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Chapter 1

Introduction to Lattices

1.1 Definition

Definition 1.1.1. A lattice A C V has the following properties:
1. span(A) = V.
2. Ais an additive subgroup.

3. Ais discrete: for any r > 0, let B, = {x € R", ||z|| < r}, AN B, is finite.

1.2 Lattice and Its Basis

Last time: L € V is a subspace if L = span(L N A)

Theorem 1.2.1. If L is a lattice subspace, L # V, then 3u € L\ A such that d(u,L) < d(z, L)
forallz € L\ A

Say L € span{us1,...,un} linearly independent vectors, Il = {} Thereis u € A\ L such
that dist(u, IT) < dist(z,II) forallz € A\ L.

Proof. Take p > 0 large enough. Consider II, = {y,d(y,II) < p}. It contains points from
A\ L, choose the one in II, N (A \ L) closet to II. [ |

CLAIM u € A\ L is what we need. Why? Pick any z € A\ L. Let y € L be the closest to
.
dist(z, L) = |z —y|| = [|[(z —w) = (y —w)]-
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Theorem 1.2.2. Every lattice has a basis.

Proof. By induction onn = dim V.
Base case: forn = 1, we have V = R.
Let u > 0 be the lattice vector closet to 0, among all positive vectors in A.

Then u is a basis of A. Pick any v € A. Assume v > 0 WLOG. Then v = au for a > 0. If
a € Z then we are done. If not, consider w = au — |a] u = {a} u, this is closer to 0 than

u, a contradiction.
Induction hypothesis: suppose any lattice of dimension n — 1 has a basis.

Induction step: pick a lattice hyperplane H (lattice subspace with dim = n — 1). Then
Ay = H N A has a basis uy,...,u,—1. Pick u, such that u,, ¢ H and dist(u,, H) is the
smallest. We claim that uq,...,u,_1,u, is a basis of A.

Letu € A, u= Z?Zl a;u; with ; € R, If o, = 0 thenu € Ay, then ay,...,0,_1 € Z.

n—1

Suppose «,, # 0. Consider w = u — [ ] Up. w € Aand w = {ay, } up + >, @u;. So
dist(w, H) = dist({an } upn, H) = {a, } dist(uy,, H)

If {a, } > 0 then 0 < dist(w, H) < dist(uy, H), a contradiction.
So{ap} =0 = a, € Z. Thenw = Z?;ll ol = Qq,..., 01 € Z.

So we have constructed a basis for lattice of dimension n, thus finishing the proof. W

This is called A.N.Korkin(e)-Zolotarev(6ff) basis.

EXERCISE Suppose u1, ..., u, € V is a basis of subspace. The integer combinations form
a lattice.

EXERCISE Suppose a 2-dimensional lattice. Then there exists a lattice basis u, v such that
the angle o between u, v satisfies § < a < 7.

EXERCISE If A is a lattice and L is a lattice subspace. The orthogonal projection PR : V' —
L+. Then PR(A) C L™ is a lattice.
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Definition 1.2.1. Suppose u1, ..., u, be a basis of A.

n
H:{Zaiui:Ogai<Li:1,...,n}

i=1
is the fundamental parallelepiped of a fundamental parallelepiped of A.

Theorem 1.2.3. The volume of a fundamental parallelepiped 11 doesn’t depend on I1. The volume
is called the determinant of A. Furthermore, if B, = {x : ||z|| < r}, then

lim = |IB-NAl 1
7‘—>oo_ VOIBT _detA

We start with a lemma:

Lemma 1.2.1. Let II be a fundamental parallelepiped of A C V. Then every vector x € V is
uniquely written as « = u + y where uw € A,y € IL

Proof. Existence: II is the fundamental parallelepiped for uq,...,u,. If 2 = 31" o,
thenu=>", |a;]u;andy = > 1, {oi}u

Uniqueness: suppose © = uj + y1 = uz + y2 then u; —uy = yo — y;. Since u; —uz € A
we have Y2 — Y1 = Z?zl(ai — /31)111 We have (Oli — ﬂl) € Z. Since —1 < oy — ﬂz < 1,it
has to be 0. [ |

A geometry interpretation is that we can cover the whole space with fundamental par-
allelepipeds without overlaps.

Proof of theorem. Let

X.= |J m+uw
u€B,NA

Then vol X, = |B, N A| volII.

Say, II C B, for some a > 0. Then X, C B,4,. Look at B,_,. Itis covered by I + u : u €
A. We should have ||u|| <. Hence B, _, C X,.

So we have

r—a n_ vol B,._g < vol X, < volB,y, (7+a "
a " volB, ~ volB, — B, o a

This goes to 1 when r — occ. |
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REMARK/EXERCISE The same holds for balls not centered in the origin:

B (zg) ={x: ||z —zo|| < r}.

EXERCISE Suppose a lattice A C V and u € A. The Voronoi (G.E. Voronoi, 1868-1908)
region is defined by

O, ={zeV:|z—ul <|z—0v|,VveA}.

Show that ® is convex (bounded by at most 2™ affine hyperplanes) and vol & = det A.
EXERCISE (det A)(det A*) =1

1.3 Sublattice

Definition 1.3.1. Suppose A C V is a lattice, and Ag C A, Ay C V is also a lattice. A is
then called a sublattice of A.

Remark. We have rank Ag = rank A.
Example 1.3.1. D,, C Z".

A is an Abelian group and Ay C A is a subgroup. Look at the quotient A/A( and cosets
{u+ Ap}. The index of Ag in A|A/A¢| = the number of cosets.

Theorem 1.3.1. 1. Let II be a fundamental parallelepiped of Ao Then |A/Ao| = [ILNA|.

det AO
det A’

Proof. 1. By|Lemma 1.2.1} every coset has a unique representation in II.
2. Let B, = {z : ||z|| < r}. Then

2. |A/Ao| =

lim — |IB-NAl 1
r—oc  volB,  detA’

Let S C A be the set of coset representatives. Then |S| = |A/A¢|. Then A =
Uues(u + Ag). Hence
|BTO(U+A0)| o 1 1 1

li = . —— = |S|— [ |
reroo vol B, det Ag — det A | ‘Ao

EXERCISE

1. detz™ =1
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2. det D,, = 2.
3. det D;f = 1. (n even)
4. det A, = +/n+ 1. det Eg = 1,det E7 = v/2,det Eg = /3.

5. Ifai,...,a, are coprime integers not all 0.

A={(z1,...,p) EZ" : 11+ ... + anz, = 0} has det A = y/a? + ...+ a2.

Corollary 1.3.1. Ifuy,...,u, € A are linearly independent and

VOI{Zaiui 0< a5 < 1} =det A
i+1

then uq, ..., u, is a basis.

Proof. Look at

Aoz{Zmiui:mieZ},M/AO:l = A=A [

i=1

Counting integer points. Suppose A = Z".

Pick n linearly independent vectors vy, ..., u, € A. Consider
H:{Zaiui:OSai<l}.
i=1
Then
Nz =7

Suppose Ag = {> ", miu; : m; € Z}. Then det Ag = volIL

Supposen = 2, u; = (3,1),uz = (1,2). Then volIT = 5. We can see that the parallelogram

contains 5 integer points.
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The case for n = 2 is special.

Theorem 1.3.2 (Pick Formula (G.A. Pick, 1859-1942)). If P C R? is a convex polygon with
integer vertices and non-empty interior. Then

1
|PNZ2| = areaof P+ §|8PQZQ| +1

Proof. Left as exercise. Hint: do it for parallelograms (in any dimension) first, then do it
for triangles (special case for n = 2), and then all polygons with integer vertices. [ |

EXERCISE For n = 2, linearly independent vectors of u,v € Z? form a basis <= the
triangle with vertices 0, u, v has no other integer points.

EXERCISE For n = 3, construct an example of linearly independent u, v, w € Z3 such that
the tetrahedron with vertices 0, u, v, w has no other integer points but {u, v, w} is not a
basis of Z3. In fact, you can have |Z"/A| arbitrarily large.

EXERCISE Suppose u1,...,u; € Z" are linearly independent vectors and A = Z" N
span(uq, ..., ug). The {u,...,u,} is a basis of A if and only if the great common divisor
ul
o
ofall k x k minorsof | 2 | is 1.
T
Uk
Proof. = : suppose u1,...,uy is a basis. Then we can extend {u, ..., u;} to get a basis
{ug, ..., up,...,u,} of Z™. So detfus|uz| ... |u,] = 1. Use Laplace expansion for the first

k columns we have

det A; -det A; = +1 = ged(det A7) = 1.
1c{1,...,n},|I|=k
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<= : suppose gcd = 1. Pickany « € A, then z = aju1 + ... + apuy for some o; € R.

Pick any k rows of U = [ Uy ‘ Us ‘ ‘ U, } where det A; # 0. By Kramer’s dule,

__ det[replace u; by z in U] . _
P = dot A . det Ay are coprime = > mjydet A; = 1 for some m; € Z.

a;det Ay €2 — ZlaimfdetAIEZ. |

Some linear algebra: (Smith Normal Form) If Ay C A is a sublattice, then there is a basis
ui,...,u, of A and a basis v1, ..., v, of Ay such that v; = m;u; for positive integer m;
and such that m, divides mo which divides mag, .. ..

1.4 Minkowski Theorem

The goal today is to prove Minkowski Theorem (H. Minkowski, 1864-1909) for convex
body.

Definition 1.4.1. Suppose V' a Euclidean space, then a set A C V is convex if Vz,y €
A z,y] € Awhere {[z,y] =ax + (1 —a)y: 0 < a < 1},
Definition 1.4.2. A set Ais symmetricif A=—-A={—z:2 € A}.

Theorem 1.4.1. Suppose A C V a lattice and A C V a convex symmetric set with vol A >
24m V- det A. Then there is u C A\ {0} such that u € A.s

24im V' 15 SHARP: Pick Z" C R",detZ" = 1. Let A = {-1 < x; < 1,i =1,...,n} convex
and symmetric. Then vol A = 2" and AN Z™ = {0}. And from geometric intuition we
see that convex and symmetric is needed.

It is a result from Blichfeldt’s theorem.

Theorem 1.4.2 (H. F. Blichfeldt, 1873 - 1945). Let measurable X C V,vol X > det A, then
there are x,y € X such that x —y € A\ {0}.

INTUITION det A describes the volume per lattice point. Consider {X + u} the transla-
tions of X by lattice points. Some of them must overlap i.e. (X + u1) N (X + ua) # 0.
Thenz +u; =y+us = z—y=wus—u; € A\ {0}

Proof. Choose a fundamental parallelepiped II of lattice A. Then det A = volIl. Then
{II + u,u € A} cover V without overlap. In particular, they cover X.

Let X, = (IT+u)NX) —u. Y pvolX, = volX > volll. And X, C II. Then
Juy #ug st Xyy N Xy, #0. Then v,y € X stz —uy =y—ug = T—y=1u; —ug €
AN {0} [ |

Proof of Minkowski’s Theorem. Let X = 1A = {iz,x € A}. Then vol X = 27 4mvyol A >
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det A. By Blichfeldt, there are z,y € X such that z —y € A\ {0}. Write
1 1
u=z-y= 0+ S(-2)
Since A is convex and symmetric, 2z, -2y € Aandz -y € A = u € A. |
EXERCISE Suppose A C V alattice. Let X = {z € V : ||z|| < ||z — u]|,Vu € A\ {0}}. Let
A = 2X. Show that A is convex, symmetric, A = 24™V det A and AN A = {0}.
Corollary 1.4.1. If, in addition, A is compact, then it is enough to have vol A > 24mV det A.

We can apply the proof for (1 +¢)A and lete — 0.

Corollary 1.4.2. Let V = R", and ||z|, = max;—1, .. n |z;|. Then thereisau € A\ {0} with
lull. < (det A)?.

Consider A = {m, |z;| < (det A)w }
Corollary 1.4.3. Suppose A C V. Then thereis u C A\ {0} with ||u| < v/dim V(det A)=.

EXERCISE If X C V is measurable and vol X > mdet A with m € ZT. Then there are
Zi,...,Tme1 € X such that x; — ; € A for all pairs 4, j.

If A is convex, symmetric, and vol A > m - 24mV det A. Then A contains m distinct pairs
+uq,. .., £u,, of nonzero lattice points.

EXERCISE (IMPORTANT) If X C A is a set such that | X| > 29™V then there are distinct
x,y € X such that % €A

EXERCISE Suppose f : V — R, is integrable and A C V alattice. Then there are 21, 22 €
V such that

Zf(u+z1) > ﬁ/‘/f(x) dx > Zf(u—kzg).

uEN u€A

We need the column of the unit ball in R™.
I'(z) = / t" et dt
0

Iz +1) =al(x)

7.‘.77./2

B={x:|z]|=1},BCR" volB= ————
el =1) T
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We start with integral:

o0
/ e~ dz = /7, e~ll=l* 4z = (\/E)n

Let S(r) = {x € R™: ||z|| = r} and & be the surface area of S(1).
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So we have k =

Then
" /2

1
volB:/ Kt 1 drzﬁzni.
0 no T(3+1)

1.5 Applications of Minkowski’s Theorem

First application:

Theorem 1.5.1 (Lagrange’s four squares theorem (J-L Lagrange, 1736-1813)). If n > 0 is
a non-negative integer, then n = x3 + x3 + 2% + x5 for some integer x1, xa, x3, 4.

Proof. Start as Lagrange did: first, prove assuming that n is prime, then there are a,b € Z
such that a® + b + 1 =0 (mod n).

n = 2 is clear. Consider values of a* (mod n) forn > 2and a = 0,1,..., 251, They are

all distinct. Otherwise a? = a2 = (mod n) = (a1 — az)(a1 + az) (mod n).

Consider values —1 — b* (mod n) for b= 0,1,..., %5*. They are all different values.
There are a total of n + 1 values, so there exists a> = —1 — b? (mod n) by pigeonhole
principle.

We introduce one generally useful lemma:

Lemma 1.5.1. Suppose ay, ..., a, € Z™ and my, . .., my, positive integers and

A={ze€Z":{x,a;) =0 (mod m;)}.
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Then A is a lattice and det A < mq - - - my,.
Consider their cosets: pick 0 < b; < m;, and the coset is

{z eZ": (x,a;) =b; (mod m;)}

if the set is non-empty. Then |Z"/A| = (ﬁitz[}w

The rest is from Davenport: Suppose a lattice

=ax3+b
A:{x€Z4: L= avs O (modn)}.
To = axy — brs

If (21, 22, 23,24) € A then

22+ o2 2+ 2t = (aws + bxy)? + (axy — br3)® 4+ 25 + 25 (mod n)
a’z? + b*x? + 2abxsry+

a’ri + b*af — 2abrzrs + a3 + 2f = (a® + 02 + 1)af + (0° +a® +1)2f =0 (mod n)

So we have 22 + 22 + 23 + 22 = 0 (mod n) for all (z1, 79,73, 74) € A. So det A < n?.
Consider the ball B with radius v/2n. The volume of the ball vol B = 2n?#2 > 24n2 >
24 det II. So there exists (21, 72,23, 74) € A\ {0} such that 23 + 22 + 23 + 23 < 2n and

2?4+ 23 + 2% + 2% =0 (mod n).
So we conclude that such 22 + 22 + 23 + 2% = n.

Now suppose n is not prime, write n = [ | p; where p;’s are prime numbers.

(@} + a3+ a3+ a3)(yi + v +y5+u3) =21+ 25 + 25 + 2

where
21 = T1Y1 — T2Y2 — L3Y3 — L4Y4
Z2 = T1Y2 + T2y1 + T3Ys — T4Y3
Z3 = Z1Y3 + ToYs + T3y1 + Tay2
24 = T1Y4 — T2Y3 — T3Y3 + Tal1
Remember through quaternions. x1 + ize + jxs + kz4. [ |

Jacobi’s Formula (C.G.] Jacobi, 1804-1851) The number of integer solutions (not neces-

10
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sarily positive) of the equation

s8> 44

EXERCISE Deduce the Jacobi’s Formula from the identity

oo

$

2 2 2 2
x1+$2+£3—|—1‘4=n

4
q’“)

k=

o0
148>

1

qk
(1+ (—)")’

, for |¢| < 1.

Gauss Circle Problem (C.-F Gauss, 1777, 1855) B, = {z € R?: ||z|| <r}. Asr — oo,
|B(r) N Z2| ~ nr? 4+ O(r'/?%¢) for any & > 0? Best known is O(r%-%%) for e = 0.13.

EXERCISE If n is prime, n = 1 (mod 4). Then n = 22 + z2 for some z1, 2 € Z.
DABRL o P 1 2

How well can we approximate a real number for rational numbers?

If « € R and g > 1 is an integer, then for some integer p we have ‘a — % < 54-

1

Theorem 1.5.2. For any o € Rand M > 0, there exists ¢ > M and an integer p such that

q q

In fact, we can have ‘a - §

1
<=z

which is optimal.

It shows that this holds for infinitely many g.

Proof. Assume WLOG that « is irrational. Pick ) > 1 an integer. Consider the parallelo-
gram in R? : {|x| <Q,|ar—y|l < %}

Ql=

. - - - -

11
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II is convex, symmetric, compact, with area Il =4 = 22,

By Minkowski, there exists (¢,p) € Z? \ {0}, (¢,p) € II such that |ag — p| < é, lp| <

é = p = 0. Assume that ¢ > 0.

We have ¢ < @, and

1
lag —p| < = =

Q

It remains to show that for any M we can choose ¢ > M.

B S%forng. [ ]

LS

Why? a is irrational. Choose @ so large that we cannot have ’a -

EXERCISE For any a4, ...,®, € Rand any M, there are integers p1,...,p, and ¢ > M

suchthat‘ozk—%’c < fork=1,...,n

q n

Continued fractions: given «, we produce a possibly infinite expression:

1
o« =ag +
ot T
and denote a = [ag; a1, as, ...] How: introduce variables 8y, 51 ... where 8y = «. Write

Bo = [Bo] + {Bo}-

Let ap = [Bo], if {Bo} = 0 then stop. Otherwise let 8; = {/310}. Let ay = |31 ], continue.

Example 1.5.1. Leta = v/2. By = v/2 and ag = 1.

1 1
V2=14+(V2-1)=1+——=1+
V2-1 \/54’ 1
1 1
2+ (v2-1) 24 —L
V2-1
Convergents: k-th convergent:
1 p
[ao;a17'-~7ak]:a0+—1:i
8 B s

EXERCISES Suppose pi, g, are coprime. Prove that py, = arpr—1+pr—2, @k = arqr—1+qr—2
for k > 2. Hint: Induction [ag; a1, . ..,ar] — [a1; a2, ..., ak].

Prove that px_1qr — prax—1 = (—1)¥ for k > 1.

12
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Prove that qiqr_o — prqr_2 = (—1)*"tay for k > 2.

NN

‘%,k‘even ¢ @,kodd
qdk qk
Prove that ‘a— Bel < L >0,
dk drkqk+1

(Hard, easy if replace 5 by 2) Prove that at least one of the three holds:

1
< )
qt_ Vb

1
< .
@ 5

Dk
a— 2

gk

_ Pr—2
qk—2

1
<

_q]%\/57

o — or «

Convergents are the best rational approximation in the following sense:

Given a and integer Q > 1, we want to find { such that [b| < @ and |ab — a is the
smallest possible.

CLAIM Must have § = 2= (With possible exception of k£ = 0, 1.)

WHY /EXERCISES Suppose not: pick the largest k& such that ¢ is between 2:=X and -,
qk—1 qk

Pk « Pk+1 Pr—1
dk dk+1 dk—1

Then |¢ — Zi=1} > L eagy. Then | — Bi=l| < | _ Peo1| — L __ from last exer-
b qk—1 bqr—1 b qr—1 qk Qr—1 qkqr—1

cise.

On the other hand ‘a— 9} > |Berr _a) > 1 Go|ab—al > —— but |ag —pi| <

b qk+1 b bak+1 qr41
1
qr4+1 "
Sob > q-

Theorem 1.5.3 (Liouville’s theorem (Joseph Liouville, 1809-1882)). If « is an algebraic

> <9 with ¢(a) > 0.

irrati .y
irrational of degree n > 2. Then ‘a ; .

> | 1ot is transcendental. (the rough idea is that if an irrational num-

ber is approximated too well then it is transcendental)

Corollary: v = Y7

1.6 Sphere Packing

Denote balls: B,.(zg) := {z : ||z — zo|| < 7}.

Definition 1.6.1. A sphere packing is a (usually infinite) collection of balls B, (x;) with the

13
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same radius with pairwise non-intersecting interiors.
The density of a sphere packing o is defined as

. vol (Br(0) N, By (x;))
o = limsu C
Loup vol B (0)

Generally we want to find the largest density of a sphere packing in R™. We know
n=1,238,24.

If centers x; forms a lattice, then it is called a lattice (sphere) packing. For densest lattice
packings, we know n =1,2,3,4,5,6,7,8, and 24.

a2
r(z+1)
called the packing radius, which is defined by p(A) = 1 mingea\ (o3 [|#(|. If Ay ~ A, then
O'(Al) = U(AQ).

Forn=1,0(A) = 1.

REMARK/EASY EXERCISE If {z;} forms a lattice A C R", o(A) = dé)ﬂ where p is

Forn = 2,p(Z%) = 3,detZ? = 1,0(Z*) = Z. p(As) = @,detAg =3,0(A43) = 71'2%/?

(locally denest) (Best lattice packing by Gauss, best packing overall by Laselo Fejes Toth
(1915-2005))

Forn =3,A = A3 = D3, p(A) = ¥2,det A = 2,0(A) = %’“ﬁ = 375 (not locally denest)
(Best lattice packing by Gauss, best packing overall by T.Hales (1958- ))

There is a continuum of non-equivalent non-lattice densest packings.

12 balls touching the ball of the same radius.

For n = 4 compare A4, Dy.

p(A4) = p(D4) = g detA4 = \/5 And detD4 =2< \/g

Densest lattice packing (Korkin Zolotaren) 24 vectors of length v/2 = (£1,0,+1,0), 24
balls touching central ball (cannot have more by musin, 2008)

For n = 5, consider Ds

71'2
p(Ds5) = %2, det D5 = 2. 7(Ds) = 125 ~ 0.465.

Densest lattice packing (Korkin Zolotaren), 40 balls touching central ball.

For n = 8, consider Ek.

4 4

p(Eg) = ?,det Es=1,0(Fs) = ’27—4% = 357 ~ 0.254. Densest lattice packing(Blichfeldt),
densest overall(M. Vyazovska, 1984-

14



Leech Lattice Yiwei Fu

240 vectors of length v/2: (£1,0,+1,0,...) (—%,—1,...) with an even number of —1

turned into positive ones.

240 balls touching the central ball, cannot fir more (Odlyzko and sloane, 1979) (it is rigid)
Forn =7, p(D7) = *2,det D; = 2. p(E7) = Y2, det B; = /2.

o(E7) = % ~ 0.292. Densest lattice (Blichfeldt), not rigid.

Forn =6, p(D7) = ?,det D; =2. p(E7) = g,det E; =/3.

o(E7) = 4;3/5 ~ 0.373. Densest lattice (Blichfeldt)

1.7 Leech Lattice

John Leech, 1926-1992

Consider R?%, number coordinates, Dag C Z20: 32_5=0 (mod 2)

(No other integer satisfies this afterwards)

wi = (0,1,...,24,70),w_ = (0,1,...,24,~70), Wy, W_ € Dag. S jr,+70 = 2524 &+
60 =0 (mod 2).

Look at the hyperplane H C R?6 = {z : (z,w_) = 0}.

Ass = D3y N H is a lattice of rank 25. We see that w lies in the lattice. Take L = wt C
H,dim L = 24. Define A4 to be the orthogonal projection of A5 onto L.

Aoy is discrete because span(wy) C H is a lattice subspace.

Aoy is the Leech lattice.

Useful formula for the length.

Pick (zg, 1, ..., x25) in Ags, what is the length of projection in Asy?

Let Z € Ay be the projection: X = z—awy sothat (Z,w,) = 0. S0 (z, wy)—a (wy, wy) =

0 — <wi+>
(wy,wy)”

(wi+>2
(wy,wy)

z €N CH = (z,w_) =0. wy =w_+140 = (z,wy) = (z,w_) + 140295 =

~12 2 2 2
1207 = llll” = lew |7 = [l —

15
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1401‘25

A2 25 2 140%z2, 25 2 2 =24 2 2

121" = > ko @k — ST K202 21707 — 2k=0Tk — 2235 = ) ko T — T25-

Some shortest non-zero vectors in Agy. @ = (0,1,—1,—1,1,0,...,0) € Das C Dj.

(z,w_) =04+1-2-3+4=0 = =z € Ags,also (z,wy) =0+1-2-3+4 =
0 = LL‘EAQ4,H1‘||:2.

. 1 11 1
PICky: %77§a 375,57 757% -y7u€D26:>y€D;—6'
9 times 15 times
~12 24 _
<y7w*> = Oa ||y|| = k=0 i - % = 254 2= 4.

There are 196560 vectors of length 2. (<- many balls touching the central ball) cannot put
more (Odlyzko & Sloane, 1979) and this configuration is rigid.

Rigid phenomenon in dim 2, 8, and 24.
EXERCISES
1. det Dog = 2,det Djg = 1,det Ags = 70v/2,det Agy = 1.
2. For any x € Ay, ||| is an even integer.
3. mingen,,\o |zl = 2.
4. A5, = Aoy,
What happens if n = dim V' is large?
Gilbert-Varshamov Bound (E.N. Gilbert, 1923-2013, R.R Varshamov, 1927-1999)
Theorem 1.7.1. THere is a sphere packing in R™ of density > 27"
Proof. Consider a saturated packing (young cannot add another ball to the poacking) of
balls of radius 1.
Claim: its density > 27".
Why? If |, ; B(x, 1) is saturated then | J,.; B(z;,2) = R".

If it does not cover, say point y € R". We can add a ball B(y) to the packing. If z; €
BRfl(O) then Bl(;vl) C BR(O) If Bg(ﬁz) n BR,3(0) 75 () then x; € Br_1.

> volBy(w;) > vol Br_3(0) = Y 2"vol By(x;) > vol Bg_3(0).
z;€BRr_1(0) z;€BRr-1

16
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Hence

vol (BR(O) N U Bl(xi)> > > (0)

z;EBRr—1vol Bi(z;)>2"" vol BR_3

Take R — oo. [ |

1.8 Lattice Packings

We will prove "today" for any 0 < a < 27" there is a lattice A C R™ with o(A) > a. Later

in this course o(A) > 27",

Real Minkowski-Hlawka theorem is o(A) > 2 - ((n)2™" (assuming n > 1) where ((n) =
e

What's known: There is a lattice A C R"o(A) > 1.68n2™" (Davenport-Rogers, 1947)
o(A) > 2(n—1)¢(n)27" (K. Ball, 1992)

o(A) > £(nlnlnn)2~" for infinitely many n. (Venkatesh, 2013)

What's going on with packing radius? Say we scale to det A = 1.

= p(A) =

mingea\ oy ||| > /52 Try to construct explicitly a lattice in R" of det A = 1 with
ming e\ oy |2l > 107%v/n.
So the lower bound is not that trivial.

Now we go back to our theorems.

Theorem 1.8.1. Forany 0 < o < 27" there is a lattice A C R™ with o(A) > a. Later in this
course o(A) > a.

This theorem can be deduced from the following theorem:

Theorem 1.8.2. If M C R™ is a bounded Jordan-measurable set of vol M < 1. Then there is a
lattice A C R™ such that det A = 1 and M N (A\ {0}) = 0.

Proof. Pick o > 0 so small that

1. M n{x, = 0} Itis entirely contained in the cube |z;| < o T i=1,...,n—L

17
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2. Let Hy, = {x,, = ka, k € Z}.

o Z vol,—1(M N Hy) < 1.

k=—o0

Define the lattice A as follows: pick the first n — 1 basis vectors u; = a*ﬁei for: =
1,...,4 — 1. Let II be the fundamental parallelepiped of u;,...,u,—1 for € II, let
un(x) = ae, + x and let A, be the lattice with basis uy, ..., up—1, tn ().

1

n—1
det A(z) = volll - o = (ofﬁ> a=1
Claim: for some z, |(A\ {0}) N M| = 0.

(AN NM|= > [Mn(A+ k)]
keZ\{0}

1
m/ MA@\ ) de=a 3 /|Mﬂ(Ao+kx)|dx
VO z€Il kezv{o} 71
=« Z vol,_1(M N Hy) < 1.
k=—oc0
So for some x we have (A(z) \ {0}) N M = 0. [ |

Choose M = B,(0) such that vol B,(0) = 2" - ¢ < 1. Construct a lattice AN B,.(0) =0
and det A = 1. The mingep foy [|2]| > 7 = p(A) > 5. Then

Wn/2

o(A) > <w> 2"~

Lemma 1.8.1. Let M C V be a Lebesque measurable. Let A C V be a lattice. Let II be a
fundamental parallelepiped of A. Define f : V. — Rby f(z) = |[M N (x + A)|. Then

/ f(x) dx = vol M
i

Proof. Foru € A. Let fo(x) = 1y (2 4 u), f(z) = >, cp fulz). So

/Hf(x) dz = Z/Hfu(:c) da = vol(IT + u) N M)

u€A UEA

18



Fourier Transform Yiwei Fu

IT + u covers V without holes =} _, vol((Il +u) N M) = vol M. [ |

Lemma 1.8.2.
/ |M N (z+A)| de =vol M
I

Corollary 1.8.1. For k € Z\ {0}, [;; IM N (kz + A)| dz = vol M
Ifk >0, lety=kx,x =k~ 1y.

/|Mm(:c+A)|dx:volM:k*"/ M N (y+A)|dy
II kII

(k11 is the disjoint union of k™ lattice shifts of I1.)
For k < 0, make y = —x and reduce to k > 0.
Some sharpening;:
1. There exists A C R™,0(A) > 27" through compactness in the space of lattices

2. If M is symmetric, we can require instead that vol M < 2. (non-zero vectors come
in pairs) = 3A,0(A) > 27"

3. (Hlawka) If M is star shaped (for all z € M, [0,z] C M) about 0 and M = —M. We
can require vol M < 2{(n).

A lattice vector u € A \ {0} is primitive if you cannot write u = mv for v € A, |m| > 2.

1. If M is star shaped and contains a non-zero lattice point, then it contains a primitive
lattice point.

1

2. The density of primitive points is 5.

1.9 Fourier Transform

(J. Fourier, 1786-1830) Given f : R™ — C such that fRn |f(x)] dz, fRn |f(2)]? dz < co. We
define

f(y) = /n e‘zﬂ(l’wf(x) dr = f(z) = / e%i(“’wf(y) dy.

n

7:R* > C.
flz) = eol? — Fly) = eI’

Poisson summation formula: if | f(z)|+ ‘f(x)‘ < W with ¢, § > 0 (admissible).

-~

Then ), cpn f(u) =D, cnn f(u).

19
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Lemma 1.9.1. If f, f: R™ — C are admissible and A C R" is a lattice. Then

Zf(u) =det A Z

ueA Lex*

Proof. Let uq,...,u, be a basis of A and let T : R®™ — R"™ be linear such that T'(e;) =
ujforj=1,...,n

SO A =T(Z"). S0 i € Af(w) = ¥yen fu) = [(u) = X ,ep £(T).

Define
g(@) = f(Tz), = D > fw)=> =gu)= Y gu).

uEA uEA ueA ueL"
Bo) = [ e gy do= [ e (1) do

Let z = Tz, then do = det T~ 1.
[ |
Theorem 1.9.1 (Cohn, Elkies, 2003). Suppose that there is an admissible function f : R™ — R
such that f : R™ — R is also admissible and
1. f(z) < 0 for every x € R™ such that ||x| > 1.
2. fly) > 9forally e R"

n on
n+2

Then the density of a sphere packing in R™ < (11/2) 10 ¥p
Proof. Letm =. |

Proof. Sketch, for any, not necessarily lattice, packing

First, prove for periodic packings. (the centers written as v; + A, v;,4 = 1,..., N are
distinct cosets R" /A representatives) Scale the radius to 1.

Consider the sum

S = ZZ]’ —v; +u).

i,j=1u€EA

If i # j v; + u and v, are different centers.
If i = j, u # 0, then v; + v and v; = v; are different centers.

We have
v; —v; +ul| > 1ifi#jori=ju#0
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So f(v;i —vj +u) >0.

By Poisson, >_, cx f(0i —vj +u) = 135 3 pepn €700 F(0).

det Z Z 2mi(v;—v;,Ll J/c\ )

i,j=1LEA*
N
27i{v;—v;,b)
detA Z f Z €
LeA™ i,j=1
N
— Iy 2mi(v;—vj,f)
detA Z 1) ; ‘e ‘
> Lﬂm N2
~ det A '
Hence we have
L N2f(0) < § < NJ(0)
det A -
1 N _ f(0)
N < ===
— NJO) 2 det A — det A = f(0)

Take a large ball of volumn V, each coset v; + A contains roughly . number of centers
a2

. NV .
inside 1, each contributes volume M(z1) 27

So the density

NV /2 11 N g2 1
- - L ——E - -
det AT (2 +1)2"V  detAT (Z2+1)2" = Fo)I (2 +1)2"

For arbitrary packing: Claim: then density of an “arbitrary” packing can be approxi-
mated arbitrarily close by a periodic packing.

Why? Pick any dense packing with density d > 0. Consider a really large cube such that
all balls inside that cube approximate the volume of the cube with density > o — «.

Now, tile R with lattice translates of the cube and balls inside. You get a periodic pack-
ing with density > o —¢. |
A bunch of useful results and methods by W Banaszczyk (1993).

Goal:

Theorem 1.9.2. Pick any v > 5=, then for all sufficiently large n > no(y), for any lattice

A C R" such that det A = 1 there is u € A\ {0} such that ||u]| < /7.
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Proof. Poisson:

_ 1 y —rfaz _ L —rl€]]2
Zf(u) o detAeg\:*f(g)’X:e " det A Z eIt

ueA u€EA LeAx

Lemma1.9.2. ForO0< 7t <1,

_ 2 _ _ 2
S el < pmn/2 $7 gl

u€eA ueA
Proof.
z:efwfl\ul\2 — Z e mllull?
ueA ue\/;/\
1 —wlef? — —n/2_1 —rlel?
~ det(y/nA) Z ¢ -7 det A Z ¢
Le(V/TA)* Le(V/TA)*
1 2
— /2 —mllel* /7
T det A Z ¢
reA*
1 2 1 2
< 7—n/2 —mllel® — -n/2__ = —lull
=T detAZe 4 detAze
LeEN* uEA
[ |
1
Lemma 1.9.3. Forany~y > 5-,
2 1 n 2
S el < (e—m-i-a /TWY) 3 el
u€A, [|ull >R u€A
Proof. Choose 0 < 7 < 1. (to be adjusted later)
Z e lull® < e T Z \/%(;Trl\u\l’"ewTHuH2
weA, |lul|= A weA, |lul|=An
< eI Z ﬂme—ﬂlul\Ze—fr(l—f)l\ull2
u€eA
< eI - 7)E Z JAme il g=mllll®
u€EA
n
Choose 7 =1 — 5——. Then RHS = (e‘”"ﬁ% 2777) Y uen yame Tl emmlell® n

. 1 _ ’
Now, pick some 5- <" <. Leta = ,/% <1
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Consider lattice aA. Apply lemma:

_ 2 _ /1 7 _ 2
3o el < (e mnﬁm) 3 el

uEal uEal
llull=vAm
3 e lul® > (1 _ efm’+%\/72m’> 3 o—llull?
uEa uEal
llull=v~n

From Poisson,

1 2 1
_ —rllel
ZA det(ah) > © ~ Jet(ah)

u€a e(aN)*
o 1

 andet A - an > 1

If n is large, there is u € aA \ {0} with |lu|| < V4'n = thereisu € A\ {0} with
Jull < 2= = /77, .

Density of lattice packing:

o) = g T (!

D (2+1)detA " T (2+1)2" \2r
n/2 n n/2
o (o5) = S~ (082" o,
(%)” e—n/29n 2w 2

EXERCISE We proved that (A) < (0.82)" =~ ({)n Prove the same bound for any

packing.

o . : . N _rfvi—v,
Prove for periodic packings first, then consider thesum > 7;._, e mllve—vs+ull,

1.10 Covering Radius

Definition 1.10.1. Suppose A C V a lattice.
w(A) = maxdist(z, A) = maxdist(z, A).

zeV zell

This is the smallest radius such that the Balls B,.(u),u € A cover V.
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Thickness:
.. total volume of balls
liminf = >
vol of space w00 total volume of space

We are generally interested in the thinnest lattices.

EXERCISES Find the covering radius of Z" (4), Az (% Z((Zif; ), D, (4) forn>14,1
for D3, Fg(1), Leech lattice (hard) v/2.

If uy, ..., uy are linearly independent then p(A) < £ 37 | [lus.

Definition 1.10.2. The global maximum of z — dist(x, A) is called a deep hold of A, the
local maximum is called a shallow hole.

EXERCISE Show that (1,0, 0) "octahedral hole" is a deep hole for D3 and (3, 1, 1) "tetra-
hedral hole" is a shallow hole.

Main Goal: ("transference" theorem)

Theorem 1.10.1. If A C R is a lattice then

< p(A)p(A*) < const(n)

] =

We will eventually show that const(n) = 5. Elementary: const(n) = %/2. (Lagarias)
First result: const(n) ~ (n!)? (Khinchin)

Lower Bound:

Construct uq, . .., u, € A as follows: ("successive minima")
Jur] = min lull
ueA\{0}
[[uz|l = min [l

u€EA
w,u; linearly independent

So [[ur]] < fluzll, . -

Pick z = Lu,.

CLAM dist(z, A) = 4 [[un .

Suppose not. There is a u € A such that

‘ 1

Up — U
2

1
< 5 lunl] = |lu|l < |lun|| = w € span{uy,...,up—1}.
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Then for v = 2u — u,, we have

1
véspan{uy,...,up—1},||v|] =2 |u— Fun|| < lenl s

contradiction.

Now, pick w € A* such that ||w|| = 2p(AT). We have for some k = 1,...,n, (wy,Ux) € Z

and # 0 = |(w1,Uk)|=1.

— Jlw| lue]l > 1 =[]l fun] > 1. So

20(A) - 2u(A) > 1 = p(A*) - p(A) >

e

Upper bound (elementary) J.C. Lagarias, H.W. Lenstra Jr, C.-P. Schnorr (1990)

Lemma 1.10.1. Suppose A C R" is a lattice then p(A)p(A*) < 7.

Proof. Minkowski convex body (long time ago)

p(A) < %\/ﬁ(det A)%7 p(A*) < %\/ﬁ(det A*)%

(det A)(det A*) = 1. Suppose uy, ..., u, isabasis of A, uj, ..., u}, abasis of A*. (uf,u;) =

1 i=j
0 i#j

Proof. By induction on n.

Base case: n = 1, A = oZ,A* = a7 'Z. p(A) = Jaand p(A*) = 5. p(A)p(A*)

2

Induction hypothesis

=

Induction step Pick u € A\ {0} so that ||u|| = 2p(A). Let pr : R — H be the orthogonal

projection. Let Ay = pr(A).

CLAIM AT C A = p(A*) > p(A*) must check if z € H is such that (z, pr(v)) € Z for

allv € A. Then (z,v) € Z for all v < A.

Pick any = € V, need to bound dist(x, A). Let y = pr(z) choose y; € Ay closest to y so

that [|ly1 — yl| = u(Aq).

Look at the line through y; parallel to y. It contains points from A distance ||u|| = 2p(A)
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apart.

Pick w € Asothat |lw— (z+y1 — y)|| < p(A).

Use Pythagoras theorem, [|[w — z||* < p?(A) + p2(A1) = p2(A) < p2(A) + p2(Ay).
So

PP(AT) 2 (A) < p*(A)p?(A) + 41 (A1) p® (A7)

< () +raeag)

[ |

We can use Fourier to prove an optimal bound const(n) = 3.

Let’s start with a lemma.

Lemma 1.10.2. Suppose A C V a lattice and x € V. Then

Z e~ mlle—ul® < Z e~ mlull?,
u€EA u€EA
Proof. Using Poisson summation,
> fw = o Y 70
det A
u€EA LeN*
Choose f(z) = e~™II” then f(y) = e "IWI*. Choose f(z) = e~"l==al” then f(y) =
e—2mi(w.a)llvl® o
Z —mllz—ull® _ 1 Z —2mi(z,0)|0||?
e = e
ueA det A /3
1 2 2
-l = —mlu
< Gern 2 ¢ =2 ¢
LeA~ ueA

|

EXERCISE

1. See if you can find an elementary proof

2. Y emmllemul? > -lal? § =l

u€A u€EA
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Lemma 1.10.3. ForO0 <7 < 1,z € V.

_ _ 2 _ _ 2
S emnrllemul? < /2 3 ool

u€eEA u€eEA

We had it with x = 0, with

2 2
3 emmrllemull? < $7 el

u€A u€EA

Rescale A = \/TA to get

Y <Y el

u€he™||z—ul? u€A

Lemma 1.10.4. If A C R" is a lattice, v € R" is a point. For any y > 5=,

n
S el < (e—ﬂ’y+% ﬁzm) 3 e,
u€EA u€A
lu—z[>/77

Proof. Choose 0 < 7 < 1 to be specified.

E 677T||zfu”2 < e ™INT E e*ﬂ'”{l}fﬂ,HQeﬂTH‘/L’fﬂl‘F

u€EA uEA
lu—z||>yn lu—z||>~n

< =TT § e—Tr(l—‘r)Hw—uH2

u€eEA
lu—z||=yrn

<e™T(1L—7) % Z el
u€EA

Take T =1— 5. []
B

Corollary 1.10.1. Take v =1,

T el < 5on 37 el

ueA ueA
lu—z||>Am
Now we have

Theorem 1.10.2.
. n
HA)p(A") <

Proof. Suppose not. Then u(A)p(A*) > 5. If we scale A = al,a > 0, u(ad) =
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ap(A), (@A) = 1A%, p((ah)*) = Lp(A%).
Let’s scale so that u(A) > /n, p(A*) > @ = thereis x € V such that dist(z, A) > /n.

2 2
Let L=, eIl Lr = 5, . e=rlel?,

S erllemul® = § gmmlaul® < g,

ueN u€eA
lu—z||>vn

-1+ Z e el — 14+ Z e llett]? <145 "L*
eA*\{0} EIN Vv

This = (1-5")L* <1 = L* < =0 = 5.

We also have

S el < 1
57— 1
LeA*\{0}

By Poisson, L = - tAL*

Finally, getting a contradiction

_TFHZD—uH2 < _”L _ L* < 1 1
D e =5 5rdet A — detAbr —1
u€eA

On the other hand, by Poisson summation:

—re—u)? _ _ 1 2mit,z) )2
doe = 2 e

u€EA LeN*

2mi(l,x) 771‘“[“2 _ 27m l,x) 77r||2||2 —n|lell]|? . 1
e =1+ > 21- >, e z1- oy
LEN™ LeA*\{0} LeA*\{0}
So we have

1 1 S 1 5" -2
detAb5" —1 — detAb" —1

1 5" =2
<
5n —1 7 5n -1
= 5V <3
a contradiction. So we have proved the argument. [ |

Later:

Corollary 1.10.2 (Flatness theorem). If A C R"™ is convex, AN Z" = (. Then there is
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a € Z™ \ {0} such that max,c 4 {(a,x) — minge 4 {(a,z) < ¢(n).
General case exercises:
1. Fill in gaps on ellipsoidal approximations
2. if K = —K, E C K the maximum volumn ellipsoid then E C K C y/nE.

3. (Easy) If P C R? is a convex polygon with interger vertices and no other inte-
ger points other than vertices. Then there is a u € Z? such that max,cp (u,z) —

mingep (u, ) = 1.

4. (Hard) If P C R? is a convex polytope with integer vertices and no other integer

points then there is u € Z3 such that max,ep (,u) — mingep (z,u) < 1.

1.11 Existence of a Good Basis

Existence of a good (“nearly orthogonal”) basis

Uy, Usg, . . ., Uy, is a basis of A then |luy||-.. .- ||u,|| < const(n)det A. Forn = 2,¢(2) = % ~
1.15. We will prove roughly ¢(n) ~ n".

Constuct such a basis efficiently (LLL) ¢(n) ~ o’

Theorem 1.11.1 (2nd Minkowski convex body theorem). Let K be a convex body, K C R™
convex compact with non empty interior. Suppose that K = —K. Let A C R™ be a lattice. Define
successive minima: fori =1,...,n,A; = N;(K) = min{\ > 0 : dimspan(AK N A) > i} min
A > 0 such that AK contains (at least) i linearly independent lattice vectors.

AM(K) < Aa(K) < ... < An(K)

Then
(vol K) [T Mi(K) < 27 det A

i=1
Plan:
We reduce it to the case A = Z"

Pick the fundamental parallelepiped IT = {z = (z1,...,2,) : 0 < x; < 1} and stare ar the
projection R"/Z™ — II.

P:(x1,...,2n) — ({z1},...,{z,}) and prove various things about it.
some notes missing

Last time: If A C R™ is a lattice then there is a basis u1, ..., u, such that ||u||... ||u,] <
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c(n)det A,
(n+ 1) (2 +1)
e(n) = 7
Convergence: If {A;, C R"},k = 1,... are lattices and A C R" is a lattice. We say that
limy oo A = A is we can find a basis uy, , ..., ur, of Ay and a basis u1,...,u, of A so
that limg_yoo up; = u; fori =1,...,n.

Mahler Compactness Criterion: (K. Mahler, 1903 - 1988) If A; C R",i € [ is an infinite
family of lattices, and for some ¢ > 0,C > 0 we have det A; < C abd p(A;) > ¢ for all
i € I. Then there is a sequence A;, such that limy_,.c A = A.

EXERCISE: If lim,, oo Ay, = A then lim,, o p(Ar) = p(A).

In Minkowski-Hlawka, we showed that for every 0 < a < 27" there is A, C R" such
that o(A,) > a. We can choose det A, = 1 and Mahler compactness so there is a limit
lattice A as a — 27" with o(A) > 27",

(Weakly) reduced basis

Say, u1,...,u, is a basis of A. Let Ly = \0. Ly = span{uq,...,ux},k =1,...,n. Let
wy, be the orthogonal projection of u, onto Lﬁ_r wi, ..., Wk, W, is the Gram-Schmidt or-
thogonalization (without normalization) of u, ..., u,. Then u, = wy + Zi:ll Qpiw;, k =
1,...,n.

We say that us, ..., u, is (weakly) reduced, provided |oy;| < % for all k and i.

How to reduce a basis quickly. If all |oy;| < 5 already reduced. If not, choose the largest
I such that |ay;| > 4. Let m; be the integer closet to ay; then |oy; — m;| < 1. Update
up = up — myu;. What happens? Lg,..., L, do not change. ay; — ai; —m;. Now
laes| < 1 may messup ay; with j < .

Repeat. In at most (}) steps, we’ll have it reduced.

Theorem 1.11.2 (Lagarias, Lenstra, Schnorr, 1990). If A C R", and uy, ..., u, is a (weakly)

reduced Korkin-Zolotarev basis. Then |juy|| < YEEEN, &k = 1,...,n, where Ay, is the k-th

successive minimum w.r.t unit ball.

Remark. 1. Korkin-Zorotarev basis. Choose u; to be the shortest non-zero, uy to be
closest to L; = span{u;} and not in L; ...Choose uj, closest to Li_; but not in
Ly_q.

2. The reduction procedure does not change wy, ..., wy, ..., w, and does not change
dist(ug, Ly—1) = |Jwg||. Starting with K-Z basis we still get K-Z basis.

3. A=min{X > 0,dimspan {\ N {z, [|z|| < A\}} > K}.
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Existence of a Good Basis Yiwei Fu

Compared to the basis we constructed last time

1. last time we had [Juy|| < &2\, for k = 1,...,n. which gave ¢(n) = Wl::#
Now we have c¢(n) = —@F(%m, which is better.
6mn/2
Proof. CLAIM ||wi|| < A for k =1,...,n. Why? |Jwg]|| < smallest distance from a point
in A whichisnotin Lj_; to Lj_;. (Krokin-Zolotarev) Let A}, be the orthogonal projection
of A onto Li- |, then ||wy|| = min,ea\foy ||v]|- Pick linearly independent vy, ..., vj, such
that |lv;|| < Ag fori =1,...,k, so ||lwg| < |Jv]] < Ag. The projection v of at least one of

them onto L;-_; will be non-zero.

_ k— _

REDUCED [Jug|® = fuxl® + SI5) ol [lwil® < A2 + i 402 < A2 (1452 =
/\ik%‘3 = |lug| < —”ﬁj‘g. [ ]
Certifying packing radius Givena A and u4, . . ., u,, abasis. Then 2p(A) > ming—1, ., disty, r, ;-

We will construct a basis such that 2p(A) < nming=y, ., dist(ng, Ly_1).
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