polygon (int n, int[] s) // constructor for polygon class

{

numSides = n;

sidePairings = s;

}

/** constructs a random polygon if only number of edges are given

* uses the Fisher-Yates shuffle to generate a

* polygon with n sides and random sidePairings array

*/

public polygon(int n)

{

randomPolygon(n);

}

public void randomPolygon(int n) {

numSides = n;

int[] sideArray = new int[n];

ArrayList<Integer> sidesLeft = new ArrayList<>();

for (int i = n/2; i>0; i--) //this loop fills sidesLeft with two copies of 1, ..., n/2

{

sidesLeft.add(i);

sidesLeft.add(i);

}

for (int i = 0; i<n; i++)

// this loop fills sideArray with random entries of sidesLeft

// that haven't already been chosen

{

int index = (int) (Math.random()*(n-i));

sideArray[i] = sidesLeft.get(index);

sidesLeft.remove(index);

}

sidePairings = sideArray;

}

// returns the genus of the glued polygon determined by sidePairings

public int genus()

{

22



int total = 0;

while (this.reduceCrossPairs()) total++;

return total;

}

/** returns false if there are no cross-pairs present.

* if there are cross-pairs present, this method returns true and

* reduces the edges of the cross-pairs

*/

private boolean reduceCrossPairs()

{

int currIdx = 0;

while (currIdx < numSides) {

int currPair = currIdx + 1;

// find the pair

while (currPair < numSides) {

if (sidePairings[currIdx] == sidePairings[currPair]) break;

currPair++;

}

// currPair going over last index means we already searched this pair before

if (currPair == numSides) {

currIdx += 1;

continue;

}

/** get the "unpaired" edge "within" (currIdx, currPair)

** pairTwo is -1 if all the edges between (currIdx, currPair)

** are paired within this range

*/

int pairTwo = searchForSingle(currIdx, currPair);

if (pairTwo == -1) {

currIdx += 1;

// we guarantee that no cross-pairs involving currIdx

// continue searching...

} else {

// cross-pairs found

int indexTwo = findPair(pairTwo);

// update the grouping to the new ones obtained

updatePolygon(currIdx, currPair, pairTwo, indexTwo);

return true;

}

}
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return false;

}

// should have start < finish < numSides

private int searchForSingle(int start, int finish) {

boolean[] tempData = new boolean[finish - start + 1];

for (int i = 0; i < tempData.length; i++) {

if (!tempData[i]) {

boolean hasPair = false;

for (int j = i + 1; j < tempData.length; j++) {

if (sidePairings[j + start] == sidePairings[i + start]) {

// set value to true so it won't be considered again

tempData[j] = true; tempData[i] = true;

hasPair = true;

break;

}

}

if (!hasPair) return i + start;

}

}

return -1;

}

private int findPair(int idx) {

for (int i = 0; i < numSides; i++) {

if (sidePairings[i] == sidePairings[idx]

&& i != idx) return i;

}

return -1;

}

/** we should have guarantee that idx00 < idx10 < idx01 < idx11

* the polygon is segmented as idx00, A, idx10, B, idx01, C, idx11, D

* we should return an array of ADCB

*/

private void updatePolygon(int idx00, int idx01, int idx10, int idx11) {

int[] arr = new int[this.numSides - 4];

// this loop fills in the first segment, A

int idx1 = 0; int idx2 = idx00 + 1;

while (idx2 < idx10) {

arr[idx1] = this.sidePairings[idx2];

idx2++; idx1++;

}
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// second segment, D

idx2 = idx11 + 1;

while (idx2 < numSides + idx00) {

if (idx2 >= numSides) {

arr[idx1] = this.sidePairings[idx2 - numSides];

} else arr[idx1] = this.sidePairings[idx2];

idx2++; idx1++;

}

// third segment, C

idx2 = idx01 + 1;

while (idx2 < idx11) {

arr[idx1] = this.sidePairings[idx2];

idx2++; idx1++;

}

// fourth segment, B

idx2 = idx10 + 1;

while (idx2 < idx01) {

arr[idx1] = this.sidePairings[idx2];

idx2++; idx1++;

}

numSides -= 4;

sidePairings = arr;

};

}
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