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Chapter 1

We’ll be studying finite dimensional representation of GLnC and its connections to com-
binatorics, including symmetric polynomials, Young Tableaux, crystals, JDQ and RSK,
webs, standard theory.

not doing, but good topics:

• ∞-dimensional representations

• Cluster algebras

• total positivity

• other Lie groups

• Sn

• GLn Fp representation theory.

All of these use the basic GLn C theory. In addition, GLn C representation theory is very
close to U(n)-represention theory.

1.1 Introduction

REMINDER TIME G a group, K a field, V a k-vector space. Then a representation of G
on V is an action of G on V by K-linear maps G × V → V, (gh)(v) = g(h(v)), id ·v =

v, g(u+ v) = g(u) + g(v), g(cv) = cg(v).

In other words, a homomorphism ρ : G → GL(V ). We are looking at ρ : GLnC →
GLN (C).

Let W = Cn with the standard GLnC action. We like:

• W , W ⊕W .

1



Introduction Yiwei Fu

• W⊗k,
∧k

W and SymkW ,

• WV = Hom(W,C).

• C, g 7→ (det g)k, k ∈ Z.

Some representations we don’t want to study.

• |det(g)|α, α ∈ R, not even when α = 1.

• g 7→ g

• g 7→ σ(g), σ ∈ Gal(C/Q).

(They are not algebraic.)

Definition 1.1.1. We say that ρ : GLn C 7→ GLN (C) is polynomial if the N2 matrix entries
ρ(g)ij are polynomials in the entries of g, i.e. C[gpq]. We’ll say ρ is algebraic if the ρ(g)ij ∈
C[gpq, (det g)−1].

Definition 1.1.2. For any group G, and representation V over a field K, we define the
character χV of V to be the function G→ K given by χV (g) = tr(ρV (g))

Notice that

χV (hgh−1) = tr(ρV (hgh−1)) = tr(ρV (h)ρV (g)ρV (h)−1) = tr(ρV (g)) = χV (g).

The diagonalizable matrices are dense in GLnC, so any continuous function is deter-
mined by its values on diagonalizable matrices. So a continuous conjugacy invariant
function is determined by its values on diagonal matrices.

If V is a polynomial representation, then

χV



z1

. . .

zn


 ∈ C[z1, . . . , zn].

(Z[z1, . . . , zn], in fact.)

If V is algebraic,

χV



z1

. . .

zn


 ∈ C[z±1 , . . . , z

±
n ].

(Z≥0[z±1 , . . . , z
±
n ], in fact.)
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In general,

σ


z1

. . .

zn

σ−1 =


zσ(1)

. . .

zσ(n)


So characters of polynomial/algebraic representations are symmetric polynomials/Laurent
polynomials.

Denote Λn = Z[z1, . . . , zn]Sn , and Λ±n = Z[z±1 , . . . , z
±
n ]Sn . Λ is symmetric polynomials in

∞-ly many vars.

1.2 Symmetric Polynomials

Λn = Z[x1, . . . , xn]Sn ,Λ±n = Z[x±1 , . . . , x
±
n ]Sn

Definition 1.2.1. A partition is a weakly decreasing sequence of positive integers

λ1 ≥ λ2 ≥ . . . ≥ λ` > 0

We draw them as configuration of boxes called Young Diagrams.

↔ (4, 2, 1).

French convention is increasing diagrams; Russian convention is angled.

We often pad our partitions with 0’s: (4, 2, 1), (4, 2, 1, 0), . . . The size of a partition |λ| =∑
j λj , which is the number of boxes. The length of a partition `(λ) = #j, λj > 0. The

transpose of (4, 2, 1)T = (3, 2, 1, 1). (λT )j = #i, λi ≥ j.

Definition 1.2.2. The dominance order is the partial order defined by

µ � λ ⇐⇒ ∀i, µ1 + . . .+ µi ≤ λi + . . .+ λi.

Definition 1.2.3. Suppose λ a partition, then

Λn 3 mλ(x1, x2, . . . , xλ) =
∑

(c1,...,cn)∈Sn(λ1,...,λn)

xc11 x
c2
2 . . . xcnn
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NOTE We are not counting with multiplicity. All coefficients of mλ are 0 or 1:

m1,1(x1, x2, x3) = x1x2 + x1x3 + x2x3, 6= 2(x1x2 + x1x3 + x2x3).

So we have the monomial symmetric functions

Λn =
⊕
`(λ)≤n

Z ·mλ.

Definition 1.2.4.
ek(x1, . . . , xn) =

∑
i1<i2<...<ik

xi1xi2 . . . xik = m1...1

We have
eλ1λ2...λ`

= eλ1
eλ2

. . . eλ`

We call e elementary symmetric functions.

Example 1.2.1.
e3,1(w, x, y, z) = e3e1

= (wxy + wxz + wyz + xyz) · (w + x+ y + z)

= (w2xy + . . .) + 4wxyz

= m2,1,1 + 4m1,1,1,1.

Notice (2, 1, 1) is the transpose of (3, 1).

Lemma 1.2.1.
eλ = mλT + linear combination of mµ with mµ ≺ λT

Proof. Suppose mµ occurs with positive coefficients in eλ = eλ1
. . . eλ`

. Then xµ1

1 . . . xµn
n

occurs in the expansion.

µ1 ≤ #{i : λi ≥ 1} = `(λ) = (λT )1

µ1 + µ2 ≤ 2#{i : λi ≥ 2}+ #{i : λi = 1}

≤ #{i : λi ≥ 2}+ #{i : λi ≥ 1}

≤ (λT )2 + (λT )1

...
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For any j,

µ1 + µ2 + . . .+ µj ≤ j ·#{i : λi ≥ j}+

j−1∑
k=1

k#{i : λi = k}

≤
j∑

k=1

#{i, λi ≥ k} =

j∑
k=1

(λT )k

So we have µ � λT . To get equality, must take x1x2 . . . xλi as the conjugation from eλ,
then we have the term mλT with coefficient 1. �

Corollary 1.2.1.
Λn =

⊕
`(λT )≤n

Zeλ =
⊕
`(λ)≤n

ZeλT .

Proof. Fix a degree d. The eλT with |λ| = d are related to mλ with |λ| = d by an upper
triangular matrix. �

Λn = Z[e1, e2, . . . , en]

Λn → Λn−1 by setting xn 7→ 0. Equivalently

mλ 7→

mλ `(λ) ≤ n− 1

0 `(λ) ≥ n
, eλ 7→

eλ `(λT ) ≤ n− 1

0 `(λT ) ≥ n

Λ = limJ∈n Λn graded inverse limit.

In any fixed degree, this diagram stabilizes, with

Λ = Z[e1, e2, . . .] =
⊕
λ

Z · eλ =
⊕

Z ·mλ

We can obtain a lot of equations that does not consider how many variables we use, like
m2

1 = m2 + 2m11, m3
1 = m3 + 3m21 + 6m111.

Λ is a graded ring with ring maps to every Λn. We would have diagrams like

· · · → Λ3
x3 7→0−−−−→ Λ2

x2 7→1−−−−→ Λ1

Concretely, Λ = Z[e1, e2, e3, . . .], and the maps Λ→ Λn sends ei 7→ ei for i ≤ n and ejto0
for j > n.
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Λ =
⊕

λ Z · eλ =
⊕

λ Z ·mλ. For eΛ · eµ, do the computation in a large enough Λn.

Given→ · · · → x3 → x2 → x1. We say that Y is lim∞←nXn if there are maps π1 : Y →
x1, π2 : Y → X2, . . . and for any Z we such compatible maps (α1, α2, . . .), there exists
unique f : Z → Y such that αi = πi ◦ f .

ek is the character of
∧k Cn.

hλ = hλ1
hλ2

. . . =
∑
i1≤i2≤...≤ik xi1xi2 . . . xik , which is the character of Symk Cn.

h2 =
∑
i≤j xixj =

∑
x2
i +

∑
i<j xixj = m2 +m11

h11 = h2
1 = (

∑
xi)

2
= m2 + 2m11.

We already know that Λ = Z[e1, e2, . . .] =
⊕

λ Z · eλ. We want to know that if Λ =

Z[h1, h2, . . .] =
⊕

λ Z · hλ.

The key thing is to check that ek’s are polynomials of hk’s and vice versa. Once we do
that, we know the e’s and the h’s generate the subring of Λ.

Lemma 1.2.2. For any k,
∑k
j=0(−1)jejhk−j = 0.

Generating functions.

Proof.
∑∞
j=0 ej(−t)j =

∏∞
i=1(1− xit).∑∞

j=0 hjt
j =

∏∞
i=0(1 + xit+ x2

i t
2 + . . .) =

∏∞
i=1

1
1−xit

.

So  ∞∑
j=0

ej(−t)j
 ∞∑

j=0

hjt
j

 = 1.

Taking the coefficient of tk we have
∑k
j=0(−1)jejhk−j = 0. �

Corollary 1.2.2. ek is a polynomial in h1, h2, . . . , hk.

Proof. Induct on n. Base case: e1 = h1.

ek =
∑k−1
j=0 (−i)j−1ejhk−j . Inductively, for each ej for j < k us a polynomial h1, h2, . . . , hj ,

so we win. �

The Hall inner product

This is a positive definite symmetric bilinear pairing

Computation of last class
hλ =

∑
µ

Aλµmµ
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work out the matirx to expand h and m s

Theorem 1.2.1.
Aλm = #{Z≥0matroxBwithrowsumλandcolumnsumµ}

Corollary 1.2.3. Aλm = Aµλ

Corollary 1.2.4. 〈, 〉 is symmetric.

THe definition of hλ is all product of x’s

hλ(x) = hλ1(x)hλ2(x) . . . =
∏
i=1

hλi(x)

hλi
is the sum of all monomial of degree λi

=
∏
i=1

( ∑
Bi1+Bi2+ldots=λi

(x1)Bi1(x2)Bi2 . . .

)
=

∑
Bij≥0,Bi1+Bi2+...=λi

∏
i

(xBi1
1 xBi2

2 . . .)(distributive)

=
∑

Bij≥0,Bi1+Bi2+...=λi

(
x
∑

i Bi1

1 . . .
)

=
∑

B,rowsum(B)=λ

xcolsum(B)

So coefficient of xµ is number of B with row sum = λ and column sum = µ.

Let’s redo this computation using generating function, since we will do a lot of things
from gen function perspective.

Start with generating function for hk

∞∑
k=0

tkhk(y) =
∏
j

1

1− tyj

Multiply copies of it (t renamed to xi):

∏
i

∏
j

1

1− xiyj
=
∏
i

∞∑
ki

xkii hki(y)

use distributive law we have

=

∞∑
k1,k2,...=0

∞∏
i=1

xkii hki(yi) =

∞∑
k1,k2,...=0

(xk11 . . .)hk1(y1)hk2(y2) . . . =
∑
λ1≥λ2

mλ(x)hλ(y)
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THe conclusion is that
∞∏

i,j=1

1

1− xixj
=
∑
λ

mλ(x)hλ(y)

plugin the def we have ∑
λ,µ

Aλµmλ(x)mµ(y)

to check Aλµ is symmetric

The product
∏∞
i,j=1

1
1−xixj

the product of sum of geometric series ... if I expand I just
choose the exponents to raise

As computation gets messier and messier gen function methods will be more useful

we will see
∏∞
i,j=1

1
1−xixj

coming up and up again (we’ll call it Cauchy’s product since
it does not seem to have a name)

We expand a symmetric thing asymmetrically. In general, if we have some identity that
can be expanded in this way want can be deduced?

Suppose pK(X) and qL(y) are two families of homogeneous symmetric polynomials in-
dexed by some index sets.

Suppose we have an expansion formula

∞∏
i,j=1

1

1− xixj
=
∑
K,L

BKLpK(x)qL(y), BKL ∈ Z

Proposition 1.2.1. From the above condition we can deduce that the pKZ-span Λ, as do the
qL’s.

If pk, qL ∈ QΛ, and BKL ∈ Q, then pk must Q-span Λ, as do the qL’s.

behind the scene (using ... to express Lambda tensor Lambda)

〈f, 〉 : Λ→ Z, it also induces a map 〈f, 〉 ⊗ id : Λ⊗Z λ→ Λ. (thinking about coefficients)

Lemma 1.2.3. 〈
f(x),

∏
i,j

1

1− xixj

〉
in variable x

= f(y)

Proof. it is enough to check this for f in a Z-basis of Λ.

〈
hλ(x),

∏ 1

1− xixj

〉
=

〈
hλ(x),

∑
λ

mλ(x)hλ(y)

〉
= hλ(y)
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�

Let’s go back to the proposition.

Proof. For any f ∈ Λ,

f(y) =

〈
f(x),

∏ 1

1− xixj

〉
=
∑
K,L

BKLpK(x)qL(y) =
∑
K,L

BKL 〈f(x), pk(λ)〉 qL(y) �

Corollary 1.2.5. Suppose pλ and qλ are the families of homogeneous symmetric polynomials
indexes by partitins with deg pλ = deg qλ = |λ| and

∏ 1

1− xixj
=
∑

Bλµpλ(x)qµ(y), Bλµ ∈ Z

Then
Λ =

⊕
λ

Zpλ =
⊕

Zqλ

Solve this and get tenure:

∏ 1

1− xiyjzk
=
∑
λ,µ,ν

gλµνsλ(x)sµ(y)sν(z)

Suppose now pλ(X) and qµ(y) are two families of homogeneous symmetric polynomials
in Λ indexed by partition with deg pλ = deg qλ = |λ| and let

∞∏
i,j=1

1

1− xixj
=
∑
λµ

Bλµpλ(x)qµ(y), Bλµ ∈ Z

Let Cλµ = 〈pλ(x), qµ(x)〉. Then B and C are inverses.

Proof.
〈
pν(y),

∏
1

1−xixj

〉
= pν(x) So

∑
λ,µ

Bλµpλ(x) 〈pν(y), qµ(y)〉 =
∑
λ,µ

BλµCνµpλ(x)

LHS have linear combination of p RHS we have matching up coefficients of two sides

∑
µ

BλµCνµ =

1 λ = µ

0 λ 6= µ
=⇒ BCT = id
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�

In particular, if
∏

1
1−xixj

=
∑
λ cλpλ(x)pλ(y) the pλ are orthogonal for 〈, 〉.

If we have no coefficients then this results in an orthornormal basis.
∏

1
1−xixj

=
∑
λ sλ(x)sλ(y)

(properties of schur polynomials we will discuss next week.)
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