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1. Introduction

Computational complexity of the bijections between combinatorial objects is an in-
triguing yet very sparsely investigated subject. [3] introduces the linear equivalences
between several combinatorial bijections, thus unifying them under the computational
point of view. This provides a way to classify these bijections and shed lights on how
to systematically study these bijections in the future.

2. Background and Notation

2.1. Diagrams and Tableaux.

Definition 2.1. Suppose two partitions λ, µ with λi > µi for all i. A standard Young
diagram is denoted [λ]; a skewed Young diagram of shape λ/µ is denoted [λ/µ].

Example 2.1. Let λ = (5, 4, 2), µ = (2, 1), then [λ/µ] is .

Definition 2.2. Given skewed or standard Young diagram of shape [λ/µ] or [λ], a
tableau is a filling of the boxes in positive integers such that it is weakly increasing in
rows and strictly increasing in columns. The set YT(λ/µ, a) or YT(λ, a) contains all the
tableaux of such shape so that for all A ∈ YT(λ/µ, a) or YT(λ, a), a = (a1, . . . , an) =:
weight(A) has aj counting the number of j’s in the tableau A.

Definition 2.3. A sequence i = (i1, . . . , in) is positive if the number of j’s in i is
weakly decreasing. It is dominant if all the subsequences containing first k elements
for 1 ≤ k ≤ n are positive.

Example 2.2. (1, 1, 2, 3, 4) is positive and dominant. (1, 2, 2, 1, 1) is positive but not
dominant since subsequence (1, 2, 2) is not positive.

Definition 2.4. A Littlewood-Richardson (LR) tableau is a tableau A such that the
sequence (called word(A)) obtained by reading the tableau right-to-left each row
and then top-to-bottom is dominant. Denote all the LR-tableaux of shape λ/µ and
weight ν as LR(λ/µ, ν).

Example 2.3.

word

 1 2 5

2 3 4

 = (5, 2, 1, 4, 3, 2).

1
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Only LR-tableau of standard Young diagram λ is to fill every i-th row with i, which is
called canonical tableau, denoted Can(λ).

Can((5, 3, 2)) = 1 1 1 1 1

2 2 2

3 3

2.2. Maps and Bijections.

Definition 2.5 (RSK). The RSK map ϕ, as introduced in class, establishes a bijection
between{

Z≥0-matrices

∣∣∣∣ row sum = a
column sum = b

}
↔
{

(T, U)

∣∣∣∣ T ∈ YT(λ, a)
U ∈ YT(λ,b)

for some λ

}
.

Here we fix matrix size and the max entry of SSYT to be some k.

Definition 2.6 (Jeu de Taquin). Jeu de Taquin ψ is a map from skewed semistandard
Young tableaux to semistandard Young tableaux by the following methods:

Given a skewed tableau, choose a top-left border piece and move the blocks one at
a time so that after a series of moves we also get a skewed tableau.

This map is neither into nor onto.

Example 2.4. Figure 1 shows one step in the Jeu de Taquin map. Starting from a
tableau, there are different sequences of steps, but we can use the diamond lemma
to show that game defined by Jeu de Taquin is confluent (i.e. Jeu de Taquin map is
well-defined).

2 4 8

← 1 3 6

5 7

2 4 8

1 ← 3 6

5 7

2 4 8

1 3 ← 6

5 7

2 4 8

1 3 6

5 7

Figure 1. One step in a Jeu de Taquin game

Definition 2.7. The Littlewood-Robinson map φ is a bijection between skewed semi-
standard Young tableaux and pairs of SSYT and LR-tableaux.

Definition 2.8. The Bender-Knuth (BK) transformations sr is defined by follows:

• Given A ∈ YT(λ/µ, a), let (ai,j) be the Gelfand-Tsetlin(GT)-pattern.
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• Let B = sr(A) be a Young tableau such that the corresponding GT-pattern
(bi,j) is defined as follows:

bi,j =

{
min {ai,r+1, ai−1,r−1}+ max {ai,r−1, ai+1,r+1 − ai,r} − ai,r j = r

ai,j otherwise

Remark. We notice that

sr : YT(λ/µ, a)→ YT(λ/µ, a′)

where a′ is obtained by switching the r-th and r + 1-th element. We have (sr)
2 = 1

and sisj = sjsi for |i− j| ≥ 2.

Definition 2.9. Define two transformations tr,m−r, zm for 1 ≤ r < m as follows:

zm = (s1)(s2s1) . . . (sm−1 . . . s2s1)
tr,m−r = (sm−rsm−r+1 . . . sm−1) . . . (s2s3 . . . sr+1)(s1s2 . . . sr)

Definition 2.10. Tableau Switching ζ is a bijection between pairs

ζ :

{
(T, U)

∣∣∣∣ T ∈ YT(π/µ,d)
U ∈ YT(λ/π, c)

for some partition π of |λ| − |c|
}

↔
{

(T ′, U ′)

∣∣∣∣ T ′ ∈ YT(σ/µ, c)
U ′ ∈ YT(λ/σ,d)

for some partition σ of |λ| − |d|
}

It is defined through the following process:

Algorithm 2.1 Tableau Switching Map[1]

Input: k, partitions µ ⊂ π ⊂ λ (partition inclusion), a,b; A ∈ YT(λ/π, a), B ∈
YT(λ/µ,b)

Output: (A′, B′) = ζ(B,A)

1: function ζ(A,B)

2: Relabel integers in A by adding r to them

3: e← (a1, . . . , am−r, b1, . . . , br)

4: f ← (b1, . . . , br, a1, . . . , am−r)

5: Y ← tr,m−r(B ? A) . B ? A ∈ YT(λ/µ, f) =⇒ Y ∈ YT(λ/µ, e)

6: C ′ ← ξ(C) . C ′ ∈ YT(λ/µ, (ak, . . . , a1, b1, . . . , bk))

7: Decompose A′ ? B′ = Y such that A′ ∈ YT(λ/σ, (0, . . . , 0, b1, . . . , bk)), B′′ ∈
YT(σ/µ, a∗) . |σ| = |µ|+ |a|

8: Relabel integers in B′ by subtracting r from them

9: return (A′, B′)

10: end function

Remark. Give two tableaux A,B of shape λ/π and π/µ, B?A gives a tableau f size λ/µ
with entries obtained from each original tableau. One example is shown in Figure 2.
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A = 8

3 6

2 7

, B = 1 3 4

3

B ? A = 1 3 4 8

3 3 6

2 7

Figure 2. One example of ? operation

Definition 2.11. The Schützenberger Involution ξ = zm is a bijection between

YT(λ/µ, a)↔ YT(λ/µ, a∗)

where a∗ denote the reverse of the sequence a. Similarly ξN is the restriction onto
non-skew tableaux i.e. µ = ∅.

Definition 2.12. Reversal is another bijection between, defined by the conjugation of
Schützenberger Involution with tableaux switching:

χ = ζ ◦ ξ ◦ ζ : YT(λ/µ, a)↔ YT(λ/µ, a∗)

Definition 2.13. Fundamental Symmetry Maps are a group of bijections between
LR-tableaux:

ρ : LR(λ/µ, ν)↔ LR(λ/ν, µ)/

The first fundamental symmetry map, ρ1, is defined through tableaux switching: for
A ∈ LR(λ/µ, ν), let B = Can(µ). Then η(B,A) = (A′, B′) where A′ = φ(A) =
Can(ν)[2, §5.2]. We let ρ1(A) = B′.

The second fundamental symmetry map, ρ2, is defined as the composition of several
maps.

2.3. Equivalence Relations.

Definition 2.14. For an input A, 〈A〉 denotes the bit-size of array A. A map δ : A → B
has linear cost if ∀A ∈ A, δ(A) costs O(〈A〉) time complexity.

Definition 2.15 (Circuits). We propose some ways to chain bijections, called circuits:

• Trivial circuit: given δ1 : A → X1, γ : X1 → X2, and δ2 : X2 → B where δ1, δ2
has linear cost, the map χ = δ2 ◦ γ ◦ δ1 : A → B is called a trivial circuit and
denoted by I(δ1, γ, δ2).
• Sequential circuit: given γ1 : A → X , γ2 : X → B, the map χ = γ2 ◦γ1 : A → B

is a sequential circuit and denoted by S(γ1, γ2).
• Parallel circuit: given δ1 : A → X1 × X2, γ1 : X1 → Y1, γ2 : X2 → Y2, and
δ2 : Y1 × Y2 → B where δ1, δ2 has linear cost, the map χ = δ2 ◦ (γ1 ⊗ γ2) ◦ δ1 :
A → B is a parallel circuit and denoted by P (δ1, γ1, γ2, δ2).

The definition should be able to generalize to finite products, but here 2 sets are
enough given our bijections introduced above.
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Definition 2.16. Given a bijection β, we can recursively define a β-based ps-circuit
(parallel-sequential) ג as follows:

• ג = δ where δ has linear cost.
• ג = I(δ1, β, δ2)
• ג = S(γ1, γ2) where γ1, γ2 are β-based ps-circuits
• ג = P (δ1, γ1, γ2, δ2) where γ1, γ2 are β-based ps-circuits

The β-cost of ,ג denoted by s(ג), is the number of times the map β is used.

Definition 2.17. A map α is linearly reducible to β (denoted as α ↪→ β) if there
exist a finite β-based ps-circuit ג which computes α. In this case we say that α can be
computed in at most s(ג) cost of β.

Definition 2.18. Maps α and β are linearly equivalent (denoted as α ∼ β) if α is
linearly reducible to β and β and β is linearly reducible to α.

Lemma 2.1. Suppose α1 ↪→ α2 and α2 ↪→ α3 then α1 ↪→ α3. Moreover, if α1 can be
computed in at most s1 cost of α2, and α2 can be computed in at most s2 cost of α3,
then α1 can be computed in at most (s1s2) cost of α3.

Corollary 2.1. Suppose α1 ∼ α2 and α2 ∼ α3 then α1 ∼ α3.

So linear equivalence is an equivalence relation.

Corollary 2.2 (Cycle Lemma). Suppose α1 ↪→ α2 ↪→ α3 ↪→ . . . ↪→ αn ↪→ α1 then
α1 ∼ α2 ∼ . . . ∼ αn.

Remark. We should notice that the linear reduction ג does not guarantee linear time
reduction: each map can be computed in linear time with respect to the input size, but
there are no restrictions on how the input size can change through the circuit. But as
you may have expected, the maps in the circuit alters input sizes in a linear, bounded
manner, so we can treat them as linear time reductions.

3. Linear Reductions

3.1. Overview. The idea is we want to show all the maps in Section 2.2 are linearly
equivalent. Corollary 2.2 lets us achieve this through finding some overlapping cycles.

Lemma 3.1. Such linear reduction cycles exist:

• ϕ ↪→ ψ ↪→ φ ↪→ ζN ↪→ ξN ↪→ ϕ.
• ρ1 ↪→ ζN ↪→ ζ ←↩ ρ1 and ρ2 ↪→ ξN ↪→ ρ2.
• χ ↪→ ξN ↪→ χ.

Theorem 3.1. ϕ, ψ, φ, ζ, ζN , ξN , χ, ρ1, ρ2 are linearly equivalent. Moreover, each of
these maps can be computed in at most 36 times the cost of any other map.

Proof. By Lemma 3.1, we can draw the following diagram. Figure 3 shows the structure
of reduction. By Corollary 2.2, we can also work out the constant of the time cost in
the next section. �
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ϕ

ψ φ

ζN

ρ1

ζξN

χ ρ2

Figure 3. Reduction Diagram

Theorem 3.2. For the eight maps as in Theorem 3.1, let k and m be defined as follows:

k m

ϕ max{`(a), `(b)} max
{∑

i ai,
∑

j bj

}
ψ, φ, ζN , χ `(a) λ1

ζ max{`(a), `(b)} λ1
ρ1, ρ2 `(ν) λ1

where `(·) denotes the length of the partition/sequence.
Then the image of maps above can be computed at a cost of O(k3 logm).

3.2. Reductions. We need to show the existence of these cycles mentioned in Lemma 3.1
exist.

Lemma 3.2. Algorithm 3.1 shows ϕ ↪→ ψ.

Algorithm 3.1 ϕ ↪→ ψ

Input: a, b; V ∈ Zk×k
≥0 with row sum a and column sum b.

Output: (B,A) = ϕ(V )

1: function Red(a, b, V )

2: π ← (a1 + . . .+ ak, a1 + . . .+ ak−1, . . . , a1)

3: σ ← (a1 + . . .+ ak−1, a1 + . . .+ ak−2, . . . , 0)

4: ρ← (b1 + . . .+ bk, b1 + . . .+ bk−1, . . . , b1)

5: τ ← (b1 + . . .+ bk−1, b1 + . . .+ bk−2, . . . , 0)

6: V
l
i,j ← Vk+1−i,j . reversing rows

7: V
′l
i,j ← Vj,k+1−i . transposing and reversing columns

8: Let Y ∈ YT(π/σ,b) be the tableau with recording matrix V l

9: Let X ∈ YT(ρ/τ, a) be the tableau with recording matrix V
′l

10: B,A← ψ(Y ), ψ(X)

11: return (B,A)

12: end function
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Remark. This is a parallel circuit where γ1 refers to line 8, and γ2 refers to line 9 of
Algorithm 3.1. The correctness is verified through [4].

Lemma 3.3. ψ ↪→ φ through restrict the output of φ to the standard tableau i.e φ(A) =
(B,C) =⇒ ψ(A) = B.

Lemma 3.4. Algorithm 3.2 shows ϕ ↪→ ζN .

Algorithm 3.2 ϕ ↪→ ζN

Input: a, partitions λ, µ, such that `(a), `(λ) ≤ k; A ∈ YT(λ/µ, a)

Output: (A′, C ′) ∈ YT(σ,=fa)× LR(λ/µ, σ)

1: function Red(a, λ, µ, A)

2: B ← Can(µ)

3: (A′, B′)← ζN(B,A)

4: σ ← shape of A

5: C ← Can(σ)

6: (B′′, C ′)← ζN(C,B′)

7: return (A′, C ′)

8: end function

Remark. Algorithm 3.2 is a sequential circuit which uses ζN twice.

Lemma 3.5. Algorithm 3.3 shows ζ ↪→ ξ. Consequently, ζN ↪→ ξN .

Algorithm 3.3 ζ ↪→ ξ

Input: k, partitions µ ⊂ π ⊂ λ (partition inclusion), a,b; A ∈ YT(λ/π, a), B ∈
YT(λ/µ,b)

Output: (A′′, B′′) = ζ(B,A)

1: function Red(µ, π, λ, A,B)

2: B′ ← ξ(B) . B′ ∈ YT(π/µ,b∗) where b∗ = (bk, . . . , b1)

3: Relabel integers in A by adding k to them . ensure next step is well-defined

4: C ← B′ ? A . C ∈ YT(λ/µ, (bk, . . . , b1, a1, . . . , ak))

5: C ′ ← ξ(C) . C ′ ∈ YT(λ/µ, (ak, . . . , a1, b1, . . . , bk))

6: Decompose A′ ? B′′ = C such that A′ ∈ YT(λ/σ, (0, . . . , 0, b1, . . . , bk)), B′′ ∈
YT(σ/µ, a∗) . |σ| = |µ|+ |a|

7: Relabel integers in B′′ by subtracting k from them

8: A′′ ← ξ(A′) . A′′ ∈ YT(σ/µ,a)

9: return (A′′, B′′)

10: end function

Remark. Algorithm 3.3 gives a sequential circuit which uses ξ three times.
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Lemma 3.6. Algorithm 3.4 shows ξN ↪→ ϕ.

This is a relative simple algorithm.

Algorithm 3.4 ξN ↪→ ϕ

Input: k, λ, a such that `(λ), `(a) ≤ k; A ∈ YT(λ, a)

Output: (A deg) = ζN(A) ∈ YT(λ, a∗)

function Red(µ, π, λ, A,B)

V ← (vi,j) the recording matrix of A

U = (ui,j)← (vi,k+1−j)

(A°, B°)← ϕ(U)

return A°
end function

Remark. Algorithm 3.4 is a trivial circuit which uses ϕ only once.

This shows the existence of the first cycles. The rest is shown in detail in [3].

4. Notable Remarks

4.1. Symmetry Maps. Empirical evidence suggests that ρ1 = ρ2. In that case, we
would have the following diagram. This can help reduce the constant 36 mentioned in
Theorem 3.1.

ϕ

ψ φ

ζN

ζξN

χ ρ1/2

Figure 4. Reduction Diagram when ρ1 = ρ2

4.2. Inversions. We have not shown that the general Schützenberger involution ξ
reduces to the other bijections appearing in this paper, while ξN and χ do. Proving
that ξ is reducible to ξN remains an open problem.
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