Notes for Math 668 – Combinatorics of $\operatorname{GL}_n\mathbb{C}$ Representation Theory

Yiwei Fu, Instructor: David E Speyer

FA 2022

Contents

1		1
1.1	Introduction	1
1.2	Symmetric Polynomials	3
Office 1	nours:	

Chapter 1

We'll be studying finite dimensional representation of $GL_n \mathbb{C}$ and its connections to combinatorics, including symmetric polynomials, Young Tableaux, crystals, JDQ and RSK, webs, standard theory.

not doing, but good topics:

- ∞-dimensional representations
- Cluster algebras
- total positivity
- other Lie groups
- \bullet S_n
- $GL_n \mathbb{F}_p$ representation theory.

All of these use the basic $GL_n \mathbb{C}$ theory. In addition, $GL_n \mathbb{C}$ representation theory is very close to U(n)-representation theory.

1.1 Introduction

REMINDER TIME G a group, K a field, V a k-vector space. Then a representation of G on V is an action of G on V by K-linear maps $G \times V \to V, (gh)(v) = g(h(v)), \operatorname{id} v = v, g(u+v) = g(u) + g(v), g(cv) = cg(v).$

In other words, a homomorphism $\rho: G \to GL(V)$. We are looking at $\rho: GL_n\mathbb{C} \to GL_N(\mathbb{C})$.

Let $W = \mathbb{C}^n$ with the standard $\operatorname{GL}_n \mathbb{C}$ action. We like:

• $W, W \oplus W$.

Introduction Yiwei Fu

- $W^{\otimes k}$, $\bigwedge^k W$ and $\operatorname{Sym}^k W$,
- $W^V = \text{Hom}(W, \mathbb{C})$.
- \mathbb{C} , $g \mapsto (\det g)^k$, $k \in \mathbb{Z}$.

Some representations we don't want to study.

- $|\det(g)|^{\alpha}$, $\alpha \in \mathbb{R}$, not even when $\alpha = 1$.
- $g \mapsto \overline{g}$
- $g \mapsto \sigma(g), \sigma \in \operatorname{Gal}(\mathbb{C}/\mathbb{Q}).$

(They are not algebraic.)

Definition 1.1.1. We say that $\rho : \operatorname{GL}_n \mathbb{C} \to \operatorname{GL}_N(\mathbb{C})$ is *polynomial* if the N^2 matrix entries $\rho(g)_{ij}$ are polynomials in the entries of g, i.e. $\mathbb{C}[g_{pq}]$. We'll say ρ is *algebraic* if the $\rho(g)_{ij} \in \mathbb{C}[g_{pq}, (\det g)^{-1}]$.

Definition 1.1.2. For any group G, and representation V over a field K, we define the character χ_V of V to be the function $G \to K$ given by $\chi_V(g) = \operatorname{tr}(\rho_V(g))$

Notice that

$$\chi_V(hgh^{-1}) = \operatorname{tr}(\rho_V(hgh^{-1})) = \operatorname{tr}(\rho_V(h)\rho_V(g)\rho_V(h)^{-1}) = \operatorname{tr}(\rho_V(g)) = \chi_V(g).$$

The diagonalizable matrices are dense in $GL_n \mathbb{C}$, so any continuous function is determined by its values on diagonalizable matrices. So a continuous conjugacy invariant function is determined by its values on diagonal matrices.

If V is a polynomial representation, then

$$\chi_V\left(egin{bmatrix} z_1 & & & \ & \ddots & \ & & z_n \end{bmatrix}
ight)\in\mathbb{C}[z_1,\ldots,z_n].$$

 $(\mathbb{Z}[z_1,\ldots,z_n]$, in fact.)

If *V* is algebraic,

$$\chi_V \left(\begin{bmatrix} z_1 & & \\ & \ddots & \\ & & z_n \end{bmatrix} \right) \in \mathbb{C}[z_1^{\pm}, \dots, z_n^{\pm}].$$

$$(\mathbb{Z}_{\geq 0}[z_1^{\pm},\ldots,z_n^{\pm}]$$
, in fact.)

In general,

$$\sigma \begin{bmatrix} z_1 & & & \\ & \ddots & & \\ & & z_n \end{bmatrix} \sigma^{-1} = \begin{bmatrix} z_{\sigma(1)} & & & \\ & \ddots & & \\ & & z_{\sigma(n)} \end{bmatrix}$$

So characters of polynomial/algebraic representations are symmetric polynomials/Laurent polynomials.

Denote $\Lambda_n = \mathbb{Z}[z_1, \dots, z_n]^{S_n}$, and $\Lambda_n^{\pm} = \mathbb{Z}[z_1^{\pm}, \dots, z_n^{\pm}]^{S_n}$. Λ is symmetric polynomials in ∞ -ly many vars.

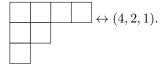
1.2 Symmetric Polynomials

$$\Lambda_n = \mathbb{Z}[x_1, \dots, x_n]^{S_n}, \Lambda_n^{\pm} = \mathbb{Z}[x_1^{\pm}, \dots, x_n^{\pm}]^{S_n}$$

Definition 1.2.1. A partition is a weakly decreasing sequence of positive integers

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_\ell > 0$$

We draw them as configuration of boxes called Young Diagrams.



French convention is increasing diagrams; Russian convention is angled.

We often pad our partitions with 0's: $(4,2,1), (4,2,1,0), \ldots$ The size of a partition $|\lambda| = \sum_j \lambda_j$, which is the number of boxes. The length of a partition $\ell(\lambda) = \#j, \lambda_j > 0$. The transpose of $(4,2,1)^T = (3,2,1,1)$. $(\lambda^T)_j = \#i, \lambda_i \geq j$.

Definition 1.2.2. The *dominance order* is the partial order defined by

$$\mu \leq \lambda \iff \forall i, \mu_1 + \ldots + \mu_i \leq \lambda_i + \ldots + \lambda_i.$$

Definition 1.2.3. Suppose λ a partition, then

$$\Lambda_n \ni m_{\lambda}(x_1, x_2, \dots, x_{\lambda}) = \sum_{(c_1, \dots, c_n) \in S_n(\lambda_1, \dots, \lambda_n)} x_1^{c_1} x_2^{c_2} \dots x_n^{c_n}$$

NOTE We are not counting with multiplicity. All coefficients of m_{λ} are 0 or 1:

$$m_{1,1}(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3 \neq 2(x_1x_2 + x_1x_3 + x_2x_3).$$

So we have the monomial symmetric functions

$$\Lambda_n = \bigoplus_{\ell(\lambda) \le n} \mathbb{Z} \cdot m_{\lambda}.$$

Definition 1.2.4.

$$e_k(x_1, \dots, x_n) = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1} x_{i_2} \dots x_{i_k} = m_{1\dots 1}$$

We have

$$e_{\lambda_1 \lambda_2 \dots \lambda_\ell} = e_{\lambda_1} e_{\lambda_2} \dots e_{\lambda_\ell}$$

We call e elementary symmetric functions.

Example 1.2.1.

$$e_{3,1}(w, x, y, z) = e_3 e_1$$

$$= (wxy + wxz + wyz + xyz) \cdot (w + x + y + z)$$

$$= (w^2 xy + \dots) + 4wxyz$$

$$= m_{2,1,1} + 4m_{1,1,1,1}.$$

Notice (2, 1, 1) is the transpose of (3, 1).

Lemma 1.2.1.

$$e_{\lambda} = m_{\lambda^T} + linear$$
 combination of m_{μ} with $m_{\mu} \prec \lambda^T$

Proof. Suppose m_{μ} occurs with positive coefficients in $e_{\lambda}=e_{\lambda_1}\dots e_{\lambda_\ell}$. Then $x_1^{\mu_1}\dots x_n^{\mu_n}$ occurs in the expansion.

$$\mu_{1} \leq \#\{i : \lambda_{i} \geq 1\} = \ell(\lambda) = (\lambda^{T})_{1}$$

$$\mu_{1} + \mu_{2} \leq 2\#\{i : \lambda_{i} \geq 2\} + \#\{i : \lambda_{i} = 1\}$$

$$\leq \#\{i : \lambda_{i} \geq 2\} + \#\{i : \lambda_{i} \geq 1\}$$

$$\leq (\lambda^{T})_{2} + (\lambda^{T})_{1}$$

$$\vdots$$

4

For any j,

$$\mu_1 + \mu_2 + \dots + \mu_j \le j \cdot \#\{i : \lambda_i \ge j\} + \sum_{k=1}^{j-1} k \#\{i : \lambda_i = k\}$$
$$\le \sum_{k=1}^{j} \#\{i, \lambda_i \ge k\} = \sum_{k=1}^{j} (\lambda^T)_k$$

So we have $\mu \leq \lambda^T$. To get equality, must take $x_1 x_2 \dots x_{\lambda_i}$ as the conjugation from e_{λ} , then we have the term m_{λ^T} with coefficient 1.

Corollary 1.2.1.

$$\Lambda_n = \bigoplus_{\ell(\lambda^T) \le n} \mathbb{Z} e_{\lambda} = \bigoplus_{\ell(\lambda) \le n} \mathbb{Z} e_{\lambda^T}.$$

Proof. Fix a degree d. The e_{λ^T} with $|\lambda|=d$ are related to m_{λ} with $|\lambda|=d$ by an upper triangular matrix.

$$\Lambda_n = \mathbb{Z}[e_1, e_2, \dots, e_n]$$

 $\Lambda_n \to \Lambda_{n-1}$ by setting $x_n \mapsto 0$. Equivalently

$$m_{\lambda} \mapsto \begin{cases} m_{\lambda} & \ell(\lambda) \le n - 1 \\ 0 & \ell(\lambda) \ge n \end{cases}, e_{\lambda} \mapsto \begin{cases} e_{\lambda} & \ell(\lambda^T) \le n - 1 \\ 0 & \ell(\lambda^T) \ge n \end{cases}$$

 $\Lambda = \lim_{J \in n} \Lambda_n$ graded inverse limit.

In any fixed degree, this diagram stabilizes, with

$$\Lambda = \mathbb{Z}[e_1, e_2, \ldots] = \bigoplus_{\lambda} \mathbb{Z} \cdot e_{\lambda} = \bigoplus_{\lambda} \mathbb{Z} \cdot m_{\lambda}$$

We can obtain a lot of equations that does not consider how many variables we use, like $m_1^2 = m_2 + 2m_{11}$, $m_1^3 = m_3 + 3m_{21} + 6m_{111}$.

 Λ is a graded ring with ring maps to every Λ_n . We would have diagrams like

$$\cdots \to \Lambda_3 \xrightarrow{x_3 \mapsto 0} \Lambda_2 \xrightarrow{x_2 \mapsto 1} \Lambda_1$$

Concretely, $\Lambda = \mathbb{Z}[e_1, e_2, e_3, \ldots]$, and the maps $\Lambda \to \Lambda_n$ sends $e_i \mapsto e_i$ for $i \leq n$ and $e_j to 0$ for j > n.

 $\Lambda = \bigoplus_{\lambda} \mathbb{Z} \cdot e_{\lambda} = \bigoplus_{\lambda} \mathbb{Z} \cdot m_{\lambda}$. For $e_{\Lambda} \cdot e_{\mu}$, do the computation in a large enough Λ_n .

Given $\to \cdots \to x_3 \to x_2 \to x_1$. We say that Y is $\lim_{\infty \to n} X_n$ if there are maps $\pi_1: Y \to x_1, \pi_2: Y \to X_2, \ldots$ and for any Z we such compatible maps $(\alpha_1, \alpha_2, \ldots)$, there exists unique $f: Z \to Y$ such that $\alpha_i = \pi_i \circ f$.

 e_k is the character of $\bigwedge^k \mathbb{C}^n$.

 $h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \dots = \sum_{i_1 \leq i_2 \leq \dots \leq i_k} x_{i_1} x_{i_2} \dots x_{i_k}$, which is the character of Sym^k \mathbb{C}^n .

$$h_2 = \sum_{i \le j} x_i x_j = \sum x_i^2 + \sum_{i < j} x_i x_j = m_2 + m_{11}$$

$$h_{11} = h_1^2 = \left(\sum x_i\right)^2 = m_2 + 2m_{11}.$$

We already know that $\Lambda = \mathbb{Z}[e_1, e_2, \ldots] = \bigoplus_{\lambda} \mathbb{Z} \cdot e_{\lambda}$. We want to know that if $\Lambda = \mathbb{Z}[h_1, h_2, \ldots] = \bigoplus_{\lambda} \mathbb{Z} \cdot h_{\lambda}$.

The key thing is to check that e_k 's are polynomials of h_k 's and vice versa. Once we do that, we know the e's and the h's generate the subring of Λ .

Lemma 1.2.2. For any k, $\sum_{j=0}^{k} (-1)^{j} e_{j} h_{k-j} = 0$.

Generating functions.

Proof.
$$\sum_{j=0}^{\infty} e_j(-t)^j = \prod_{i=1}^{\infty} (1-x_i t).$$

$$\sum_{j=0}^{\infty} h_j t^j = \prod_{i=0}^{\infty} (1 + x_i t + x_i^2 t^2 + \dots) = \prod_{i=1}^{\infty} \frac{1}{1 - x_i t}.$$

So

$$\left(\sum_{j=0}^{\infty} e_j(-t)^j\right) \left(\sum_{j=0}^{\infty} h_j t^j\right) = 1.$$

Taking the coefficient of t^k we have $\sum_{j=0}^k (-1)^j e_j h_{k-j} = 0$.

Corollary 1.2.2. e_k is a polynomial in h_1, h_2, \ldots, h_k .

Proof. Induct on n. Base case: $e_1 = h_1$.

 $e_k = \sum_{j=0}^{k-1} (-i)^{j-1} e_j h_{k-j}$. Inductively, for each e_j for j < k us a polynomial h_1, h_2, \dots, h_j , so we win.

The Hall inner product

This is a positive definite symmetric bilinear pairing

Computation of last class

$$h_{\lambda} = \sum_{\mu} A_{\lambda\mu} m_{\mu}$$

work out the matirx to expand h and m s

Theorem 1.2.1.

 $A_{\lambda m} = \#\{\mathbb{Z}_{>0} matrox Bwith rows um \lambda and columns um \mu\}$

Corollary 1.2.3. $A_{\lambda m} = A_{\mu \lambda}$

Corollary 1.2.4. \langle , \rangle *is symmetric.*

THe definition of h_{λ} is all product of x's

$$h_{\lambda}(x) = h_{\lambda_1}(x)h_{\lambda_2}(x)\ldots = \prod_{i=1}h_{\lambda_i}(x)$$

 h_{λ_i} is the sum of all monomial of degree λ_i

$$= \prod_{i=1} \left(\sum_{B_{i1} + B_{i2} + ldots = \lambda_i} (x_1)^{B_{i1}} (x_2)^{B_{i2}} \dots \right) = \sum_{B_{ij} \ge 0, B_{i1} + B_{i2} + \dots = \lambda_i} \prod_i (x_1^{B_{i1}} x_2^{B_{i2}} \dots) (distributive)$$

$$= \sum_{B_{ij} \ge 0, B_{i1} + B_{i2} + \dots = \lambda_i} \left(x_1^{\sum_i B_{i1}} \dots \right) = \sum_{B, rowsum(B) = \lambda} x^{colsum(B)}$$

So coefficient of x^{μ} is number of B with row sum = λ and column sum = μ .

Let's redo this computation using generating function, since we will do a lot of things from gen function perspective.

Start with generating function for h_k

$$\sum_{k=0}^{\infty} t^k h_k(y) = \prod_j \frac{1}{1 - ty_j}$$

Multiply copies of it (t renamed to x_i):

$$\prod_{i} \prod_{j} \frac{1}{1 - x_i y_j} = \prod_{i} \sum_{k_i}^{\infty} x_i^{k_i} h_{k_i}(y)$$

use distributive law we have

$$= \sum_{k_1,k_2,\ldots=0}^{\infty} \prod_{i=1}^{\infty} x_i^{k_i} h_{k_i}(y_i) = \sum_{k_1,k_2,\ldots=0}^{\infty} (x_1^{k_1} \ldots) h_{k_1}(y_1) h_{k_2}(y_2) \ldots = \sum_{\lambda_1 \ge \lambda_2} m_{\lambda}(x) h_{\lambda}(y)$$

THe conclusion is that

$$\prod_{i,j=1}^{\infty} \frac{1}{1-x_i x_j} = \sum_{\lambda} m_{\lambda}(x) h_{\lambda}(y)$$

plugin the def we have

$$\sum_{\lambda,\mu} A_{\lambda\mu} m_{\lambda}(x) m_{\mu}(y)$$

to check $A_{\lambda\mu}$ is symmetric

The product $\prod_{i,j=1}^{\infty} \frac{1}{1-x_ix_j}$ the product of sum of geometric series ... if I expand I just choose the exponents to raise

As computation gets messier and messier gen function methods will be more useful

we will see $\prod_{i,j=1}^{\infty} \frac{1}{1-x_ix_j}$ coming up and up again (we'll call it Cauchy's product since it does not seem to have a name)

We expand a symmetric thing asymmetrically. In general, if we have some identity that can be expanded in this way want can be deduced?

Suppose $p_K(X)$ and $q_L(y)$ are two families of homogeneous symmetric polynomials indexed by some index sets.

Suppose we have an expansion formula

$$\prod_{i,j=1}^{\infty} \frac{1}{1-x_i x_j} = \sum_{K,L} B_{KL} p_K(x) q_L(y), B_{KL} \in \mathbb{Z}$$

Proposition 1.2.1. From the above condition we can deduce that the $p_K\mathbb{Z}$ -span Λ , as do the q_L 's.

If $p_k, q_L \in \mathbb{Q}\Lambda$, and $B_{KL} \in \mathbb{Q}$, then p_k must \mathbb{Q} -span Λ , as do the q_L 's.

behind the scene (using ... to express Lambda tensor Lambda)

 $\langle f, \rangle : \Lambda \to \mathbb{Z}$, it also induces a map $\langle f, \rangle \otimes \mathrm{id} : \Lambda \otimes_{\mathbb{Z}} \lambda \to \Lambda$. (thinking about coefficients)

Lemma 1.2.3.

$$\left\langle f(x), \prod_{i,j} \frac{1}{1 - x_i x_j} \right\rangle_{in \ variable \ x} = f(y)$$

Proof. it is enough to check this for f in a \mathbb{Z} -basis of Λ .

$$\left\langle h_{\lambda}(x), \prod \frac{1}{1 - x_i x_j} \right\rangle = \left\langle h_{\lambda}(x), \sum_{\lambda} m_{\lambda}(x) h_{\lambda}(y) \right\rangle = h_{\lambda}(y)$$

Let's go back to the proposition.

Proof. For any $f \in \Lambda$,

$$f(y) = \left\langle f(x), \prod \frac{1}{1 - x_i x_j} \right\rangle$$
$$= \sum_{K,L} B_{KL} p_K(x) q_L(y) = \sum_{K,L} B_{KL} \left\langle f(x), p_k(\lambda) \right\rangle q_L(y)$$

Corollary 1.2.5. Suppose p_{λ} and q_{λ} are the families of homogeneous symmetric polynomials indexes by partitins with deg $p_{\lambda} = \deg q_{\lambda} = |\lambda|$ and

$$\prod \frac{1}{1 - x_i x_j} = \sum B_{\lambda \mu} p_{\lambda}(x) q_{\mu}(y), B_{\lambda \mu} \in \mathbb{Z}$$

Then

$$\Lambda = \bigoplus_{\lambda} \mathbb{Z} p_{\lambda} = \bigoplus_{\lambda} \mathbb{Z} q_{\lambda}$$

Solve this and get tenure:

$$\prod \frac{1}{1 - x_i y_j z_k} = \sum_{\lambda, \mu, \nu} g_{\lambda \mu \nu} s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z)$$

Suppose now $p_{\lambda}(X)$ and $q_{\mu}(y)$ are two families of homogeneous symmetric polynomials in Λ indexed by partition with $\deg p_{\lambda} = \deg q_{\lambda} = |\lambda|$ and let

$$\prod_{i,j=1}^{\infty} \frac{1}{1-x_i x_j} = \sum_{\lambda \mu} B_{\lambda \mu} p_{\lambda}(x) q_{\mu}(y), B_{\lambda \mu} \in \mathbb{Z}$$

Let $C_{\lambda\mu}=\langle p_\lambda(x),q_\mu(x)\rangle.$ Then B and C are inverses.

Proof.
$$\left\langle p_{\nu}(y), \prod \frac{1}{1-x_ix_i} \right\rangle = p_{\nu}(x)$$
 So

$$\sum_{\lambda,\mu} B_{\lambda\mu} p_{\lambda}(x) \langle p_{\nu}(y), q_{\mu}(y) \rangle = \sum_{\lambda,\mu} B_{\lambda\mu} C_{\nu\mu} p_{\lambda}(x)$$

LHS have linear combination of p RHS we have matching up coefficients of two sides

$$\sum_{\mu} B_{\lambda\mu} C_{\nu\mu} = \begin{cases} 1 & \lambda = \mu \\ 0 & \lambda \neq \mu \end{cases} \implies BC^T = \mathrm{id}$$

In particular, if $\prod \frac{1}{1-x_ix_j}=\sum_{\lambda}c_{\lambda}p_{\lambda}(x)p_{\lambda}(y)$ the p_{λ} are orthogonal for \langle,\rangle .

If we have no coefficients then this results in an orthornormal basis. $\prod \frac{1}{1-x_ix_j} = \sum_{\lambda} s_{\lambda}(x)s_{\lambda}(y)$ (properties of schur polynomials we will discuss next week.)