Notes for Math 669

Yiwei Fu, Instructor: Alexander Barvinok

WN 2023

Contents

Office hours:

Chapter 1

Introduction to Lattices

1.1 Definition

Definition 1.1.1. A lattice $\Lambda \subset V$ has the following properties:

- 1. $\text{span}(\Lambda) = V$.
- 2. Λ is an additive subgroup.
- 3. A is discrete: for any $r > 0$, let $B_r = \{x \in \mathbb{R}^n, ||x|| \le r\}$, $\Lambda \cap B_r$ is finite.

1.2 Lattice and Its Basis

Last time: $L \in V$ is a subspace if $L = \text{span}(L \cap \Lambda)$

Theorem 1.2.1. *If L is a lattice subspace,* $L \neq V$ *, then* $\exists u \in L \setminus \Lambda$ *such that* $d(u, L) \leq d(x, L)$ *for all* $x \in L \setminus \Lambda$ *.*

Say $L \in \text{span} \{u_1, \ldots, u_m\}$ linearly independent vectors, $\Pi = \{\}\$ There is $u \in \Lambda \setminus L$ such that $dist(u, \Pi) \leq dist(x, \Pi)$ for all $x \in \Lambda \setminus L$.

Proof. Take $\rho > 0$ large enough. Consider $\Pi_{\rho} = \{y, d(y, \Pi) \le \rho\}$. It contains points from $\Lambda \setminus L$, choose the one in $\Pi_{\rho} \cap (\Lambda \setminus L)$ closet to Π .

<u>CLAIM</u> $u \in \Lambda \setminus L$ is what we need. Why? Pick any $x \in \Lambda \setminus L$. Let $y \in L$ be the closest to $\boldsymbol{x}.$

$$
dist(x, L) = ||x - y|| = ||(x - w) - (y - w)||.
$$

$$
y = \sum_{i=1}^{m} d_i u_i
$$

Let $w = \sum_{i=1}^{m} \lfloor \alpha_i \rfloor u_i \in \Lambda \setminus L, y - w = \sum_{i=1}^{m} \{\alpha_i\} u_i \in \Pi.$

Theorem 1.2.2. *Every lattice has a basis.*

Proof. By induction on $n = \dim V$.

Base case: for $n = 1$, we have $V = \mathbb{R}$.

Let $u > 0$ be the lattice vector closet to 0, among all positive vectors in Λ .

Then u is a basis of Λ . Pick any $v \in \Lambda$. Assume $v > 0$ WLOG. Then $v = \alpha u$ for $\alpha > 0$. If $\alpha \in \mathbb{Z}$ then we are done. If not, consider $w = \alpha u - |\alpha| u = {\alpha} u$, this is closer to 0 than u, a contradiction.

Induction hypothesis: suppose any lattice of dimension $n - 1$ has a basis.

Induction step: pick a lattice hyperplane H (lattice subspace with dim $= n - 1$). Then $\Lambda_1 = H \cap \Lambda$ has a basis u_1, \ldots, u_{n-1} . Pick u_n such that $u_n \notin H$ and $dist(u_n, H)$ is the smallest. We claim that $u_1, \ldots, u_{n-1}, u_n$ is a basis of Λ .

Let $u \in \Lambda$, $u = \sum_{i=1}^n \alpha_i u_i$ with $\alpha_i \in \mathbb{R}$. If $\alpha_n = 0$ then $u \in \Lambda_1$, then $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{Z}$. Suppose $\alpha_n \neq 0$. Consider $w = u - \lfloor \alpha_n \rfloor u_n$. $w \in \Lambda$ and $w = \{\alpha_n\} u_n + \sum_{i=1}^{n-1} \alpha_i u_i$. So

$$
dist(w, H) = dist(\{\alpha_n\} u_n, H) = {\alpha_n} dist(u_n, H)
$$

If $\{\alpha_n\} > 0$ then $0 < \text{dist}(w, H) < \text{dist}(u_n, H)$, a contradiction.

So $\{\alpha_n\} = 0 \implies \alpha_n \in \mathbb{Z}$. Then $w = \sum_{i=1}^{n-1} \alpha_i u_i \implies \alpha_1, \dots, \alpha_{n-1} \in \mathbb{Z}$.

So we have constructed a basis for lattice of dimension *n*, thus finishing the proof. \blacksquare

This is called A.N.Korkin(e)-Zolotarev(öff) basis.

<u>EXERCISE</u> Suppose $u_1, \ldots, u_n \in V$ is a basis of subspace. The integer combinations form a lattice.

EXERCISE Suppose a 2-dimensional lattice. Then there exists a lattice basis u, v such that the angle α between u, v satisfies $\frac{\pi}{3} \leq \alpha \leq \frac{\pi}{2}$.

EXERCISE If Λ is a lattice and L is a lattice subspace. The orthogonal projection PR : $V \to$ L^{\perp} . Then $\text{PR}(\Lambda) \subset L^{\perp}$ is a lattice.

Definition 1.2.1. Suppose u_1, \ldots, u_n be a basis of Λ.

$$
\Pi = \left\{ \sum_{i=1}^{n} \alpha_i u_i : 0 \le \alpha_i < 1, i = 1, \dots, n \right\}
$$

is the *fundamental parallelepiped* of a fundamental parallelepiped of Λ.

Theorem 1.2.3. *The volume of a fundamental parallelepiped* Π *doesn't depend on* Π*. The volume is called the determinant of* Λ *. Furthermore, if* $B_r = \{x : ||x|| \leq r\}$ *, then*

$$
\lim_{r \to \infty} = \frac{|B_r \cap \Lambda|}{\text{vol } B_r} = \frac{1}{\det \Lambda}.
$$

We start with a lemma:

Lemma 1.2.1. *Let* Π *be a fundamental parallelepiped of* $\Lambda \subset V$ *. Then every vector* $x \in V$ *is uniquely written as* $x = u + y$ *where* $u \in \Lambda, y \in \Pi$ *.*

Proof. Existence: Π is the fundamental parallelepiped for u_1, \ldots, u_n . If $x = \sum_{i=1}^n \alpha_i u_i$ then $u = \sum_{i=1}^{n} \lfloor \alpha_i \rfloor u_i$ and $y = \sum_{i=1}^{n} \{ \alpha_i \} u_i$

Uniqueness: suppose $x = u_1 + y_1 = u_2 + y_2$ then $u_1 - u_2 = y_2 - y_1$. Since $u_1 - u_2 \in \Lambda$ we have $y_2 - y_1 = \sum_{i=1}^n (\alpha_i - \beta_i) \mathbf{u}_i$. We have $(\alpha_i - \beta_i) \in \mathbb{Z}$. Since $-1 < \alpha_i - \beta_i < 1$, it \blacksquare has to be 0.

A geometry interpretation is that we can cover the whole space with fundamental parallelepipeds without overlaps.

Proof of theorem. Let

$$
X_r = \bigcup_{u \in B_r \cap \Lambda} (\Pi + u)
$$

Then vol $X_r = |B_r \cap \Lambda|$ vol Π .

Say, $\Pi \subset B_a$ for some $a > 0$. Then $X_r \subset B_{r+a}$. Look at B_{r-a} . It is covered by $\Pi + u : u \in$ Λ. We should have $||u|| ≤ r$. Hence $B_{r-a} ⊂ X_r$.

So we have

$$
\left(\frac{r-a}{a}\right)^n = \frac{\text{vol}\,B_{r-a}}{\text{vol}\,B_r} \le \frac{\text{vol}\,X_r}{\text{vol}\,B_r} \le \frac{\text{vol}\,B_{r+a}}{B_r} = \left(\frac{r+a}{a}\right)^n
$$

This goes to 1 when $r \to \infty$.

REMARK/EXERCISE The same holds for balls not centered in the origin:

$$
B_r(x_0) = \{x : ||x - x_0|| \le r\}.
$$

EXERCISE Suppose a lattice $\Lambda \subset V$ and $u \in \Lambda$. The Voronoi (G.F. Voronoi, 1868-1908) region is defined by

$$
\Phi_u = \{ x \in V : ||x - u|| \le ||x - v||, \forall v \in \Lambda \}.
$$

Show that Φ is convex (bounded by at most 2^n affine hyperplanes) and vol $\Phi = \det \Lambda$.

EXERCISE $(\det \Lambda)(\det \Lambda^*) = 1$

1.3 Sublattice

Definition 1.3.1. Suppose $\Lambda \subset V$ is a lattice, and $\Lambda_0 \subset \Lambda, \Lambda_0 \subset V$ is also a lattice. Λ_0 is then called a sublattice of Λ .

Remark. We have rank $\Lambda_0 = \text{rank } \Lambda$.

Example 1.3.1. $D_n \subset \mathbb{Z}^n$.

 $Λ$ is an Abelian group and $Λ$ ₀ ⊂ $Λ$ is a subgroup. Look at the quotient $Λ/Λ$ ₀ and cosets $\{u + \Lambda_0\}$. The index of Λ_0 in $\Lambda | \Lambda / \Lambda_0 | =$ the number of cosets.

Theorem 1.3.1. *1. Let* Π *be a fundamental parallelepiped of* Λ_0 *Then* $|\Lambda/\Lambda_0| = |\Pi \cap \Lambda|$ *.*

2. $|\Lambda/\Lambda_0| = \frac{\det \Lambda_0}{\det \Lambda}.$

Proof. 1. By [Lemma 1.2.1,](#page-4-0) every coset has a unique representation in Π.

2. Let $B_r = \{x : ||x|| \le r\}$. Then

$$
\lim_{r \to \infty} = \frac{|B_r \cap \Lambda|}{\text{vol } B_r} = \frac{1}{\det \Lambda}.
$$

Let $S \subset \Lambda$ be the set of coset representatives. Then $|S| = |\Lambda/\Lambda_0|$. Then $\Lambda =$ $\bigcup_{u \in S} (u + \Lambda_0)$. Hence

$$
\lim_{r \to \infty} \frac{|B_r \cap (u + \Lambda_0)|}{\text{vol } B_r} = \frac{1}{\det \Lambda_0} \implies \frac{1}{\det \Lambda} = |S| \frac{1}{\Lambda_0}
$$

EXERCISE

1. $\det \mathbb{Z}^n = 1$

- 2. det $D_n = 2$.
- 3. det $D_n^+ = 1$. (*n* even)
- 4. det $A_n = \sqrt{n+1}$. det $E_8 = 1$, det $E_7 =$ √ $2, \det E_6 =$ √ 3.
- 5. If a_1, \ldots, a_n are coprime integers not all 0.

$$
\Lambda = \{(x_1, \ldots, x_n) \in \mathbb{Z}^n : a_1 x_1 + \ldots + a_n x_n = 0\} \text{ has } \det \Lambda = \sqrt{a_1^2 + \ldots + a_n^2}.
$$

Corollary 1.3.1. *If* $u_1, \ldots, u_n \in \Lambda$ *are linearly independent and*

$$
\text{vol}\left\{\sum_{i=1}^{n} \alpha_i u_i : 0 \le \alpha_i < 1\right\} = \det \Lambda
$$

then u_1, \ldots, u_n *is a basis.*

Proof. Look at

$$
\Lambda_0 = \left\{ \sum_{i=1}^n m_i u_i : m_i \in \mathbb{Z} \right\}, |\Lambda/\Lambda_0| = 1 \implies \Lambda = \Lambda_0
$$

Counting integer points. Suppose $\Lambda = \mathbb{Z}^n$.

Pick *n* linearly independent vectors $u_1, \ldots, u_n \in \Lambda$. Consider

$$
\Pi = \left\{ \sum_{i=1}^n \alpha_i u_i : 0 \le \alpha_i < 1 \right\}.
$$

Then

$$
|\Pi \cap \mathbb{Z}^n| = ?
$$

Suppose $\Lambda_0 = \{ \sum_{i=1}^n m_i u_i : m_i \in \mathbb{Z} \}$. Then $\det \Lambda_0 = \text{vol}\,\Pi$.

Suppose $n = 2$, $u_1 = (3, 1)$, $u_2 = (1, 2)$. Then vol $\Pi = 5$. We can see that the parallelogram contains 5 integer points.

The case for $n = 2$ is special.

Theorem 1.3.2 (Pick Formula (G.A. Pick, 1859-1942)). If $P \subset \mathbb{R}^2$ is a convex polygon with *integer vertices and non-empty interior. Then*

$$
|P \cap \mathbb{Z}^2| = \text{ area of } P + \frac{1}{2}|\partial P \cap \mathbb{Z}^2| + 1
$$

Proof. Left as exercise. Hint: do it for parallelograms (in any dimension) first, then do it for triangles (special case for $n = 2$), and then all polygons with integer vertices.

<u>EXERCISE</u> For $n = 2$, linearly independent vectors of $u, v \in \mathbb{Z}^2$ form a basis \iff the triangle with vertices $0, u, v$ has no other integer points.

<u>EXERCISE</u> For $n = 3$, construct an example of linearly independent $u, v, w \in \mathbb{Z}^3$ such that the tetrahedron with vertices $0, u, v, w$ has no other integer points but $\{u, v, w\}$ is not a basis of \mathbb{Z}^3 . In fact, you can have $|\mathbb{Z}^n/\Lambda|$ arbitrarily large.

EXERCISE Suppose $u_1, \ldots, u_k \in \mathbb{Z}^n$ are linearly independent vectors and $\Lambda = \mathbb{Z}^n \cap \mathbb{Z}^n$ span (u_1, \ldots, u_k) . The $\{u_1, \ldots, u_k\}$ is a basis of Λ if and only if the great common divisor \lceil u_1^T 1

of all $k \times k$ minors of u_2^T . . . u_k^T k is 1.

Proof. \implies : suppose u_1, \ldots, u_k is a basis. Then we can extend $\{u_1, \ldots, u_k\}$ to get a basis $\{u_1, \ldots, u_k, \ldots, u_n\}$ of \mathbb{Z}^n . So $\det[u_1|u_2|\ldots|u_n]=1$. Use Laplace expansion for the first k columns we have

$$
\sum_{I \subset \{1,\ldots,n\},|I|=k} \det A_I \cdot \det A_{\overline{I}} = \pm 1 \implies \gcd(\det A_I) = 1.
$$

 \Leftarrow : suppose gcd = 1. Pick any $x \in \Lambda$, then $x = \alpha_1 u_1 + \ldots + \alpha_k u_k$ for some $\alpha_i \in \mathbb{R}$. Pick any k rows of $U = \left[\begin{array}{c|c} u_1 & u_2 & \ldots & u_k \end{array} \right]$ where $\det A_I \neq 0$. By Kramer's dule, $\alpha_i = \frac{\det[\text{replace } u_i \text{ by } x \text{ in } U]}{\det A_i}$ $\frac{\cos u_i \text{ by } x \text{ in } U}{\det A_I}$. det A_I are coprime $\implies \sum m_I \det A_I = 1$ for some $m_I \in \mathbb{Z}$. $\alpha_i \det A_I \in \mathbb{Z} \implies \sum_I \alpha_i m_I \det A_I \in \mathbb{Z}.$

Some linear algebra: (Smith Normal Form) If $\Lambda_0 \subset \Lambda$ is a sublattice, then there is a basis u_1, \ldots, u_n of Λ and a basis v_1, \ldots, v_n of Λ_0 such that $v_i = m_i u_i$ for positive integer m_i and such that m_1 divides m_2 which divides m_3, \ldots .

1.4 Minkowski Theorem

The goal today is to prove Minkowski Theorem (H. Minkowski, 1864-1909) for convex body.

Definition 1.4.1. Suppose V a Euclidean space, then a set $A \subset V$ is convex if $\forall x, y \in V$ $A, [x, y] \in A$ where $\{ [x, y] = \alpha x + (1 - \alpha)y : 0 \le \alpha \le 1 \}.$

Definition 1.4.2. A set A is symmetric if $A = -A = \{-x : x \in A\}.$

Theorem 1.4.1. *Suppose* $\Lambda \subset V$ *a lattice and* $A \subset V$ *a convex symmetric set with* vol $A >$ $2^{\dim V}\det\Lambda$ *. Then there is* $u\subset \Lambda\setminus\{0\}$ *such that* $u\in A.s$

 $2^{\dim V}$ is sharp: Pick $\mathbb{Z}^n \subset \mathbb{R}^n$, $\det \mathbb{Z}^n = 1$. Let $A = \{-1 < x_i < 1, i = 1, \ldots, n\}$ convex and symmetric. Then vol $A = 2^n$ and $A \cap Z^n = \{0\}$. And from geometric intuition we see that convex and symmetric is needed.

It is a result from Blichfeldt's theorem.

Theorem 1.4.2 (H. F. Blichfeldt, 1873 - 1945). *Let measurable* $X \subset V$, vol $X > \det \Lambda$, then *there are* $x, y \in X$ *such that* $x - y \in \Lambda \setminus \{0\}$ *.*

INTUITION det Λ describes the volume per lattice point. Consider $\{X + u\}$ the translations of X by lattice points. Some of them must overlap i.e. $(X + u_1) \cap (X + u_2) \neq \emptyset$. Then $x + u_1 = y + u_2 \implies x - y = u_2 - u_1 \in \Lambda \setminus \{0\}.$

Proof. Choose a fundamental parallelepiped Π of lattice Λ. Then $\det \Lambda = \text{vol } \Pi$. Then ${\{\Pi + u, u \in \Lambda\}}$ cover V without overlap. In particular, they cover X.

Let $X_u := ((\Pi + u) \cap X) - u$. $\sum_{u \in \Lambda} \text{vol } X_u = \text{vol } X > \text{vol } \Pi$. And $X_u \subset \Pi$. Then $\exists u_1 \neq u_2 \ s.t. \ X_{u_1} \cap X_{u_2} \neq \emptyset$. Then $\exists x, y \in X \ s.t. \ x - u_1 = y - u_2 \implies x - y = u_1 - u_2 \in$ $\Lambda \setminus \{0\}.$

Proof of Minkowski's Theorem. Let $X = \frac{1}{2}A = \left\{\frac{1}{2}x, x \in A\right\}$. Then $\text{vol } X = 2^{-\dim v} \text{ vol } A > 0$

det Λ. By Blichfeldt, there are $x, y \in X$ such that $x - y \in Λ \setminus \{0\}$. Write

$$
u = x - y = \frac{1}{2}(2x) + \frac{1}{2}(-2y)
$$

Since *A* is convex and symmetric, $2x, -2y \in A$ and $x - y \in A \implies u \in A$.

EXERCISE Suppose $\Lambda \subset V$ a lattice. Let $X = \{x \in V : ||x|| < ||x - u||, \forall u \in \Lambda \setminus \{0\}\}\.$ Let $A = 2X$. Show that A is convex, symmetric, $A = 2^{\dim V} \det \Lambda$ and $A \cap \Lambda = \{0\}$.

Corollary 1.4.1. If, in addition, A is compact, then it is enough to have vol $A \geq 2^{\dim V} \det \Lambda$.

We can apply the proof for $(1 + \varepsilon)A$ and let $\varepsilon \to 0$.

Corollary 1.4.2. Let $V = \mathbb{R}^n$, and $||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$. Then there is a $u \in \Lambda \setminus \{0\}$ with $||u||_{\infty} \leq (\det \Lambda)^{\frac{1}{n}}.$

Consider $A = \left\{ x, |x_i| \leq (\det \Lambda)^{\frac{1}{n}} \right\}.$

Corollary 1.4.3. *Suppose* $\Lambda \subset V$ *. Then there is* $u \subset \Lambda \setminus \{0\}$ *with* $||u|| \leq \sqrt{\dim V}(\det \Lambda)^{\frac{1}{n}}$ *.*

EXERCISE If $X \subset V$ is measurable and vol $X > m$ det Λ with $m \in \mathbb{Z}^+$. Then there are $x_1, \ldots, x_{m+1} \in X$ such that $x_i - x_j \in \Lambda$ for all pairs i, j .

If A is convex, symmetric, and $\text{vol } A > m \cdot 2^{\dim V} \det \Lambda$. Then A contains m distinct pairs $\pm u_1, \ldots, \pm u_m$ of nonzero lattice points.

EXERCISE (IMPORTANT) If $X\subset \Lambda$ is a set such that $|X|>2^{\dim V}$ then there are distinct $x, y \in X$ such that $\frac{x+y}{2} \in \Lambda$.

EXERCISE Suppose $f: V \to \mathbb{R}_+$ is integrable and $\Lambda \subset V$ a lattice. Then there are $z_1, z_2 \in$ V such that

$$
\sum_{u \in \Lambda} f(u + z_1) \ge \frac{1}{\det \Lambda} \int_V f(x) \, dx \ge \sum_{u \in \Lambda} f(u + z_2).
$$

We need the column of the unit ball in \mathbb{R}^n .

$$
\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt
$$

$$
\Gamma(x+1) = x\Gamma(x)
$$

$$
B = \{x : ||x|| = 1\}, B \subset \mathbb{R}^n, \text{vol } B = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2} + 1\right)}
$$

We start with integral:

$$
\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}, \int_{\mathbb{R}^n} e^{-\|x\|^2} dx = (\sqrt{\pi})^n
$$

Let $S(r) = \{x \in \mathbb{R}^n : ||x|| = r\}$ and κ be the surface area of $S(1)$.

$$
(\sqrt{\pi})^n = \int_0^\infty \left(\int_{S(r)} e^{-\|x\|^2} dx \right) dr
$$

=
$$
\int_0^\infty r^n \kappa e^{-r^2} dr
$$

=
$$
\frac{1}{2} \int_0^\infty t^{\frac{n-2}{2}} \kappa e^{-t} dt
$$

=
$$
\kappa \frac{1}{2} \int_0^\infty t^{\frac{n-2}{2}} \kappa e^{-t} dt = \frac{1}{2} \kappa \gamma \left(\frac{n}{2} \right)
$$

 \setminus

So we have $\kappa = \frac{2(\sqrt{\pi})^n}{\Gamma(n)}$ $\frac{\left(\sqrt{2}n\right)}{\Gamma\left(\frac{n}{2}\right)}$.

Then

$$
\text{vol}\,B = \int_0^1 \kappa t^{n-1} \,dr = \frac{\kappa}{n} = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2} + 1\right)}.
$$

1.5 Applications of Minkowski's Theorem

First application:

Theorem 1.5.1 (Lagrange's four squares theorem (J-L Lagrange, 1736-1813)). *If* $n \ge 0$ *is* a non-negative integer, then $n = x_1^2 + x_2^2 + x_3^2 + x_4^2$ for some integer x_1, x_2, x_3, x_4 .

Proof. Start as Lagrange did: first, prove assuming that *n* is prime, then there are $a, b \in \mathbb{Z}$ such that $a^2 + b^2 + 1 \equiv 0 \pmod{n}$.

 $n = 2$ is clear. Consider values of $a^2 \pmod{n}$ for $n > 2$ and $a = 0, 1, \ldots, \frac{n-1}{2}$. They are all distinct. Otherwise $a_1^2 \equiv a_2^2 \equiv \pmod{n} \implies (a_1 - a_2)(a_1 + a_2) \pmod{n}$.

Consider values $-1 - b^2 \pmod{n}$ for $b = 0, 1, \ldots, \frac{n-1}{2}$. They are all different values.

There are a total of $n + 1$ values, so there exists $a^2 \equiv -1 - b^2 \pmod{n}$ by pigeonhole principle.

We introduce one generally useful lemma:

Lemma 1.5.1. *Suppose* $a_1, \ldots, a_k \in \mathbb{Z}^n$ *and* m_1, \ldots, m_k *positive integers and*

$$
\Lambda = \{ x \in \mathbb{Z}^n : \langle x, a_i \rangle \equiv 0 \pmod{m_i} \}.
$$

Then Λ *is a lattice and* $\det \Lambda \leq m_1 \cdots m_k$ *.*

Consider their cosets: pick $0 \leq b_i \leq m_i$, and the coset is

$$
\{x \in \mathbb{Z}^n : \langle x, a_i \rangle \equiv b_i \pmod{m_i}\}
$$

if the set is non-empty. Then $|\mathbb{Z}^n/\Lambda| = \frac{\det \Lambda}{\det \mathbb{Z}^n}$.

The rest is from Davenport: Suppose a lattice

$$
\Lambda = \left\{ x \in \mathbb{Z}^4 : \begin{array}{l} x_1 \equiv ax_3 + bx_4 \\ x_2 \equiv ax_4 - bx_3 \end{array} \right. \pmod{n} \right\}.
$$

If $(x_1, x_2, x_3, x_4) \in \Lambda$ then

$$
x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv (ax_3 + bx_4)^2 + (ax_4 - bx_3)^2 + x_3^2 + x_4^2 \pmod{n}
$$

$$
a^2x_3^2 + b^2x_4^2 + 2abx_3x_4 + a^2x_4^2 + b^2x_3^2 - 2abx_3x_4 + x_3^2 + x_4^2 \equiv (a^2 + b^2 + 1)x_3^2 + (b^2 + a^2 + 1)x_4^2 \equiv 0 \pmod{n}
$$

So we have $x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 0 \pmod{n}$ for all $(x_1, x_2, x_3, x_4) \in \Lambda$. So det $\Lambda \le n^2$. Consider the ball B with radius $\sqrt{2n}$. The volume of the ball vol $B = 2n^2\pi^2 \ge 2^4n^2 \ge$ $2⁴$ det Π. So there exists $(x_1, x_2, x_3, x_4) ∈ Λ \setminus \{0\}$ such that $x_1^2 + x_2^2 + x_3^2 + x_4^2 < 2n$ and $x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 0 \pmod{n}.$

So we conclude that such $x_1^2 + x_2^2 + x_3^2 + x_4^2 = n$.

Now suppose *n* is not prime, write $n = \prod p_i$ where p_i 's are prime numbers.

$$
(x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2) = z_1^2 + z_2^2 + z_3^2 + z_4^2
$$

where

$$
\begin{cases}\nz_1 = x_1y_1 - x_2y_2 - x_3y_3 - x_4y_4 \\
z_2 = x_1y_2 + x_2y_1 + x_3y_4 - x_4y_3 \\
z_3 = x_1y_3 + x_2y_4 + x_3y_1 + x_4y_2 \\
z_4 = x_1y_4 - x_2y_3 - x_3y_3 + x_4y_1\n\end{cases}
$$

Remember through quaternions. $x_1 + ix_2 + jx_3 + kx_4$.

 ϵ

Jacobi's Formula (C.G.J Jacobi, 1804-1851) The number of integer solutions (not neces-

sarily positive) of the equation

$$
x_1^2 + x_2^2 + x_3^2 + x_4^2 = n
$$

is 8 $\cdot \sum_{d|n,4\nmid d}d.$

EXERCISE Deduce the Jacobi's Formula from the identity

$$
\left(\sum_{k=-\infty}^\infty q^k\right)^4=1+8\sum_{k=1}^\infty \frac{q^k}{\left(1+(-q)^k\right)^2},\;\text{for}\; |q|<1.
$$

Gauss Circle Problem (C.-F Gauss, 1777, 1855) $B_r = \{x \in \mathbb{R}^2 : ||x|| \le r\}$. As $r \to \infty$, $|B(r) \cap \mathbb{Z}^2| \approx \pi r^2 + O(r^{1/2+\epsilon})$ for any $\epsilon > 0$? Best known is $O(r^{0.63})$ for $\epsilon = 0.13$.

<u>EXERCISE</u> If *n* is prime, $n \equiv 1 \pmod{4}$. Then $n = x_1^2 + x_2^2$ for some $x_1, x_2 \in \mathbb{Z}$.

How well can we approximate a real number for rational numbers?

If $\alpha \in \mathbb{R}$ and $q \ge 1$ is an integer, then for some integer p we have $\left|\alpha - \frac{p}{q}\right| \le \frac{1}{2q}$.

Theorem 1.5.2. *For any* $\alpha \in \mathbb{R}$ *and* $M > 0$ *, there exists* $q \geq M$ *and an integer* p *such that* $\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^2}.$

In fact, we can have $\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{q^2\sqrt{q}}$ $\frac{1}{q^2\sqrt{5}}$, which is optimal.

It shows that this holds for infinitely many q .

Proof. Assume WLOG that α is irrational. Pick $Q \geq 1$ an integer. Consider the parallelogram in $\mathbb{R}^2: \Big\{ |x| \leq Q, |\alpha x - y| \leq \frac{1}{Q} \Big\}.$

II is convex, symmetric, compact, with area $\Pi = 4 = 2^2$.

By Minkowski, there exists $(q, p) \in \mathbb{Z}^2 \setminus \{0\}$, $(q, p) \in \Pi$ such that $|\alpha q - p| \leq \frac{1}{Q}$, $|p| \leq$ $\frac{1}{Q} \implies p = 0$. Assume that $q > 0$.

We have $q \leq Q$, and

$$
|\alpha q-p|\leq\frac{1}{Q}\implies \left|\alpha-\frac{p}{q}\right|\leq\frac{1}{Qq}\leq\frac{1}{q^2}
$$

It remains to show that for any *M* we can choose $q \geq M$.

Why? α is irrational. Choose Q so large that we cannot have $\left|\alpha-\frac{p}{q}\right|\leq \frac{1}{Q}$ for $q\leq M$.

EXERCISE For any $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and any M, there are integers p_1, \ldots, p_n and $q \geq M$ such that $\left|\alpha_k - \frac{p_k}{q}\right| \le \frac{1}{q^{\frac{n}{q}}}$ $\frac{1}{q^{\frac{n+1}{n}}}$ for $k=1,\ldots,n$.

Continued fractions: given α , we produce a possibly infinite expression:

$$
\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}}
$$

and denote $\alpha = [a_0; a_1, a_2, \ldots]$ How: introduce variables $\beta_0, \beta_1 \ldots$ where $\beta_0 = \alpha$. Write $\beta_0 = [\beta_0] + {\beta_0}.$

Let $a_0 = \lfloor \beta_0 \rfloor$, if $\{\beta_0\} = 0$ then stop. Otherwise let $\beta_1 = \frac{1}{\{\beta_0\}}$. Let $\alpha_1 = \lfloor \beta_1 \rfloor$, continue. **Example 1.5.1.** Let $\alpha =$ √ $2. \ \beta_0 =$ √ 2 and $a_0 = 1$.

$$
\sqrt{2} = 1 + (\sqrt{2} - 1) = 1 + \frac{1}{\frac{1}{\sqrt{2} - 1}} = 1 + \frac{1}{\sqrt{2} + 1}
$$

$$
= 1 + \frac{1}{2 + (\sqrt{2} - 1)} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{\sqrt{2} - 1}}}
$$

Convergents: k-th convergent:

$$
[a_0; a_1, \dots, a_k] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots + \frac{1}{a_k}}}} = \frac{p_k}{q_k}
$$

EXERCISES Suppose p_k , q_k are coprime. Prove that $p_k = a_k p_{k-1} + p_{k-2}$, $q_k = a_k q_{k-1} + q_{k-2}$ for $k \ge 2$. Hint: Induction $[a_0; a_1, ..., a_k] \to [a_1; a_2, ..., a_k]$.

Prove that $p_{k-1}q_k - p_kq_{k-1} = (-1)^k$ for $k \ge 1$.

Prove that $q_kq_{k-2} - p_kq_{k-2} = (-1)^{k-1}a_k$ for $k \ge 2$.

Prove that $\left|\alpha - \frac{p_k}{q_k}\right| \leq \frac{1}{q_kq_{k+1}}, k \geq 0$.

(Hard, easy if replace 5 by 2) Prove that at least one of the three holds:

$$
\left|\alpha - \frac{p_k}{q_k}\right| \le \frac{1}{q_k^2 \sqrt{5}}, \left|\alpha - \frac{p_{k-1}}{q_{k-1}}\right| \le \frac{1}{q_{k-1}^2 \sqrt{5}}, \text{ or } \left|\alpha - \frac{p_{k-2}}{q_{k-2}}\right| \le \frac{1}{q_{k-2}^2 \sqrt{5}}.
$$

Convergents are the best rational approximation in the following sense:

Given α and integer $Q > 1$, we want to find $\frac{a}{b}$ such that $|b| \leq Q$ and $|\alpha b - a|$ is the smallest possible.

<u>CLAIM</u> Must have $\frac{a}{b} = \frac{p_k}{q_k}$. (With possible exception of $k = 0, 1$.)

WHY/EXERCISES Suppose not: pick the largest k such that $\frac{a}{b}$ is between $\frac{p_{k-1}}{q_{k-1}}$ and $\frac{p_k}{q_k}$.

Then $\Big|$ $\frac{a}{b} - \frac{p_{k-1}}{q_{k-1}}$ $\left| \frac{p_{k-1}}{q_{k-1}} \right| \ge \frac{1}{bq_{k-1}}$, easy. Then $\Big|$ $\frac{a}{b} - \frac{p_{k-1}}{q_{k-1}}$ $\left| \frac{p_{k-1}}{q_{k-1}} \right| \leq$ $\frac{p_k}{q_k} - \frac{p_{k-1}}{q_{k-1}}$ $\left. \frac{p_{k-1}}{q_{k-1}} \right| = \frac{1}{q_kq_{k-1}}$ from last exercise.

On the other hand $|\alpha - \frac{a}{b}| \geq |$ p_{k+1} $\left| \frac{p_{k+1}}{q_{k+1}} - \frac{a}{b} \right| \ge \frac{1}{bq_{k+1}}$. So $|\alpha b - a| \ge \frac{1}{q_{k+1}}$ but $|\alpha q_k - p_k| \le$ $\frac{1}{q_{k+1}}$. So $b > q_k$.

Theorem 1.5.3 (Liouville's theorem (Joseph Liouville, 1809-1882))**.** *If* α *is an algebraic irrational of degree* $n \geq 2$. Then $\left|\alpha - \frac{p}{q}\right| \geq \frac{c(\alpha)}{q^n}$ with $c(\alpha) > 0$.

Corollary: $\alpha = \sum_{n=1}^{\infty} \frac{1}{10^{n!}}$ is transcendental. (the rough idea is that if an irrational number is approximated too well then it is transcendental)

1.6 Sphere Packing

Denote balls: $B_r(x_0) := \{x : ||x - x_0|| \le r\}.$

Definition 1.6.1. *A sphere packing* is a (usually infinite) collection of balls $B_r(x_i)$ with the

same radius with pairwise non-intersecting interiors.

The *density* of a sphere packing σ is defined as

$$
\sigma = \limsup_{R \to \infty} \frac{\text{vol}\left(B_R(0) \cap \bigcup_i B_r(x_i)\right)}{\text{vol}\,B_R(0)}
$$

Generally we want to find the largest density of a sphere packing in \mathbb{R}^n . We know $n = 1, 2, 3, 8, 24.$

If centers x_i forms a lattice, then it is called a lattice (sphere) packing. For densest lattice packings, we know $n = 1, 2, 3, 4, 5, 6, 7, 8$, and 24.

REMARK/EASY EXERCISE If $\{x_i\}$ forms a lattice $\Lambda \subset \mathbb{R}^n$, $\sigma(\Lambda) = \frac{\pi^{n/2}}{\Gamma(n+1)}$ $\frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)}\frac{\rho^n}{\det\Lambda}$ where ρ is called the packing radius, which is defined by $\rho(\Lambda) = \frac{1}{2} \min_{x \in \Lambda \setminus \{0\}} ||x||$. If $\Lambda_1 \sim \Lambda_2$ then $\sigma(\Lambda_1) = \sigma(\Lambda_2).$

For $n = 1, \sigma(\Lambda) = 1$.

For $n = 2$, $\rho(\mathbb{Z}^2) = \frac{1}{2}$, $\det \mathbb{Z}^2 = 1$, $\sigma(\mathbb{Z}^2) = \frac{\pi}{4}$. $\rho(A_2) = \frac{\sqrt{2}}{2}$, $\det A_2 =$ √ $\overline{3}, \sigma(A_3) = \pi \frac{1}{2}$ $\frac{1}{2\sqrt{3}}$. (locally denest) (Best lattice packing by Gauss, best packing overall by Laselo Fejes Toth (1915-2005))

For $n = 3, \Lambda = A_3 = D_3, \rho(\Lambda) = \frac{\sqrt{2}}{2}, \det \Lambda = 2, \sigma(\Lambda) = \frac{4\pi}{3} \frac{1}{4\nu}$ $\frac{1}{4\sqrt{2}} = \frac{\pi}{3\sqrt{2}}$ $\frac{\pi}{3\sqrt{2}}$. (not locally denest) (Best lattice packing by Gauss, best packing overall by T.Hales (1958-))

There is a continuum of non-equivalent non-lattice densest packings.

12 balls touching the ball of the same radius.

For
$$
n = 4
$$
 compare A_4 , D_4 .
\n
$$
\rho(A_4) = \rho(D_4) = \frac{\sqrt{2}}{2}
$$
 det $A_4 = \sqrt{5}$. And det $D_4 = 2 < \sqrt{5}$.
\n
$$
\sigma(D_4) = \frac{\pi^2}{2} \frac{1}{8} = \frac{\pi^2}{16} \approx 0.617.
$$

Densest lattice packing (Korkin Zolotaren) 24 vectors of length $\sqrt{2} = (\pm 1, 0, \pm 1, 0)$, 24 balls touching central ball (cannot have more by musin, 2008)

For
$$
n = 5
$$
, consider D_5

$$
\rho(D_5) = \frac{\sqrt{2}}{2}
$$
, det $D_5 = 2$. $\sigma(D_5) = \frac{\pi^2}{15\sqrt{2}} \approx 0.465$.

Densest lattice packing (Korkin Zolotaren), 40 balls touching central ball.

For $n = 8$, consider E_8 .

 $\rho(E_8) = \frac{\sqrt{2}}{2}$, det $E_8 = 1$, $\sigma(E_8) = \frac{\pi^4}{24}$ $\frac{\pi^4}{24}\frac{1}{16}=\frac{\pi^4}{384}\approx 0.254.$ Densest lattice packing(Blichfeldt), densest overall(M. Vyazovska, 1984-)

240 vectors of length $\sqrt{2}$: $(\pm 1, 0, \pm 1, 0, ...)$ $\left(-\frac{1}{2}, -\frac{1}{2}, \ldots\right)$ with an even number of $-\frac{1}{2}$ turned into positive ones.

240 balls touching the central ball, cannot fir more (Odlyzko and sloane, 1979) (it is rigid) For $n = 7$, $\rho(D_7) = \frac{\sqrt{2}}{2}$, $\det D_7 = 2$. $\rho(E_7) = \frac{\sqrt{2}}{2}$, $\det E_7 =$ √ 2. $\sigma(E_7) = \frac{\pi^3}{105} \approx 0.292$. Densest lattice (Blichfeldt), not rigid. For $n = 6$, $\rho(D_7) = \frac{\sqrt{2}}{2}$, det $D_7 = 2$. $\rho(E_7) = \frac{\sqrt{2}}{2}$, det $E_7 =$ √ 3. $\sigma(E_7) = \frac{\pi^3}{48\sqrt{3}} \approx 0.373$. Densest lattice (Blichfeldt)

1.7 Leech Lattice

John Leech, 1926-1992

Consider \mathbb{R}^{26} , number coordinates, $D_{26} \subset \mathbb{Z}^{26} : \sum_{k=0}^{2} 5 \equiv 0 \pmod{2}$ $u = (\frac{1}{2}, \ldots, \frac{1}{2}).$ $D_{26}^+ = D_{26} \cup (D_{26} + u)$

$$
\sum_{k=0}^{24} = k^2 = 4900 = 70^2.
$$

(No other integer satisfies this afterwards)

 $w_+ = (0, 1, \ldots, 24, 70), w_- = (0, 1, \ldots, 24, -70), W_+, W_- \in D_{26}.$ $\sum_{k=0}^{24} \pm 70 = \frac{25.24}{2} \pm 70$ $60 \equiv 0 \pmod{2}$.

Look at the hyperplane $H \subset \mathbb{R}^{26} = \{x : \langle x, w_- \rangle = 0\}.$

 $\Lambda_{25}=D_{25}^+\cap H$ is a lattice of rank 25. We see that w_+ lies in the lattice. Take $L=w_+^{\perp}\subset$ H , dim $L = 24$. Define Λ_{24} to be the orthogonal projection of Λ_{25} onto L .

 Λ_{24} is discrete because $\text{span}(w_+) \subset H$ is a lattice subspace.

 Λ_{24} is the Leech lattice.

Useful formula for the length.

Pick $(x_0, x_1, \ldots, x_{25})$ in Λ_{25} , what is the length of projection in Λ_{24} ?

Let
$$
\hat{x} \in \Lambda_{24}
$$
 be the projection: $\hat{X} = x - \alpha w_+$ so that $\langle \hat{x}, w_+ \rangle = 0$. So $\langle x, w_+ \rangle - \alpha \langle w_+, w_+ \rangle = 0$
\n $\implies \frac{\langle x, w_+ \rangle}{\langle w_+, w_+ \rangle}$.
\n
$$
\|\hat{x}\|^2 = \|x\|^2 - \|\alpha w_+\|^2 = \|x\|^2 - \frac{\langle x, w_+ \rangle^2}{\langle w_+, w_+ \rangle}
$$
\n $x \in \Lambda_{25} \subset H \implies \langle x, w_- \rangle = 0$. $w_+ = w_- + 140 \implies \langle x, w_+ \rangle = \langle x, w_- \rangle + 140x_{25} = 0$

 $140x_{25}$.

$$
\|\hat{x}\|^2 = \sum_{k=0}^{25} x_k^2 - \frac{140^2 x_{25}^2}{\sum_{k=0}^{24} k^2 + 70^2} = \sum_{k=0}^{25} x_k^2 - 2 \cdot x_{25}^2 = \sum_{k=0}^{24} x_k^2 - x_{25}^2.
$$

Some shortest non-zero vectors in Λ_{24} . $x = (0, 1, -1, -1, 1, 0, \dots, 0) \in D_{25} \subset D_{26}^+$.

 $\langle x, w_- \rangle = 0 + 1 - 2 - 3 + 4 = 0 \implies x \in \Lambda_{25}$, also $\langle x, w_+ \rangle = 0 + 1 - 2 - 3 + 4 = 0$ $0 \implies x \in \Lambda_{24}, ||x|| = 2.$

$$
\text{Pick } y = \left(\frac{1}{2}, \underbrace{-\frac{1}{2}, \dots, -\frac{1}{2}}_{9 \text{ times}}, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_{15 \text{ times}}, \frac{3}{2}\right) \cdot y - u \in D_{26} \implies y \in D_{26}^+.
$$
\n
$$
\langle y, w_- \rangle = 0, \|\hat{y}\|^2 = \sum_{k=0}^{24} \frac{1}{4} - \frac{9}{4} = \frac{25 - 9}{4} = 4.
$$

There are 196560 vectors of length 2. (<- many balls touching the central ball) cannot put more (Odlyzko & Sloane, 1979) and this configuration is rigid.

Rigid phenomenon in dim 2, 8, and 24.

EXERCISES

- 1. det $D_{26} = 2$, det $D_{26}^+ = 1$, det $\Lambda_{25} = 70\sqrt{2}$, det $\Lambda_{24} = 1$.
- 2. For any $x \in \Lambda_{24}$, $||x||^2$ is an even integer.
- 3. $\min_{x \in \Lambda_{24} \setminus 0} ||x|| = 2.$
- 4. $\Lambda_{24}^* \cong \Lambda_{24}$.

What happens if $n = \dim V$ is large?

Gilbert-Varshamov Bound (E.N. Gilbert, 1923-2013, R.R Varshamov, 1927-1999)

Theorem 1.7.1. *THere is a sphere packing in* \mathbb{R}^n *of density* $\geq 2^{-n}$ *.*

Proof. Consider a saturated packing (young cannot add another ball to the poacking) of balls of radius 1.

Claim: its density $\geq 2^{-n}$.

Why? If $\bigcup_{i \in I} B(x, 1)$ is saturated then $\bigcup_{i \in I} B(x_i, 2) = \mathbb{R}^n$.

If it does not cover, say point $y \in \mathbb{R}^n$. We can add a ball $B(y)$ to the packing. If $x_i \in$ $B_{R-1}(0)$ then $B_1(x_i)$ ⊂ $B_R(0)$. If $B_2(x_i) \cap B_{R-3}(0) \neq \emptyset$ then $x_i \in B_{R-1}$.

$$
\sum_{x_i \in B_{R-1}(0)} \text{vol } B_2(x_i) \ge \text{vol } B_{R-3}(0) \implies \sum_{x_i \in B_{R-1}} 2^n \text{vol } B_1(x_i) \ge \text{vol } B_{R-3}(0).
$$

Hence

$$
\text{vol}\left(B_R(0) \cap \bigcup_i B_1(x_i)\right) \ge \sum_{x_i \in B_{R-1} \text{ vol } B_1(x_i) \ge 2^{-n} \text{ vol } B_{R-3}}(0)
$$

Take $R \to \infty$.

1.8 Lattice Packings

We will prove "today" for any $0 < \alpha < 2^{-n}$ there is a lattice $\Lambda \subset \mathbb{R}^n$ with $\sigma(\Lambda) \geq a$. Later in this course $\sigma(\Lambda) \geq 2^{-n}$.

Real Minkowski-Hlawka theorem is $\sigma(\Lambda) \geq 2 \cdot \zeta(n) 2^{-n}$ (assuming $n > 1$) where $\zeta(n) =$ $\sum_{k=1}^{\infty} \frac{1}{k^n}.$

What's known: There is a lattice $\Lambda \subset \mathbb{R}^n \sigma(\Lambda) \geq 1.68n2^{-n}$ (Davenport-Rogers, 1947)

 $\sigma(\Lambda) \geq 2(n-1)\zeta(n)2^{-n}$ (K. Ball, 1992)

 $\sigma(\Lambda) \geq \frac{1}{2}(n \ln \ln n)2^{-n}$ for infinitely many n. (Venkatesh, 2013)

What's going on with packing radius? Say we scale to det $\Lambda = 1$.

$$
\sigma(\Lambda) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2} + 1) \frac{\rho^n(\Lambda)}{\det \Lambda}} \ge 2^{-n}
$$

$$
\implies \rho(\Lambda) \ge \frac{1}{2} \frac{\left(\Gamma(\frac{n}{2} + 1)\right)^{1/n}}{\sqrt{\pi}} \approx \frac{\sqrt{\pi}}{2\sqrt{2\pi e}}
$$

 $\min_{x \in \Lambda \setminus \{0\}} \|x\| \ge \sqrt{\frac{n}{2\pi e}}$. Try to construct explicitly a lattice in \mathbb{R}^n of $\det \Lambda = 1$ with $\min_{x \in \Lambda \setminus \{0\}} \|x\| = \sqrt{2\pi e}$
 $\min_{x \in \Lambda \setminus \{0\}} \|x\| \ge 10^{-9} \sqrt{n}.$

So the lower bound is not that trivial.

Now we go back to our theorems.

Theorem 1.8.1. *For any* $0 < \alpha < 2^{-n}$ *there is a lattice* $\Lambda \subset \mathbb{R}^n$ *with* $\sigma(\Lambda) \geq a$ *. Later in this course* $\sigma(\Lambda) \geq a$ *.*

This theorem can be deduced from the following theorem:

Theorem 1.8.2. If $M \subset \mathbb{R}^n$ is a bounded Jordan-measurable set of vol $M < 1$. Then there is a *lattice* $\Lambda \subset \mathbb{R}^n$ *such that* det $\Lambda = 1$ *and* $M \cap (\Lambda \setminus \{0\}) = \emptyset$ *.*

Proof. Pick $\alpha > 0$ so small that

1. $M \cap \{x_n = 0\}$ It is entirely contained in the cube $|x_i| < \alpha^{-\frac{1}{\alpha-1}}, i = 1, \ldots, n-1$.

2. Let $H_k = \{x_n = k\alpha, k \in \mathbb{Z}\}.$

$$
\alpha \sum_{k=-\infty}^{\infty} \text{vol}_{n-1}(M \cap H_k) < 1.
$$

Define the lattice Λ as follows: pick the first $n-1$ basis vectors $u_i = \alpha^{-\frac{1}{n-1}} e_i$ for $i =$ 1, ..., $i - 1$. Let Π be the fundamental parallelepiped of u_1, \ldots, u_{n-1} for $x \in \Pi$, let $u_n(x) = \alpha e_n + x$ and let Λ_x be the lattice with basis $u_1, \ldots, u_{n-1}, u_n(x)$.

$$
\det \Lambda(x) = \text{vol}\,\Pi \cdot \alpha = \left(\alpha^{-\frac{1}{n-1}}\right)^{n-1} \alpha = 1.
$$

Claim: for some $x, |(\Lambda \setminus \{0\}) \cap M| = \emptyset$.

$$
|(\Lambda \setminus \{0\}) \cap M| = \sum_{k \in \mathbb{Z} \setminus \{0\}} |M \cap (\Lambda_0 + kx)|
$$

$$
\frac{1}{\text{vol }\Pi} \int_{x \in \Pi} |M \cap (\Lambda(x) \setminus \{0\})| dx = \alpha \sum_{k \in \mathbb{Z} \setminus \{0\}} \int_{\Pi} |M \cap (\Lambda_0 + kx)| dx
$$

= $\alpha \sum_{k=-\infty}^{\infty} \text{vol}_{n-1}(M \cap H_k) < 1.$

So for some x we have $(\Lambda(x) \setminus \{0\}) \cap M = \emptyset$.

Choose $M = B_r(0)$ such that vol $B_r(0) = 2^n \cdot a < 1$. Construct a lattice $\Lambda \cap B_r(0) = 0$ and det $\Lambda = 1$. The $\min_{x \in \Lambda \setminus \{0\}} ||x|| \geq r \implies \rho(\Lambda) \geq \frac{r}{2}$. Then

$$
\sigma(\Lambda) \ge \left(\frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}r^n\right)2^{-n} = a
$$

Lemma 1.8.1. Let $M \subset V$ be a Lebesgue measurable. Let $\Lambda \subset V$ be a lattice. Let Π be a *fundamental parallelepiped of* Λ *. Define* $f: V \to \mathbb{R}$ by $f(x) = |M \cap (x + \Lambda)|$ *. Then*

$$
\int_{\Pi} f(x) \, \mathrm{d}x = \text{vol}\, M
$$

Proof. For $u \in \Lambda$. Let $f_a(x) = \mathbf{1}_M(x+u)$, $f(x) = \sum_{u \in \Lambda} f_u(x)$. So

$$
\int_{\Pi} f(x) dx = \sum_{u \in \Lambda} \int_{\Pi} f_u(x) dx = \sum_{u \in \lambda} \text{vol}((\Pi + u) \cap M)
$$

 $\Pi + u$ covers V without holes $\implies \sum_{u \in \lambda} \text{vol}((\Pi + u) \cap M) = \text{vol } M.$

Lemma 1.8.2.

$$
\int_{\Pi} |M \cap (x + \Lambda)| \, \mathrm{d}x = \text{vol } M
$$

Corollary 1.8.1. *For* $k \in \mathbb{Z} \setminus \{0\}$, $\int_{\Pi} |M \cap (kx + \Lambda)| \,dx = \text{vol } M$ *If* $k > 0$ *, let* $y = kx, x = k^{-1}y$ *.*

$$
\int_{\Pi} |M \cap (x + \Lambda)| \, \mathrm{d}x = \text{vol}\, M = k^{-n} \int_{k\Pi} |M \cap (y + \Lambda)| \, \mathrm{d}y
$$

 $(k\Pi$ *is the disjoint union of* k^n *lattice shifts of* Π *.)*

For $k < 0$ *, make* $y = -x$ *and reduce to* $k > 0$ *.*

Some sharpening:

- 1. There exists $\Lambda \subset \mathbb{R}^n$, $\sigma(\Lambda) \geq 2^{-n}$ through compactness in the space of lattices
- 2. If M is symmetric, we can require instead that vol $M < 2$. (non-zero vectors come in pairs) $\implies \exists \Lambda, \sigma(\Lambda) \geq 2^{-n+1}$.
- 3. (Hlawka) If M is star shaped (for all $x \in M$, $[0, x] \subset M$) about 0 and $M = -M$. We can require vol $M < 2\zeta(n)$.

A lattice vector $u \in \Lambda \setminus \{0\}$ is primitive if you cannot write $u = mv$ for $v \in \Lambda, |m| \geq 2$.

- 1. If M is star shaped and contains a non-zero lattice point, then it contains a primitive lattice point.
- 2. The density of primitive points is $\frac{1}{\zeta(n)}$.

1.9 Fourier Transform

(J. Fourier, 1786-1830) Given $f : \mathbb{R}^n \to \mathbb{C}$ such that $\int_{\mathbb{R}^n} |f(x)| dx$, $\int_{\mathbb{R}^n} |f(x)|^2 dx < \infty$. We define

$$
\widehat{f}(y) = \int_{\mathbb{R}^n} e^{-2\pi i \langle x, y \rangle} f(x) dx \iff f(x) = \int_{\mathbb{R}^n} e^{2\pi i \langle x, y \rangle} \widehat{f}(y) dy.
$$

 $\widehat{f}: \mathbb{R}^n \to \mathbb{C}.$

 $f(x) = e^{-\pi ||x||^2} \iff \widehat{f}(y) = e^{-\pi ||y||^2}.$

Poisson summation formula: if $|f(x)| + \left| \widehat{f}(x) \right| \leq \frac{C}{(1 + ||\cdot|| + ||\cdot||)^{n+\delta}}$ with $c, \delta > 0$ (admissible). Then $\sum_{u \in \mathbb{Z}^n} f(u) = \sum_{u \in \mathbb{Z}^n} f(u)$.

Lemma 1.9.1. *If* $f, \hat{f} : \mathbb{R}^n \to \mathbb{C}$ *are admissible and* $\Lambda \subset \mathbb{R}^n$ *is a lattice. Then*

$$
\sum_{u\in\Lambda}f(u)=\det\Lambda\sum_{\ell\in\lambda^*}
$$

Proof. Let u_1, \ldots, u_n be a basis of Λ and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be linear such that $T(e_j) =$ u_j for $j = 1, \ldots, n$ \overline{z}

SO
$$
\Lambda = T(\mathbb{Z}^n)
$$
. So $\sum i \in \Lambda f(u) = \sum_{u \in \Lambda} f(u) = f(u) = \sum_{u \in \Lambda} f(Tu)$.

Define

$$
g(x) = f(Tx), \implies \sum_{u \in \Lambda} \sum_{u \in \Lambda} f(u) = \sum_{u \in \Lambda} = g(u) = \sum_{u \in \mathbb{Z}^n} \hat{g}(u).
$$

$$
\hat{g}(y) = \int_{R^n} e^{-2\pi i \langle y, x \rangle} g(x) dx = \int_{\mathbb{R}^n} e^{-2\pi i \langle y, x \rangle} f(Tx) dx.
$$

Let $z = Tx$, then $dx = \det T^{-1}$.

Theorem 1.9.1 (Cohn, Elkies, 2003). Suppose that there is an admissible function $f : \mathbb{R}^n \to \mathbb{R}$ such that $\widehat{f} : \mathbb{R}^n \to \mathbb{R}$ is also admissible and

- 1. $f(x) \leq 0$ *for every* $x \in \mathbb{R}^n$ *such that* $||x|| > 1$ *.*
- 2. $\widehat{f}(y) \geq 9$ *for all* $y \in \mathbb{R}^n$

Then the density of a sphere packing in $\mathbb{R}^n \leq \frac{\pi^{11/2}}{\Gamma(n)}$ $\Gamma(\frac{n}{n+2})$ $\frac{f(0)}{2^n}\widehat{f}0$

Proof. Let m = .

Proof. Sketch, for any, not necessarily lattice, packing

First, prove for periodic packings. (the centers written as $v_i + \Lambda$, v_i , $i = 1, \ldots, N$ are distinct cosets \mathbb{R}^n/Λ representatives) Scale the radius to $\frac{1}{2}$.

Consider the sum

$$
S = \sum_{i,j=1}^{N} \sum_{u \in \Lambda} f(v_i - v_j + u).
$$

If $i \neq j$ $v_i + u$ and v_j are different centers.

If $i = j$, $u \neq 0$, then $v_i + u$ and $v_j = v_i$ are different centers.

We have

$$
||v_i - v_j + u|| \ge 1 \text{ if } i \ne j \text{ or } i = j, u \ne 0
$$

 \blacksquare

So $f(v_i - v_j + u) \geq 0$. By Poisson, $\sum_{u \in \Lambda} f(v_i - v_j + u) = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{2\pi i \langle v_i - v_j, \ell \rangle} \widehat{f}(\ell).$

$$
S = \frac{1}{\det \Lambda} \sum_{i,j=1}^{N} \sum_{\ell \in \Lambda^*} e^{2\pi i \langle v_i - v_j, \ell \rangle} \widehat{f}(\ell)
$$

=
$$
\frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell) \sum_{i,j=1}^{N} e^{2\pi i \langle v_i - v_j, \ell \rangle}
$$

=
$$
\frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell) \sum_{i=1}^{N} \left| e^{2\pi i \langle v_i - v_j, \ell \rangle} \right|^2
$$

$$
\geq \frac{1}{\det \Lambda} \widehat{f}(0) \cdot N^2.
$$

Hence we have

$$
\frac{1}{\det \Lambda} N^2 \hat{f}(0) \le S \le Nf(0)
$$

$$
\implies Nf(0) \ge \frac{1}{\det \Lambda} \implies \frac{N}{\det \Lambda} \le \frac{f(0)}{\hat{f}(0)}
$$

Take a large ball of volumn V, each coset $v_i + \Lambda$ contains roughly $\frac{V}{\det \Lambda}$. number of centers inside $\frac{NV}{\det \Lambda}$, each contributes volume $\frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}$ $\frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)}\frac{1}{2^n}.$

So the density

$$
\frac{NV}{\det\Lambda}\frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)}\frac{1}{2^n}\frac{1}{V} = \frac{N}{\det\Lambda}\frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)}\frac{1}{2^n} \le \frac{f(0)}{\widehat{f}(0)}\frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)}\frac{1}{2^n}
$$

For arbitrary packing: Claim: then density of an "arbitrary" packing can be approximated arbitrarily close by a periodic packing.

Why? Pick any dense packing with density $d > 0$. Consider a really large cube such that all balls inside that cube approximate the volume of the cube with density $\geq \sigma - \varepsilon$.

Now, tile \mathbb{R}^n with lattice translates of the cube and balls inside. You get a periodic packing with density $\geq \sigma - \varepsilon$.

A bunch of useful results and methods by W Banaszczyk (1993).

Goal:

Theorem 1.9.2. *Pick any* $\gamma > \frac{1}{2\pi}$, then for all sufficiently large $n \ge n_0(\gamma)$, for any lattice $\Lambda \subset \mathbb{R}^n$ such that $\det \Lambda = 1$ there is $u \in \Lambda \setminus \{0\}$ such that $||u|| \leq \sqrt{\gamma n}$.

Proof. Poisson:

$$
\sum_{u \in \Lambda} f(u) = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell), \sum_{u \in \Lambda} e^{-\pi ||u||^2} = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi ||\ell||^2}
$$

Lemma 1.9.2. *For* 0 < τ < 1*,*

$$
\sum_{u\in\Lambda}e^{-\pi\tau\|u\|^2}\leq\tau^{-n/2}\sum_{u\in\Lambda}e^{-\pi\|u\|^2}
$$

Proof.

$$
\sum_{u \in \Lambda} e^{-\pi \tau ||u||^2} = \sum_{u \in \sqrt{\tau} \Lambda} e^{-\pi ||u||^2}
$$
\n
$$
= \frac{1}{\det(\sqrt{n}\Lambda)} \sum_{\ell \in (\sqrt{\tau}\lambda)^*} e^{-\pi ||\ell||^2} = \tau^{-n/2} \frac{1}{\det \Lambda} \sum_{\ell \in (\sqrt{\tau}\Lambda)^*} e^{-\pi ||\ell||^2}
$$
\n
$$
= \tau^{-n/2} \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi ||\ell||^2/\tau}
$$
\n
$$
\leq \tau^{-n/2} \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi ||\ell||^2} = \tau^{-n/2} \frac{1}{\det \Lambda} \sum_{u \in \Lambda} e^{-\pi ||u||^2}
$$

Lemma 1.9.3. *For any* $\gamma > \frac{1}{2\pi}$,

$$
\sum_{u \in \Lambda, \|u\| \ge \sqrt{\gamma n}} e^{-\pi \|u\|^2} \le \left(e^{-\pi \gamma + \frac{1}{2}} \sqrt{2\pi \gamma} \right)^n \sum_{u \in \Lambda} e^{-\pi \|u\|^2}
$$

Proof. Choose $0 < \tau < 1$. (to be adjusted later)

$$
\sum_{u \in \Lambda, ||u|| \ge \sqrt{\gamma n}} e^{-\pi ||u||^2} \le e^{-\pi \tau \gamma n} \sum_{u \in \Lambda, ||u|| \ge \sqrt{\gamma n}} \sqrt{\gamma n} e^{-\pi ||u||^2} e^{\pi \tau ||u||^2}
$$

$$
\le e^{-\pi \tau \gamma n} \sum_{u \in \Lambda} \sqrt{\gamma n} e^{-\pi ||u||^2} e^{-\pi (1-\tau) ||u||^2}
$$

$$
\le e^{-\pi \tau \gamma n} (1-\tau)^{\frac{n}{2}} \sum_{u \in \Lambda} \sqrt{\gamma n} e^{-\pi ||u||^2} e^{-\pi ||u||^2}
$$

Choose $\tau = 1 - \frac{1}{2\pi\gamma}$. Then RHS $= \left(e^{-\pi\gamma + \frac{1}{2}}\sqrt{2\pi\gamma}\right)^n \sum_{u \in \Lambda} \sqrt{\gamma n} e^{-\pi ||u||^2} e^{-\pi ||u||^2}$ Now, pick some $\frac{1}{2\pi} < \gamma' < \gamma$. Let $\alpha = \sqrt{\frac{\gamma'}{\gamma}} < 1$.

 \blacksquare

 \blacksquare

Consider lattice αΛ. Apply lemma:

$$
\sum_{\substack{u \in \alpha \Lambda \\ \|u\| = \sqrt{\gamma n}}} e^{-\pi \|u\|^2} \le \left(e^{-\pi \gamma' + \frac{1}{2}\sqrt{2\pi \gamma'}} \right) \sum_{u \in \alpha \Lambda} e^{-\pi \|u\|^2}
$$

$$
\sum_{\substack{u \in \alpha \Lambda \\ \|u\| = \sqrt{\gamma n}}} e^{-\pi \|u\|^2} \ge \left(1 - e^{-\pi \gamma' + \frac{1}{2}\sqrt{2\pi \gamma'}} \right) \sum_{u \in \alpha \Lambda} e^{-\pi \|u\|^2}
$$

From Poisson,

$$
\sum_{u \in \alpha \Lambda} = \frac{1}{\det(\alpha \Lambda)} \sum_{\ell \in (\alpha \Lambda)^*} e^{-\pi ||\ell||^2} > \frac{1}{\det(\alpha \Lambda)}
$$

$$
= \frac{1}{\alpha^n \det \Lambda} = \frac{1}{\alpha^n} > 1
$$

If *n* is large, there is $u \in \alpha \Lambda \setminus \{0\}$ with $||u|| < \sqrt{\gamma' n} \implies$ there is $u \in \Lambda \setminus \{0\}$ with $||u|| < \frac{\sqrt{\gamma' n}}{\alpha} = \sqrt{\gamma n}.$

Density of lattice packing:

$$
\rho(\Lambda) \leq \frac{1}{2} \sqrt{\gamma n} \approx \frac{1}{2} \sqrt{\frac{n}{2\pi}}
$$

$$
\sigma(\Lambda) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)} \frac{\rho(\Lambda)}{\det \Lambda} \approx \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)} \frac{1}{2^n} \left(\frac{n}{2\pi}\right)^{\frac{n}{2}}
$$

$$
\approx \frac{\pi^{n/2}}{\left(\frac{n}{2}\right)^{n/2} e^{-n/2} 2^n} \left(\frac{n}{2\pi}\right)^{\frac{n}{2}} = \frac{e^{n/2}}{2^n} \approx (0.82)^n \to 0.
$$

EXERCISE We proved that $\sigma(\Lambda) \leq (0.82)^n \approx \left(\frac{\sqrt{e}}{2}\right)^n$ $\sqrt{\frac{e}{2}}$ $\Big)^n$. Prove the same bound for any packing.

Prove for periodic packings first, then consider the sum $\sum_{i,j=1}^{N} e^{-\pi ||v_i-v_j+u||}$.

1.10 Covering Radius

Definition 1.10.1. Suppose $\Lambda \subset V$ a lattice.

$$
\mu(\Lambda)=\max_{x\in V}\text{dist}(x,\Lambda)=\max_{x\in\Pi}\text{dist}(x,\Lambda).
$$

This is the smallest radius such that the Balls $B_r(u)$, $u \in \Lambda$ cover V.

Thickness:

$$
\liminf_{\text{vol of space }\to\infty} = \frac{\text{total volume of balls}}{\text{total volume of space}} \ge 1
$$

We are generally interested in the thinnest lattices.

EXERCISES Find the covering radius of
$$
Z^n\left(\frac{\sqrt{n}}{2}\right)
$$
, $A_n^*\left(\frac{1}{2}\sqrt{\frac{n(n+2)}{3(n+1)}}\right)$, $D_n\left(\frac{\sqrt{n}}{2}\right)$ for $n \ge 4$, 1 for D_3 , $E_8(1)$, Leech lattice (hard) $\sqrt{2}$.

If u_1, \ldots, u_n are linearly independent then $\mu(\Lambda) \leq \frac{1}{3} \sum_{i=1}^n ||u_i||$.

Definition 1.10.2. The global maximum of $x \to \text{dist}(x, \Lambda)$ is called a deep hold of Λ , the local maximum is called a shallow hole.

<u>EXERCISE</u> Show that $(1,0,0)$ "octahedral hole" is a deep hole for D_3 and $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ "tetrahedral hole" is a shallow hole.

Main Goal: ("transference" theorem)

Theorem 1.10.1. *If* $\Lambda \subset \mathbb{R}^n$ *is a lattice then*

$$
\frac{1}{4} \le \mu(\Lambda)\rho(\Lambda^*) \le \text{const}(n)
$$

We will eventually show that $\text{const}(n) = \frac{n}{2}$. Elementary: $\text{const}(n) = \frac{n^{3/2}}{4}$ $\frac{3}{4}$. (Lagarias) First result: $\text{const}(n) \approx (n!)^2$ (Khinchin)

Lower Bound:

Construct $u_1, \ldots, u_n \in \Lambda$ as follows: ("successive minima")

$$
||u_1|| = \min_{u \in \Lambda \backslash \{0\}} ||u||
$$

$$
||u_2|| = \min_{\substack{u \in \Lambda \\ u, u_1 \text{ linearly independent}}} ||u||
$$

:

So $||u_1|| \leq ||u_2||$,

Pick $x = \frac{1}{2}u_n$.

CLAIM dist $(x, \Lambda) = \frac{1}{2} ||u_n||$.

Suppose not. There is a $u \in \Lambda$ such that

$$
\left\|\frac{1}{2}u_n - u\right\| < \frac{1}{2} \|u_n\| \implies \|u\| < \|u_n\| \implies u \in \text{span}\left\{u_1, \ldots, u_{n-1}\right\}.
$$

Then for $v = 2u - u_n$ we have

$$
v \notin \text{span} \{u_1, \ldots, u_{n-1}\}, ||v|| = 2 ||u - \frac{1}{2}u_n|| < ||u_n||,
$$

contradiction.

Now, pick $w \in \Lambda^*$ such that $||w|| = 2\rho(\Lambda^+)$. We have for some $k = 1, \ldots, n$, $\langle w_1, U_K \rangle \in \mathbb{Z}$ and $\neq 0 \implies |\langle w_1, U_K \rangle| = 1.$

 $\implies ||w|| ||u_k|| \geq 1 \implies ||w|| ||u_n|| \geq 1.$ So

$$
2\rho(\Lambda^*) \cdot 2\mu(\Lambda) \ge 1 \implies \rho(\Lambda^*) \cdot \mu(\Lambda) \ge \frac{1}{4}
$$

Upper bound (elementary) J.C. Lagarias, H.W. Lenstra Jr, C.-P. Schnorr (1990)

$$
\sigma(\Lambda)\rho(\Lambda^*) \le \frac{n^{3/2}}{4}.
$$

Lemma 1.10.1. *Suppose* $\Lambda \subset \mathbb{R}^n$ *is a lattice then* $\rho(\Lambda)\rho(\Lambda^*) \leq \frac{n}{4}$ *.*

Proof. Minkowski convex body (long time ago)

$$
\rho(\Lambda) \leq \frac{1}{2} \sqrt{n} (\det \Lambda)^{\frac{1}{n}}, \ \rho(\Lambda^*) \leq \frac{1}{2} \sqrt{n} (\det \Lambda^*)^{\frac{1}{n}}
$$

 $(\det \Lambda)(\det \Lambda^*) = 1$. Suppose u_1, \ldots, u_n is a basis of $\Lambda, u_1^*, \ldots, u_n^*$ a basis of Λ^* . $\langle u_i^*, u_j \rangle =$ $\sqrt{ }$ J \mathcal{L} 1 $i = j$ 0 $i \neq j$. In the second control of the second control of the second control of the second control of the second control of

Proof. By induction on n.

Base case: $n = 1$, $\Lambda = \alpha \mathbb{Z}$, $\Lambda^* = \alpha^{-1} \mathbb{Z}$. $\mu(\Lambda) = \frac{1}{2}\alpha$ and $\rho(\Lambda^*) = \frac{1}{2\alpha}$. $\mu(\lambda)\rho(\Lambda^*) = \frac{1}{4}$.

Induction hypothesis

Induction step Pick $u \in \Lambda \setminus \{0\}$ so that $||u|| = 2\rho(\Lambda)$. Let $pr : \mathbb{R}^n \to H$ be the orthogonal projection. Let $\Lambda_1 = \text{pr}(\Lambda)$.

CLAIM $\Lambda_1^* \subset \Lambda \implies \rho(\Lambda^*) \ge \rho(A^*)$ must check if $x \in H$ is such that $\langle x, \text{pr}(v) \rangle \in \mathbb{Z}$ for all $v \in \Lambda$. Then $\langle x, v \rangle \in \mathbb{Z}$ for all $v \leq \Lambda$.

Pick any $x \in V$, need to bound $dist(x, \Lambda)$. Let $y = pr(x)$ choose $y_1 \in \Lambda_1$ closest to y so that $||y_1 - y|| = \mu(\Lambda_1)$.

Look at the line through y_1 parallel to y. It contains points from Λ distance $||u|| = 2\rho(\Lambda)$

apart.

Pick $w \in \Lambda$ so that $\|w - (x + y_1 - y)\| \le \rho(\Lambda)$. Use Pythagoras theorem, $||w - x||^2 \le \rho^2(\Lambda) + \mu^2(\Lambda_1) \implies \mu^2(\Lambda) \le \rho^2(\Lambda) + \mu^2(\Lambda_1)$. So

$$
\rho^2(\Lambda^*)\mu^2(\Lambda) \le \rho^2(\Lambda^*)\rho^2(\Lambda) + \mu^2(\Lambda_1)\rho^2(\Lambda^*)
$$

$$
\le \left(\frac{n}{4}\right)^2 + \mu^2(\Lambda_1)\rho^2(\Lambda_1^*)
$$

We can use Fourier to prove an optimal bound $\text{const}(n) = \frac{n}{2}$.

Let's start with a lemma.

Lemma 1.10.2. *Suppose* $\Lambda \subset V$ *a lattice and* $x \in V$ *. Then*

$$
\sum_{u \in \Lambda} e^{-\pi ||x - u||^2} \le \sum_{u \in \Lambda} e^{-\pi ||u||^2}.
$$

Proof. Using Poisson summation,

$$
\sum_{u \in \Lambda} f(u) = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell).
$$

Choose $f(x) = e^{-\pi ||x||^2}$ then $\widehat{f}(y) = e^{-\pi ||y||^2}$. Choose $f(x) = e^{-\pi ||x-a||^2}$ then $\widehat{f}(y) =$ $e^{-2\pi i \langle y,a\rangle ||y||^2}$. So

$$
\sum_{u \in \Lambda} e^{-\pi ||x - u||^2} = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{-2\pi i \langle x, \ell \rangle ||\ell||^2}
$$

$$
\leq \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi ||\ell||^2} = \sum_{u \in \Lambda} e^{-\pi ||u||^2}
$$

EXERCISE

- 1. See if you can find an elementary proof
- 2. \sum $u \in \Lambda$ $e^{-\pi ||x-u||^2} \geq e^{-||x||^2} \sum$ $u \in \Lambda$ $e^{-\pi ||u||^2}$.

 \blacksquare

 \blacksquare

Lemma 1.10.3. *For* $0 < \tau < 1, x \in V$ *.*

$$
\sum_{u \in \Lambda} e^{-\pi \tau ||x - u||^2} \le \tau^{-n/2} \sum_{u \in \Lambda} e^{-\pi ||u||^2}.
$$

We had it with $x = 0$ *, with*

$$
\sum_{u \in \Lambda} e^{-\pi \tau ||x - u||^2} \le \sum_{u \in \Lambda} e^{-\pi \tau ||u||^2}.
$$

Rescale $\Lambda = \sqrt{\tau} \Lambda$ *to get*

$$
\sum_{u \in \Lambda e^{-\pi} \|x - u\|^2} \le \sum_{u \in \Lambda} e^{-\pi \|u\|^2}
$$

Lemma 1.10.4. *If* $\Lambda \subset \mathbb{R}^n$ *is a lattice,* $x \in \mathbb{R}^n$ *is a point. For any* $\gamma > \frac{1}{2\pi}$ *,*

$$
\sum_{\substack{u \in \Lambda \\ \|u - x\| \ge \sqrt{\gamma n}}} e^{-\pi \|x - u\|^2} \le \left(e^{-\pi \gamma + \frac{1}{2}} \sqrt{2\pi \gamma} \right)^n \sum_{u \in \Lambda} e^{-\pi \|u\|^2}.
$$

Proof. Choose $0 < \tau < 1$ to be specified.

$$
\sum_{\substack{u \in \Lambda \\ \|u-x\| \ge \sqrt{\gamma n}}} e^{-\pi \|x-u\|^2} \le e^{-\pi \gamma n \tau} \sum_{\substack{u \in \Lambda \\ \|u-x\| \ge \sqrt{\gamma n} \\ \le e^{-\pi \gamma n \tau}}} e^{-\pi \|x-u\|^2} e^{\pi \tau \|x-u\|^2}
$$

$$
\le e^{-\pi \gamma n \tau} \sum_{\substack{u \in \Lambda \\ \|u-x\| \ge \sqrt{\gamma n} \\ u \in \Lambda}} e^{-\pi (1-\tau) \|x-u\|^2}
$$

$$
\le e^{-\pi \gamma n \tau} (1-\tau)^{-\frac{n}{2}} \sum_{u \in \Lambda} e^{-\pi \|u\|^2}.
$$

Take $\tau=1-\frac{1}{2\pi\gamma}$. In the second control of the second control of the second control of the second control of the second control of

Corollary 1.10.1. *Take* $\gamma = 1$ *,*

$$
\sum_{\substack{u \in \Lambda \\ \|u - x\| \ge \sqrt{\gamma n}}} e^{-\pi \|x - u\|^2} \le 5^{-n} \sum_{u \in \Lambda} e^{-\pi \|u\|^2}.
$$

Now we have

Theorem 1.10.2.

$$
\mu(\Lambda)\rho(\Lambda^*) \leq \frac{n}{2}
$$

Proof. Suppose not. Then $\mu(\Lambda)\rho(\Lambda^*) > \frac{n}{2}$. If we scale $\Lambda := \alpha\Lambda, \alpha > 0$, $\mu(\alpha\Lambda) =$

 $\alpha\mu(\Lambda),(\alpha\Lambda)^*=\frac{1}{\alpha}\Lambda^*,\rho((\alpha\Lambda)^*)=\frac{1}{\alpha}\rho(\Lambda^*).$

Let's scale so that $\mu(\Lambda) > \sqrt{n}, \rho(\Lambda^*) > \frac{\sqrt{n}}{2} \implies$ there is $x \in V$ such that $dist(x, \Lambda) > \sqrt{n}$. Let $L = \sum_{u \in \Lambda} e^{-\pi ||u||^2}, L^* = \sum_{\ell \in \Lambda^*} e^{-\pi ||\ell||^2}.$

$$
\sum_{u \in \Lambda} e^{-\pi ||x - u||^2} = \sum_{\substack{u \in \Lambda \\ \|u - x\| \ge \sqrt{n}}} e^{-\pi ||x - u||^2} \le 5^{-n}L.
$$

$$
L^*=1+\sum_{\ell\in \Lambda^*\backslash\{0\}}e^{-\pi\|\ell\|^2}=1+\sum_{\ell\in \Lambda^*\|\ell\|\geq \sqrt{n}}e^{-\pi\|ell\|^2}\leq 1+5^{-n}L^*
$$

This $\implies (1 - 5^{-n})L^* \le 1 \implies L^* \le \frac{1}{1 - 5^{-n}} = \frac{5^n}{5^n - 1}$ $\frac{5^n}{5^n-1}$.

We also have

$$
\sum_{\ell \in \Lambda^* \setminus \{0\}} e^{-\pi ||\ell||^2} = L^* - 1 \le \frac{1}{5^n - 1}.
$$

By Poisson, $L = \frac{1}{\det \Lambda} L^*$.

Finally, getting a contradiction

$$
\sum_{u \in \Lambda} e^{-\pi ||x - u||^2} \le 5^{-n} L = \frac{L^*}{5^n \det \Lambda} \le \frac{1}{\det \Lambda} \frac{1}{5^n - 1}.
$$

On the other hand, by Poisson summation:

$$
\sum_{u \in \Lambda} e^{-\pi ||x - u||^2} = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{2\pi i \langle \ell, x \rangle} e^{-\pi ||\ell||^2}
$$

$$
\sum_{\ell \in \Lambda^*} e^{2\pi i \langle \ell, x \rangle} e^{-\pi ||\ell||^2} = 1 + \sum_{\ell \in \Lambda^* \backslash \{0\}} e^{2\pi i \langle \ell, x \rangle} e^{-\pi ||\ell||^2} \ge 1 - \sum_{\ell \in \Lambda^* \backslash \{0\}} e^{-\pi ||\ell||^2} \ge 1 - \frac{1}{5^n - 1}
$$

So we have

$$
\frac{1}{\det \Lambda} \frac{1}{5^n - 1} \ge \frac{1}{\det \Lambda} \frac{5^n - 2}{5^n - 1}
$$

$$
\iff \frac{1}{5^n - 1} \le \frac{5^n - 2}{5^n - 1}
$$

$$
\iff 5^N \le 3
$$

a contradiction. So we have proved the argument.

Later:

Corollary 1.10.2 (Flatness theorem). *If* $A \subset \mathbb{R}^n$ *is convex,* $A \cap Z^n = \emptyset$. Then there is

 $a \in \mathbb{Z}^n \setminus \{0\}$ *such that* $\max_{x \in A} \langle a, x \rangle - \min_{x \in A} \langle a, x \rangle \le c(n)$ *.*

General case exercises:

- 1. Fill in gaps on ellipsoidal approximations
- 2. if $K = -K$, $E \subset K$ the maximum volumn ellipsoid then $E \subset K \subset \sqrt{n}E$.
- 3. (Easy) If $P \subset \mathbb{R}^2$ is a convex polygon with interger vertices and no other integer points other than vertices. Then there is a $u \in \mathbb{Z}^2$ such that $\max_{x \in P} \langle u, x \rangle$ – $\min_{x \in P} \langle u, x \rangle = 1.$
- 4. (Hard) If $P \subset \mathbb{R}^3$ is a convex polytope with integer vertices and no other integer points then there is $u \in \mathbb{Z}^3$ such that $\max_{x \in P} \langle x, u \rangle - \min_{x \in P} \langle x, u \rangle \leq 1$.

1.11 Existence of a Good Basis

Existence of a good ("nearly orthogonal") basis

 u_1, u_2, \ldots, u_n is a basis of Λ then $||u_1|| \cdot \ldots ||u_n|| \leq \text{const}(n) \det \Lambda$. For $n = 2, c(2) = \frac{2}{\sqrt{n}}$ $\frac{1}{3}$ \approx 1.15. We will prove roughly $c(n) \approx n^n$.

Constuct such a basis efficiently (LLL) $c(n) \approx 2^{n^2}$.

Theorem 1.11.1 (2nd Minkowski convex body theorem). Let K be a convex body, $K \subset \mathbb{R}^n$ $\emph{convex compact with non empty interior. Suppose that $K=-K$. Let $\Lambda\subset\mathbb{R}^n$ be a lattice. Define $K\subset\mathbb{R}^n$ such that $K\subset\mathbb{R}^n$ is a finite.}$ *successive minima: for* $i = 1, ..., n$, $\Lambda_i = \lambda_i(K) = \min \{ \lambda > 0 : \text{dim span}(\lambda K \cap \Lambda) \geq i \}$ *min* $\lambda > 0$ *such that* λK *contains (at least) i linearly independent lattice vectors.*

$$
\lambda_1(K) \leq \lambda_2(K) \leq \ldots \leq \lambda_n(K)
$$

Then

$$
(\text{vol}\,K)\prod_{i=1}^{n}\lambda_i(K)\leq 2^n\det\Lambda
$$

Plan:

We reduce it to the case $\Lambda = \mathbb{Z}^n$

Pick the fundamental parallelepiped $\Pi = \{x = (x_1, \ldots, x_n) : 0 \le x_i < 1\}$ and stare ar the projection $\mathbb{R}^n/\mathbb{Z}^n \to \Pi$.

 $P: (x_1, \ldots, x_n) \mapsto (\{x_1\}, \ldots, \{x_n\})$ and prove various things about it.

some notes missing

Last time: If $\Lambda \subset \mathbb{R}^n$ is a lattice then there is a basis u_1, \ldots, u_n such that $||u_1|| \ldots ||u_n|| \le$

 $c(n)$ det Λ ,

$$
c(n) = \frac{(n+1)!\Gamma\left(\frac{n}{2}+1\right)}{\pi^{n/2}}
$$

Convergence: If $\{\Lambda_k \subset \mathbb{R}^n\}, k = 1, \ldots$ are lattices and $\Lambda \subset \mathbb{R}^n$ is a lattice. We say that $\lim_{k\to\infty}\Lambda_k=\Lambda$ is we can find a basis u_{k_1},\ldots,u_{kn} of Λ_k and a basis u_1,\ldots,u_n of Λ so that $\lim_{k\to\infty} u_{ki} = u_i$ for $i = 1, \ldots, n$.

Mahler Compactness Criterion: (K. Mahler, 1903 - 1988) If $\Lambda_i \subset \mathbb{R}^n, i \in I$ is an infinite family of lattices, and for some $c > 0, C > 0$ we have $\det \Lambda_i \leq C$ abd $\rho(\Lambda_i) \geq c$ for all $i \in I$. Then there is a sequence Λ_{i_k} such that $\lim_{k \to \infty} \Lambda_k = \Lambda$.

EXERCISE: If $\lim_{n\to\infty} \Lambda_n = \Lambda$ then $\lim_{n\to\infty} \rho(\Lambda_n) = \rho(\Lambda)$.

In Minkowski-Hlawka, we showed that for every $0 < \alpha < 2^{-n}$ there is $\Lambda_a \subset \mathbb{R}^n$ such that $\sigma(\Lambda_a) \geq a$. We can choose $\det \Lambda_a = 1$ and Mahler compactness so there is a limit lattice Λ as $a \to 2^{-n}$ with $\sigma(\Lambda) \geq 2^{-n}$.

(Weakly) reduced basis

Say, u_1, \ldots, u_n is a basis of Λ . Let $L_0 = \setminus 0$. $L_k = \text{span}\{u_1, \ldots, u_k\}, k = 1, \ldots, n$. Let w_k be the orthogonal projection of u_k onto L_{k-1}^{\perp} . w_1, \ldots, w_k, w_n is the Gram-Schmidt orthogonalization (without normalization) of u_1, \ldots, u_n . Then $u_k = w_k + \sum_{i=1}^{k-1} \alpha_{ki} w_i$, $k =$ $1, \ldots, n$.

We say that u_1, \ldots, u_n is (weakly) reduced, provided $|\alpha_{ki}| \leq \frac{1}{2}$ for all k and i .

How to reduce a basis quickly. If all $|\alpha_{ki}|\leq \frac{1}{2}$ already reduced. If not, choose the largest *I* such that $|\alpha_{ki}| > \frac{1}{2}$. Let m_i be the integer closet to α_{ki} then $|\alpha_{ki} - m_i| \leq \frac{1}{2}$. Update $u_k := u_k - m_i u_i$. What happens? L_0, \ldots, L_n do not change. $\alpha_{ki} \mapsto \alpha_{ki} - m_i$. Now $|\alpha_{ki}| \leq \frac{1}{2}$ may messup α_{ki} with $j < i$.

Repeat. In at most $\binom{n}{2}$ steps, we'll have it reduced.

Theorem 1.11.2 (Lagarias, Lenstra, Schnorr, 1990). If $\Lambda \subset \mathbb{R}^n$, and u_1, \ldots, u_n is a (weakly) *reduced Korkin-Zolotarev basis. Then* $||u_k|| \leq \frac{\sqrt{k+3}}{2} \lambda_k$, $k = 1, ..., n$, where λ_k *is the k-th successive minimum w.r.t unit ball.*

- *Remark.* 1. Korkin-Zorotarev basis. Choose u_1 to be the shortest non-zero, u_2 to be closest to $L_1 = \text{span} \{u_1\}$ and not in L_1 ... Choose u_k closest to L_{k-1} but not in L_{k-1} .
	- 2. The reduction procedure does not change $w_1, \ldots, w_k, \ldots, w_n$ and does not change $dist(u_k, L_{k-1}) = ||w_k||$. Starting with K-Z basis we still get K-Z basis.
	- 3. $\lambda = \min \{ \lambda > 0, \dim \operatorname{span} \{ \lambda \cap \{x, ||x|| \leq \lambda \} \} \geq K \}.$

Compared to the basis we constructed last time

1. last time we had $||u_k|| \leq \frac{k+1}{2}\lambda_k$ for $k = 1, \ldots, n$. which gave $c(n) = \frac{(n+1)!\Gamma(\frac{n}{2}+1)}{\pi^{n/2}}$ $rac{2+1}{\pi^{n/2}}$. Now we have $c(n) =$ $\frac{\sqrt{(n+3)!}\Gamma(\frac{n}{2}+1)}{\sqrt{6}\pi^{n/2}}$, which is better.

Proof. CLAIM $\|w_k\| \leq \lambda_k$ for $k = 1, ..., n$. Why? $\|w_k\| \leftarrow$ smallest distance from a point in Λ which is not in L_{k-1} to L_{k-1} . (Krokin-Zolotarev) Let Λ'_k be the orthogonal projection of Λ onto L_{k-1}^{\perp} , then $||w_k|| = \min_{v \in \Lambda'_k \setminus \{0\}} ||v||$. Pick linearly independent v_1, \ldots, v_k such that $||v_i|| \leq \lambda_k$ for $i = 1, ..., k$, so $||w_k|| \leq ||v|| \leq \lambda_k$. The projection v of at least one of them onto L_{k-1}^{\perp} will be non-zero.

REDUCED
$$
||u_k||^2 = ||w_k||^2 + \sum_{i=1}^{k-1} |\alpha_{ki}|^2 ||w_i||^2 \le \lambda_k^2 + \sum_{i=1}^{k-1} \frac{1}{4} \lambda_i^2 \le \lambda_k^2 (1 + \frac{k-1}{4}) = \lambda_k^2 \frac{k+3}{4} \implies ||u_k|| \le \frac{\sqrt{k+3}}{4}.
$$

Certifying packing radius Given a Λ and u_1,\ldots,u_n a basis. Then $2\rho(\Lambda)\geq \min_{k=1,\ldots,n}\mathrm{dist}_{u_k,L_{k-1}}$. We will construct a basis such that $2\rho(\Lambda) \leq n \min_{k=1,\ldots,n} \text{dist}(n_k, L_{k-1}).$