Notes for Math 669

Yiwei Fu, Instructor: Alexander Barvinok

WN 2023

Contents

1	Introduction to Lattices					
	1.1	Definition	1			
	1.2	Lattice and Its Basis	1			
	1.3	Sublattice	4			
	1.4	Minkowski Theorem	7			
	1.5	Applications of Minkowski's Theorem	9			
	1.6	Sphere Packing	13			
	1.7	Leech Lattice	15			
	1.8	Lattice Packings	17			
	1.9	Fourier Transform	19			
	1.10	Covering Radius	23			
	1.11	Existence of a Good Basis	29			

Office hours:

Chapter 1

Introduction to Lattices

1.1 Definition

Definition 1.1.1. A lattice $\Lambda \subset V$ has the following properties:

- 1. $\operatorname{span}(\Lambda) = V$.
- 2. Λ is an additive subgroup.
- 3. A is discrete: for any r > 0, let $B_r = \{x \in \mathbb{R}^n, \|x\| \le r\}, \Lambda \cap B_r$ is finite.

1.2 Lattice and Its Basis

Last time: $L \in V$ is a subspace if $L = \operatorname{span}(L \cap \Lambda)$

Theorem 1.2.1. *If L is a lattice subspace,* $L \neq V$ *, then* $\exists u \in L \setminus \Lambda$ *such that* $d(u, L) \leq d(x, L)$ *for all* $x \in L \setminus \Lambda$.

Say $L \in \text{span} \{u_1, \dots, u_m\}$ linearly independent vectors, $\Pi = \{\}$ There is $u \in \Lambda \setminus L$ such that $\text{dist}(u, \Pi) \leq \text{dist}(x, \Pi)$ for all $x \in \Lambda \setminus L$.

Proof. Take $\rho > 0$ large enough. Consider $\Pi_{\rho} = \{y, d(y, \Pi) \le \rho\}$. It contains points from $\Lambda \setminus L$, choose the one in $\Pi_{\rho} \cap (\Lambda \setminus L)$ closet to Π .

<u>CLAIM</u> $u \in \Lambda \setminus L$ is what we need. Why? Pick any $x \in \Lambda \setminus L$. Let $y \in L$ be the closest to x.

dist(x, L) = ||x - y|| = ||(x - w) - (y - w)||.

$$y = \sum_{i=1}^{m} d_i u_i$$

Let $w = \sum_{i=1}^{m} \lfloor \alpha_i \rfloor u_i \in \Lambda \setminus L, y - w = \sum_{i=1}^{m} \{\alpha_i\} u_i \in \Pi.$

Theorem 1.2.2. Every lattice has a basis.

Proof. By induction on $n = \dim V$.

Base case: for n = 1, we have $V = \mathbb{R}$.

Let u > 0 be the lattice vector closet to 0, among all positive vectors in Λ .

Then u is a basis of Λ . Pick any $v \in \Lambda$. Assume v > 0 WLOG. Then $v = \alpha u$ for $\alpha > 0$. If $\alpha \in \mathbb{Z}$ then we are done. If not, consider $w = \alpha u - \lfloor \alpha \rfloor u = \{\alpha\} u$, this is closer to 0 than u, a contradiction.

Induction hypothesis: suppose any lattice of dimension n - 1 has a basis.

Induction step: pick a lattice hyperplane H (lattice subspace with dim = n - 1). Then $\Lambda_1 = H \cap \Lambda$ has a basis u_1, \ldots, u_{n-1} . Pick u_n such that $u_n \notin H$ and dist (u_n, H) is the smallest. We claim that $u_1, \ldots, u_{n-1}, u_n$ is a basis of Λ .

Let $u \in \Lambda$, $u = \sum_{i=1}^{n} \alpha_i u_i$ with $\alpha_i \in \mathbb{R}$. If $\alpha_n = 0$ then $u \in \Lambda_1$, then $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{Z}$. Suppose $\alpha_n \neq 0$. Consider $w = u - \lfloor \alpha_n \rfloor u_n$. $w \in \Lambda$ and $w = \{\alpha_n\} u_n + \sum_{i=1}^{n-1} \alpha_i u_i$. So

$$\operatorname{dist}(w, H) = \operatorname{dist}(\{\alpha_n\} u_n, H) = \{\alpha_n\} \operatorname{dist}(u_n, H)$$

If $\{\alpha_n\} > 0$ then $0 < \operatorname{dist}(w, H) < \operatorname{dist}(u_n, H)$, a contradiction.

So $\{\alpha_n\} = 0 \implies \alpha_n \in \mathbb{Z}$. Then $w = \sum_{i=1}^{n-1} \alpha_i u_i \implies \alpha_1, \dots, \alpha_{n-1} \in \mathbb{Z}$.

So we have constructed a basis for lattice of dimension *n*, thus finishing the proof.

This is called A.N.Korkin(e)-Zolotarev(öff) basis.

<u>EXERCISE</u> Suppose $u_1, \ldots, u_n \in V$ is a basis of subspace. The integer combinations form a lattice.

<u>EXERCISE</u> Suppose a 2-dimensional lattice. Then there exists a lattice basis u, v such that the angle α between u, v satisfies $\frac{\pi}{3} \leq \alpha \leq \frac{\pi}{2}$.

<u>EXERCISE</u> If Λ is a lattice and L is a lattice subspace. The orthogonal projection $PR : V \to L^{\perp}$. Then $PR(\Lambda) \subset L^{\perp}$ is a lattice.

Definition 1.2.1. Suppose u_1, \ldots, u_n be a basis of Λ .

$$\Pi = \left\{ \sum_{i=1}^{n} \alpha_i u_i : 0 \le \alpha_i < 1, i = 1, \dots, n \right\}$$

is the *fundamental parallelepiped* of a fundamental parallelepiped of Λ .

Theorem 1.2.3. The volume of a fundamental parallelepiped Π doesn't depend on Π . The volume is called the determinant of Λ . Furthermore, if $B_r = \{x : ||x|| \le r\}$, then

$$\lim_{r \to \infty} = \frac{|B_r \cap \Lambda|}{\operatorname{vol} B_r} = \frac{1}{\det \Lambda}.$$

We start with a lemma:

Lemma 1.2.1. Let Π be a fundamental parallelepiped of $\Lambda \subset V$. Then every vector $x \in V$ is uniquely written as x = u + y where $u \in \Lambda, y \in \Pi$.

Proof. Existence: Π is the fundamental parallelepiped for u_1, \ldots, u_n . If $x = \sum_{i=1}^n \alpha_i u_i$ then $u = \sum_{i=1}^n \lfloor \alpha_i \rfloor u_i$ and $y = \sum_{i=1}^n \{\alpha_i\} u_i$

Uniqueness: suppose $x = u_1 + y_1 = u_2 + y_2$ then $u_1 - u_2 = y_2 - y_1$. Since $u_1 - u_2 \in \Lambda$ we have $y_2 - y_1 = \sum_{i=1}^n (\alpha_i - \beta_i) \mathbf{u}_i$. We have $(\alpha_i - \beta_i) \in \mathbb{Z}$. Since $-1 < \alpha_i - \beta_i < 1$, it has to be 0.

A geometry interpretation is that we can cover the whole space with fundamental parallelepipeds without overlaps.

Proof of theorem. Let

$$X_r = \bigcup_{u \in B_r \cap \Lambda} (\Pi + u)$$

Then $\operatorname{vol} X_r = |B_r \cap \Lambda| \operatorname{vol} \Pi$.

Say, $\Pi \subset B_a$ for some a > 0. Then $X_r \subset B_{r+a}$. Look at B_{r-a} . It is covered by $\Pi + u : u \in \Lambda$. We should have $||u|| \leq r$. Hence $B_{r-a} \subset X_r$.

So we have

$$\left(\frac{r-a}{a}\right)^n = \frac{\operatorname{vol} B_{r-a}}{\operatorname{vol} B_r} \le \frac{\operatorname{vol} X_r}{\operatorname{vol} B_r} \le \frac{\operatorname{vol} B_{r+a}}{B_r} = \left(\frac{r+a}{a}\right)^n$$

This goes to 1 when $r \to \infty$.

REMARK/EXERCISE The same holds for balls not centered in the origin:

$$B_r(x_0) = \{x : ||x - x_0|| \le r\}.$$

<u>EXERCISE</u> Suppose a lattice $\Lambda \subset V$ and $u \in \Lambda$. The Voronoi (G.F. Voronoi, 1868-1908) region is defined by

$$\Phi_{u} = \{ x \in V : ||x - u|| \le ||x - v||, \forall v \in \Lambda \}.$$

Show that Φ is convex (bounded by at most 2^n affine hyperplanes) and $\operatorname{vol} \Phi = \det \Lambda$.

<u>EXERCISE</u> $(\det \Lambda)(\det \Lambda^*) = 1$

1.3 Sublattice

Definition 1.3.1. Suppose $\Lambda \subset V$ is a lattice, and $\Lambda_0 \subset \Lambda, \Lambda_0 \subset V$ is also a lattice. Λ_0 is then called a sublattice of Λ .

Remark. We have rank $\Lambda_0 = \operatorname{rank} \Lambda$.

Example 1.3.1. $D_n \subset \mathbb{Z}^n$.

Λ is an Abelian group and $Λ_0 ⊂ Λ$ is a subgroup. Look at the quotient $Λ/Λ_0$ and cosets $\{u + Λ_0\}$. The index of $Λ_0$ in $Λ|Λ/Λ_0|$ = the number of cosets.

Theorem 1.3.1. *1.* Let Π be a fundamental parallelepiped of Λ_0 Then $|\Lambda/\Lambda_0| = |\Pi \cap \Lambda|$.

2. $|\Lambda/\Lambda_0| = \frac{\det \Lambda_0}{\det \Lambda}.$

Proof. 1. By Lemma 1.2.1, every coset has a unique representation in П.

2. Let $B_r = \{x : ||x|| \le r\}$. Then

$$\lim_{r \to \infty} = \frac{|B_r \cap \Lambda|}{\operatorname{vol} B_r} = \frac{1}{\det \Lambda}.$$

Let $S \subset \Lambda$ be the set of coset representatives. Then $|S| = |\Lambda/\Lambda_0|$. Then $\Lambda = \bigcup_{u \in S} (u + \Lambda_0)$. Hence

$$\lim_{r \to \infty} \frac{|B_r \cap (u + \Lambda_0)|}{\operatorname{vol} B_r} = \frac{1}{\det \Lambda_0} \implies \frac{1}{\det \Lambda} = |S| \frac{1}{\Lambda_0} \blacksquare$$

EXERCISE

1. det $\mathbb{Z}^n = 1$

- 2. det $D_n = 2$.
- 3. det $D_n^+ = 1$. (*n* even)
- 4. det $A_n = \sqrt{n+1}$. det $E_8 = 1$, det $E_7 = \sqrt{2}$, det $E_6 = \sqrt{3}$.
- 5. If a_1, \ldots, a_n are coprime integers not all 0.

$$\Lambda = \{ (x_1, \dots, x_n) \in \mathbb{Z}^n : a_1 x_1 + \dots + a_n x_n = 0 \} \text{ has } \det \Lambda = \sqrt{a_1^2 + \dots + a_n^2}.$$

Corollary 1.3.1. If $u_1, \ldots, u_n \in \Lambda$ are linearly independent and

$$\operatorname{vol}\left\{\sum_{i+1}^{n} \alpha_{i} u_{i} : 0 \leq \alpha_{i} < 1\right\} = \det \Lambda$$

then u_1, \ldots, u_n is a basis.

Proof. Look at

$$\Lambda_0 = \left\{ \sum_{i=1}^n m_i u_i : m_i \in \mathbb{Z} \right\}, |\Lambda/\Lambda_0| = 1 \implies \Lambda = \Lambda_0 \qquad \blacksquare$$

Counting integer points. Suppose $\Lambda = \mathbb{Z}^n$.

Pick *n* linearly independent vectors $u_1, \ldots, u_n \in \Lambda$. Consider

$$\Pi = \left\{ \sum_{i=1}^{n} \alpha_i u_i : 0 \le \alpha_i < 1 \right\}.$$

Then

$$|\Pi \cap \mathbb{Z}^n| = ?$$

Suppose $\Lambda_0 = \{\sum_{i=1}^n m_i u_i : m_i \in \mathbb{Z}\}$. Then det $\Lambda_0 = \operatorname{vol} \Pi$.

Suppose n = 2, $u_1 = (3, 1)$, $u_2 = (1, 2)$. Then vol $\Pi = 5$. We can see that the parallelogram contains 5 integer points.

The case for n = 2 is special.

Theorem 1.3.2 (Pick Formula (G.A. Pick, 1859-1942)). *If* $P \subset \mathbb{R}^2$ *is a convex polygon with integer vertices and non-empty interior. Then*

$$|P \cap \mathbb{Z}^2| = \text{ area of } P + \frac{1}{2} |\partial P \cap \mathbb{Z}^2| + 1$$

Proof. Left as exercise. Hint: do it for parallelograms (in any dimension) first, then do it for triangles (special case for n = 2), and then all polygons with integer vertices.

<u>EXERCISE</u> For n = 2, linearly independent vectors of $u, v \in \mathbb{Z}^2$ form a basis \iff the triangle with vertices 0, u, v has no other integer points.

<u>EXERCISE</u> For n = 3, construct an example of linearly independent $u, v, w \in \mathbb{Z}^3$ such that the tetrahedron with vertices 0, u, v, w has no other integer points but $\{u, v, w\}$ is not a basis of \mathbb{Z}^3 . In fact, you can have $|\mathbb{Z}^n/\Lambda|$ arbitrarily large.

<u>EXERCISE</u> Suppose $u_1, \ldots, u_k \in \mathbb{Z}^n$ are linearly independent vectors and $\Lambda = \mathbb{Z}^n \cap$ span (u_1, \ldots, u_k) . The $\{u_1, \ldots, u_k\}$ is a basis of Λ if and only if the great common divisor $\begin{bmatrix} u^T \end{bmatrix}$

EXERC. span (u_1, \ldots, u_k) . The u_1 , of all $k \times k$ minors of $\begin{bmatrix} u_1^T \\ u_2^T \\ \vdots \\ u_k^T \end{bmatrix}$ is 1.

Proof. \implies : suppose u_1, \ldots, u_k is a basis. Then we can extend $\{u_1, \ldots, u_k\}$ to get a basis $\{u_1, \ldots, u_k, \ldots, u_n\}$ of \mathbb{Z}^n . So det $[u_1|u_2| \ldots |u_n] = 1$. Use Laplace expansion for the first k columns we have

$$\sum_{I \subset \{1, \dots, n\}, |I| = k} \det A_I \cdot \det A_{\overline{I}} = \pm 1 \implies \gcd(\det A_I) = 1.$$

 $\begin{array}{l} \Leftarrow : \text{ suppose } \gcd = 1. \text{ Pick any } x \in \Lambda, \text{ then } x = \alpha_1 u_1 + \ldots + \alpha_k u_k \text{ for some } \alpha_i \in \mathbb{R}. \\ \text{Pick any } k \text{ rows of } U = \left[\begin{array}{c} u_1 \mid u_2 \mid \ldots \mid u_k \end{array} \right] \text{ where } \det A_I \neq 0. \text{ By Kramer's dule,} \\ \alpha_i = \frac{\det[\text{replace } u_i \text{ by } x \text{ in } U]}{\det A_I}. \quad \det A_I \text{ are coprime } \Longrightarrow \sum m_I \det A_I = 1 \text{ for some } m_I \in \mathbb{Z}. \\ \alpha_i \det A_I \in \mathbb{Z} \implies \sum_I \alpha_i m_I \det A_I \in \mathbb{Z}. \end{array}$

Some linear algebra: (Smith Normal Form) If $\Lambda_0 \subset \Lambda$ is a sublattice, then there is a basis u_1, \ldots, u_n of Λ and a basis v_1, \ldots, v_n of Λ_0 such that $v_i = m_i u_i$ for positive integer m_i and such that m_1 divides m_2 which divides m_3, \ldots .

1.4 Minkowski Theorem

The goal today is to prove Minkowski Theorem (H. Minkowski, 1864-1909) for convex body.

Definition 1.4.1. Suppose *V* a Euclidean space, then a set $A \subset V$ is convex if $\forall x, y \in A$, $[x, y] \in A$ where $\{[x, y] = \alpha x + (1 - \alpha)y : 0 \le \alpha \le 1\}$.

Definition 1.4.2. A set *A* is symmetric if $A = -A = \{-x : x \in A\}$.

Theorem 1.4.1. Suppose $\Lambda \subset V$ a lattice and $A \subset V$ a convex symmetric set with $\operatorname{vol} A > 2^{\dim V} \det \Lambda$. Then there is $u \subset \Lambda \setminus \{0\}$ such that $u \in A$.s

<u>2^{dim V} IS SHARP</u>: Pick $\mathbb{Z}^n \subset \mathbb{R}^n$, det $\mathbb{Z}^n = 1$. Let $A = \{-1 < x_i < 1, i = 1, ..., n\}$ convex and symmetric. Then vol $A = 2^n$ and $A \cap Z^n = \{0\}$. And from geometric intuition we see that convex and symmetric is needed.

It is a result from Blichfeldt's theorem.

Theorem 1.4.2 (H. F. Blichfeldt, 1873 - 1945). Let measurable $X \subset V$, vol $X > \det \Lambda$, then there are $x, y \in X$ such that $x - y \in \Lambda \setminus \{0\}$.

<u>INTUITION</u> det Λ describes the volume per lattice point. Consider $\{X + u\}$ the translations of X by lattice points. Some of them must overlap i.e. $(X + u_1) \cap (X + u_2) \neq \emptyset$. Then $x + u_1 = y + u_2 \implies x - y = u_2 - u_1 \in \Lambda \setminus \{0\}$.

Proof. Choose a fundamental parallelepiped Π of lattice Λ . Then det $\Lambda = \operatorname{vol} \Pi$. Then $\{\Pi + u, u \in \Lambda\}$ cover V without overlap. In particular, they cover X.

Let $X_u := ((\Pi + u) \cap X) - u$. $\sum_{u \in \Lambda} \operatorname{vol} X_u = \operatorname{vol} X > \operatorname{vol} \Pi$. And $X_u \subset \Pi$. Then $\exists u_1 \neq u_2 \ s.t. \ X_{u_1} \cap X_{u_2} \neq \emptyset$. Then $\exists x, y \in X \ s.t. \ x - u_1 = y - u_2 \implies x - y = u_1 - u_2 \in \Lambda \setminus \{0\}$.

Proof of Minkowski's Theorem. Let $X = \frac{1}{2}A = \{\frac{1}{2}x, x \in A\}$. Then $\operatorname{vol} X = 2^{-\dim v} \operatorname{vol} A > C$

det Λ . By Blichfeldt, there are $x, y \in X$ such that $x - y \in \Lambda \setminus \{0\}$. Write

$$u = x - y = \frac{1}{2}(2x) + \frac{1}{2}(-2y)$$

Since *A* is convex and symmetric, $2x, -2y \in A$ and $x - y \in A \implies u \in A$.

<u>EXERCISE</u> Suppose $\Lambda \subset V$ a lattice. Let $X = \{x \in V : ||x|| < ||x - u||, \forall u \in \Lambda \setminus \{0\}\}$. Let A = 2X. Show that A is convex, symmetric, $A = 2^{\dim V} \det \Lambda$ and $A \cap \Lambda = \{0\}$.

Corollary 1.4.1. *If, in addition, A is compact, then it is enough to have* vol $A \ge 2^{\dim V} \det \Lambda$.

We can apply the proof for $(1 + \varepsilon)A$ and let $\varepsilon \to 0$.

Corollary 1.4.2. Let $V = \mathbb{R}^n$, and $||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$. Then there is a $u \in \Lambda \setminus \{0\}$ with $||u||_{\infty} \leq (\det \Lambda)^{\frac{1}{n}}$.

Consider $A = \left\{ x, |x_i| \le (\det \Lambda)^{\frac{1}{n}} \right\}.$

Corollary 1.4.3. Suppose $\Lambda \subset V$. Then there is $u \subset \Lambda \setminus \{0\}$ with $||u|| \leq \sqrt{\dim V} (\det \Lambda)^{\frac{1}{n}}$.

<u>EXERCISE</u> If $X \subset V$ is measurable and vol $X > m \det \Lambda$ with $m \in \mathbb{Z}^+$. Then there are $x_1, \ldots, x_{m+1} \in X$ such that $x_i - x_j \in \Lambda$ for all pairs i, j.

If *A* is convex, symmetric, and vol $A > m \cdot 2^{\dim V} \det \Lambda$. Then *A* contains *m* distinct pairs $\pm u_1, \ldots, \pm u_m$ of nonzero lattice points.

EXERCISE (IMPORTANT) If $X \subset \Lambda$ is a set such that $|X| > 2^{\dim V}$ then there are distinct $\overline{x, y \in X}$ such that $\frac{x+y}{2} \in \Lambda$.

<u>EXERCISE</u> Suppose $f : V \to \mathbb{R}_+$ is integrable and $\Lambda \subset V$ a lattice. Then there are $z_1, z_2 \in V$ such that

$$\sum_{u \in \Lambda} f(u+z_1) \ge \frac{1}{\det \Lambda} \int_V f(x) \, \mathrm{d}x \ge \sum_{u \in \Lambda} f(u+z_2).$$

We need the column of the unit ball in \mathbb{R}^n .

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

$$\Gamma(x+1) = x\Gamma(x)$$

$$B = \{x : \|x\| = 1\}, B \subset \mathbb{R}^n, \text{vol} B = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2} + 1\right)}$$

We start with integral:

$$\int_{-\infty}^{\infty} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}, \int_{\mathbb{R}^n} e^{-\|x\|^2} \, \mathrm{d}x = \left(\sqrt{\pi}\right)^n$$

Let $S(r) = \{x \in \mathbb{R}^n : ||x|| = r\}$ and κ be the surface area of S(1).

$$\left(\sqrt{\pi}\right)^n = \int_0^\infty \left(\int_{S(r)} e^{-\|x\|^2} \,\mathrm{d}x\right) \,\mathrm{d}r$$
$$= \int_0^\infty r^n \kappa e^{-r^2} \,\mathrm{d}r$$
$$= \frac{1}{2} \int_0^\infty t^{\frac{n-2}{2}} \kappa e^{-t} \,\mathrm{d}t$$
$$= \kappa \frac{1}{2} \int_0^\infty t^{\frac{n-2}{2}} \kappa e^{-t} \,\mathrm{d}t = \frac{1}{2} \kappa \gamma \left(\frac{n}{2}\right)$$

So we have $\kappa = \frac{2(\sqrt{\pi})^n}{\Gamma(\frac{n}{2})}$.

Then

vol
$$B = \int_0^1 \kappa t^{n-1} \, \mathrm{d}r = \frac{\kappa}{n} = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}.$$

1.5 Applications of Minkowski's Theorem

First application:

Theorem 1.5.1 (Lagrange's four squares theorem (J-L Lagrange, 1736-1813)). If $n \ge 0$ is a non-negative integer, then $n = x_1^2 + x_2^2 + x_3^2 + x_4^2$ for some integer x_1, x_2, x_3, x_4 .

Proof. Start as Lagrange did: first, prove assuming that *n* is prime, then there are $a, b \in \mathbb{Z}$ such that $a^2 + b^2 + 1 \equiv 0 \pmod{n}$.

n = 2 is clear. Consider values of $a^2 \pmod{n}$ for n > 2 and $a = 0, 1, \dots, \frac{n-1}{2}$. They are all distinct. Otherwise $a_1^2 \equiv a_2^2 \equiv \pmod{n} \implies (a_1 - a_2)(a_1 + a_2) \pmod{n}$.

Consider values $-1 - b^2 \pmod{n}$ for $b = 0, 1, \dots, \frac{n-1}{2}$. They are all different values.

There are a total of n + 1 values, so there exists $a^2 \equiv -1 - b^2 \pmod{n}$ by pigeonhole principle.

We introduce one generally useful lemma:

Lemma 1.5.1. Suppose $a_1, \ldots, a_k \in \mathbb{Z}^n$ and m_1, \ldots, m_k positive integers and

$$\Lambda = \left\{ x \in \mathbb{Z}^n : \langle x, a_i \rangle \equiv 0 \pmod{m_i} \right\}.$$

Then Λ is a lattice and det $\Lambda \leq m_1 \cdots m_k$.

Consider their cosets: pick $0 \le b_i \le m_i$, and the coset is

$$\{x \in \mathbb{Z}^n : \langle x, a_i \rangle \equiv b_i \pmod{m_i}\}$$

if the set is non-empty. Then $|\mathbb{Z}^n/\Lambda| = \frac{\det \Lambda}{\det \mathbb{Z}^n}$.

The rest is from Davenport: Suppose a lattice

$$\Lambda = \left\{ x \in \mathbb{Z}^4 : \begin{array}{ll} x_1 \equiv ax_3 + bx_4 \\ x_2 \equiv ax_4 - bx_3 \end{array} \pmod{n} \right\}.$$

If $(x_1, x_2, x_3, x_4) \in \Lambda$ then

$$\begin{aligned} x_1^2 + x_2^2 + x_3^2 + x_4^2 &\equiv (ax_3 + bx_4)^2 + (ax_4 - bx_3)^2 + x_3^2 + x_4^2 \pmod{n} \\ a^2 x_3^2 + b^2 x_4^2 + 2abx_3 x_4 + \\ a^2 x_4^2 + b^2 x_3^2 - 2abx_3 x_4 + x_3^2 + x_4^2 &\equiv (a^2 + b^2 + 1)x_3^2 + (b^2 + a^2 + 1)x_4^2 &\equiv 0 \pmod{n} \end{aligned}$$

So we have $x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 0 \pmod{n}$ for all $(x_1, x_2, x_3, x_4) \in \Lambda$. So det $\Lambda \leq n^2$. Consider the ball *B* with radius $\sqrt{2n}$. The volume of the ball vol $B = 2n^2\pi^2 \geq 2^4n^2 \geq 2^4 \det \Pi$. So there exists $(x_1, x_2, x_3, x_4) \in \Lambda \setminus \{0\}$ such that $x_1^2 + x_2^2 + x_3^2 + x_4^2 < 2n$ and $x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 0 \pmod{n}$.

So we conclude that such $x_1^2 + x_2^2 + x_3^2 + x_4^2 = n$.

Now suppose *n* is not prime, write $n = \prod p_i$ where p_i 's are prime numbers.

$$(x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2) = z_1^2 + z_2^2 + z_3^2 + z_4^2$$

where

$$\begin{cases} z_1 = x_1y_1 - x_2y_2 - x_3y_3 - x_4y_4 \\ z_2 = x_1y_2 + x_2y_1 + x_3y_4 - x_4y_3 \\ z_3 = x_1y_3 + x_2y_4 + x_3y_1 + x_4y_2 \\ z_4 = x_1y_4 - x_2y_3 - x_3y_3 + x_4y_1 \end{cases}$$

Remember through quaternions. $x_1 + ix_2 + jx_3 + kx_4$.

1

Jacobi's Formula (C.G.J Jacobi, 1804-1851) The number of integer solutions (not neces-

sarily positive) of the equation

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = n$$

is $8 \cdot \sum_{d|n,4|d} d$.

EXERCISE Deduce the Jacobi's Formula from the identity

$$\left(\sum_{k=-\infty}^{\infty} q^k\right)^4 = 1 + 8 \sum_{k=1}^{\infty} \frac{q^k}{\left(1 + (-q)^k\right)^2}, \text{ for } |q| < 1.$$

Gauss Circle Problem (C.-F Gauss, 1777, 1855) $B_r = \{x \in \mathbb{R}^2 : ||x|| \le r\}$. As $r \to \infty$, $|B(r) \cap \mathbb{Z}^2| \approx \pi r^2 + O(r^{1/2+\varepsilon})$ for any $\varepsilon > 0$? Best known is $O(r^{0.63})$ for $\varepsilon = 0.13$.

<u>EXERCISE</u> If n is prime, $n \equiv 1 \pmod{4}$. Then $n = x_1^2 + x_2^2$ for some $x_1, x_2 \in \mathbb{Z}$.

How well can we approximate a real number for rational numbers?

If $\alpha \in \mathbb{R}$ and $q \ge 1$ is an integer, then for some integer p we have $\left|\alpha - \frac{p}{q}\right| \le \frac{1}{2q}$.

Theorem 1.5.2. For any $\alpha \in \mathbb{R}$ and M > 0, there exists $q \ge M$ and an integer p such that $\left|\alpha - \frac{p}{q}\right| \le \frac{1}{q^2}$.

In fact, we can have $\left|\alpha - \frac{p}{q}\right| \le \frac{1}{q^2\sqrt{5}}$, which is optimal.

It shows that this holds for infinitely many q.

Proof. Assume WLOG that α is irrational. Pick $Q \ge 1$ an integer. Consider the parallelogram in \mathbb{R}^2 : $\left\{ |x| \le Q, |\alpha x - y| \le \frac{1}{Q} \right\}$.

 Π is convex, symmetric, compact, with area $\Pi = 4 = 2^2$.

By Minkowski, there exists $(q, p) \in \mathbb{Z}^2 \setminus \{0\}, (q, p) \in \Pi$ such that $|\alpha q - p| \leq \frac{1}{Q}, |p| \leq \frac{1}{Q} \implies p = 0$. Assume that q > 0.

We have $q \leq Q$, and

$$|\alpha q - p| \leq \frac{1}{Q} \implies \left| \alpha - \frac{p}{q} \right| \leq \frac{1}{Qq} \leq \frac{1}{q^2}$$

It remains to show that for any M we can choose $q \ge M$.

Why? α is irrational. Choose Q so large that we cannot have $\left|\alpha - \frac{p}{q}\right| \le \frac{1}{Q}$ for $q \le M$.

EXERCISE For any $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and any M, there are integers p_1, \ldots, p_n and $q \geq M$ such that $\left| \alpha_k - \frac{p_k}{q} \right| \leq \frac{1}{q^{\frac{n+1}{n}}}$ for $k = 1, \ldots, n$.

Continued fractions: given α , we produce a possibly infinite expression:

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}}$$

and denote $\alpha = [a_0; a_1, a_2, \ldots]$ How: introduce variables $\beta_0, \beta_1 \ldots$ where $\beta_0 = \alpha$. Write $\beta_0 = \lfloor \beta_0 \rfloor + \{\beta_0\}$.

Let $a_0 = \lfloor \beta_0 \rfloor$, if $\{\beta_0\} = 0$ then stop. Otherwise let $\beta_1 = \frac{1}{\{\beta_0\}}$. Let $\alpha_1 = \lfloor \beta_1 \rfloor$, continue. Example 1.5.1. Let $\alpha = \sqrt{2}$. $\beta_0 = \sqrt{2}$ and $a_0 = 1$.

$$\sqrt{2} = 1 + (\sqrt{2} - 1) = 1 + \frac{1}{\frac{1}{\sqrt{2} - 1}} = 1 + \frac{1}{\sqrt{2} + 1}$$
$$= 1 + \frac{1}{2 + (\sqrt{2} - 1)} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{\sqrt{2} - 1}}}$$

Convergents: k-th convergent:

$$[a_0; a_1, \dots, a_k] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots + \frac{1}{a_k}}}} = \frac{p_k}{q_k}$$

EXERCISES Suppose p_k , q_k are coprime. Prove that $p_k = a_k p_{k-1} + p_{k-2}$, $q_k = a_k q_{k-1} + q_{k-2}$ for $k \ge 2$. Hint: Induction $[a_0; a_1, \ldots, a_k] \rightarrow [a_1; a_2, \ldots, a_k]$.

Prove that $p_{k-1}q_k - p_kq_{k-1} = (-1)^k$ for $k \ge 1$.

Prove that $q_k q_{k-2} - p_k q_{k-2} = (-1)^{k-1} a_k$ for $k \ge 2$.

Prove that $\left| \alpha - \frac{p_k}{q_k} \right| \le \frac{1}{q_k q_{k+1}}, k \ge 0.$

(Hard, easy if replace 5 by 2) Prove that at least one of the three holds:

$$\left|\alpha - \frac{p_k}{q_k}\right| \le \frac{1}{q_k^2 \sqrt{5}}, \left|\alpha - \frac{p_{k-1}}{q_{k-1}}\right| \le \frac{1}{q_{k-1}^2 \sqrt{5}}, \text{ or } \left|\alpha - \frac{p_{k-2}}{q_{k-2}}\right| \le \frac{1}{q_{k-2}^2 \sqrt{5}}.$$

Convergents are the best rational approximation in the following sense:

Given α and integer Q > 1, we want to find $\frac{a}{b}$ such that $|b| \leq Q$ and $|\alpha b - a|$ is the smallest possible.

<u>CLAIM</u> Must have $\frac{a}{b} = \frac{p_k}{q_k}$. (With possible exception of k = 0, 1.)

<u>WHY/EXERCISES</u> Suppose not: pick the largest k such that $\frac{a}{b}$ is between $\frac{p_{k-1}}{q_{k-1}}$ and $\frac{p_k}{q_k}$.

Then $\left|\frac{a}{b} - \frac{p_{k-1}}{q_{k-1}}\right| \ge \frac{1}{bq_{k-1}}$, easy. Then $\left|\frac{a}{b} - \frac{p_{k-1}}{q_{k-1}}\right| \le \left|\frac{p_k}{q_k} - \frac{p_{k-1}}{q_{k-1}}\right| = \frac{1}{q_kq_{k-1}}$ from last exercise.

On the other hand $\left|\alpha - \frac{a}{b}\right| \geq \left|\frac{p_{k+1}}{q_{k+1}} - \frac{a}{b}\right| \geq \frac{1}{bq_{k+1}}$. So $\left|\alpha b - a\right| \geq \frac{1}{q_{k+1}}$ but $\left|\alpha q_k - p_k\right| \leq \frac{1}{q_{k+1}}$.

So
$$b > q_k$$
.

Theorem 1.5.3 (Liouville's theorem (Joseph Liouville, 1809-1882)). If α is an algebraic irrational of degree $n \ge 2$. Then $\left| \alpha - \frac{p}{q} \right| \ge \frac{c(\alpha)}{q^n}$ with $c(\alpha) > 0$.

Corollary: $\alpha = \sum_{n=1}^{\infty} \frac{1}{10^{n!}}$ is transcendental. (the rough idea is that if an irrational number is approximated too well then it is transcendental)

1.6 Sphere Packing

Denote balls: $B_r(x_0) := \{x : ||x - x_0|| \le r\}.$

Definition 1.6.1. A sphere packing is a (usually infinite) collection of balls $B_r(x_i)$ with the

same radius with pairwise non-intersecting interiors.

The *density* of a sphere packing σ is defined as

$$\sigma = \limsup_{R \to \infty} \frac{\operatorname{vol}\left(B_R(0) \cap \bigcup_i B_r(x_i)\right)}{\operatorname{vol}B_R(0)}$$

Generally we want to find the largest density of a sphere packing in \mathbb{R}^n . We know n = 1, 2, 3, 8, 24.

If centers x_i forms a lattice, then it is called a lattice (sphere) packing. For densest lattice packings, we know n = 1, 2, 3, 4, 5, 6, 7, 8, and 24.

<u>REMARK/EASY EXERCISE</u> If $\{x_i\}$ forms a lattice $\Lambda \subset \mathbb{R}^n$, $\sigma(\Lambda) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)} \frac{\rho^n}{\det \Lambda}$ where ρ is called the packing radius, which is defined by $\rho(\Lambda) = \frac{1}{2} \min_{x \in \Lambda \setminus \{0\}} \|x\|$. If $\Lambda_1 \sim \Lambda_2$ then $\sigma(\Lambda_1) = \sigma(\Lambda_2)$.

For $n = 1, \sigma(\Lambda) = 1$.

For n = 2, $\rho(\mathbb{Z}^2) = \frac{1}{2}$, det $\mathbb{Z}^2 = 1$, $\sigma(\mathbb{Z}^2) = \frac{\pi}{4}$. $\rho(A_2) = \frac{\sqrt{2}}{2}$, det $A_2 = \sqrt{3}$, $\sigma(A_3) = \pi \frac{1}{2\sqrt{3}}$. (locally denest) (Best lattice packing by Gauss, best packing overall by Laselo Fejes Toth (1915-2005))

For $n = 3, \Lambda = A_3 = D_3, \rho(\Lambda) = \frac{\sqrt{2}}{2}, \det \Lambda = 2, \sigma(\Lambda) = \frac{4\pi}{3} \frac{1}{4\sqrt{2}} = \frac{\pi}{3\sqrt{2}}$. (not locally denest) (Best lattice packing by Gauss, best packing overall by T.Hales (1958-))

There is a continuum of non-equivalent non-lattice densest packings.

12 balls touching the ball of the same radius.

For
$$n = 4$$
 compare A_4, D_4 .
 $\rho(A_4) = \rho(D_4) = \frac{\sqrt{2}}{2}$. det $A_4 = \sqrt{5}$. And det $D_4 = 2 < \sqrt{5}$.
 $\sigma(D_4) = \frac{\pi^2}{2} \frac{1}{8} = \frac{\pi^2}{16} \approx 0.617$.

Densest lattice packing (Korkin Zolotaren) 24 vectors of length $\sqrt{2} = (\pm 1, 0, \pm 1, 0)$, 24 balls touching central ball (cannot have more by musin, 2008)

For
$$n = 5$$
, consider D_5

.

-

$$\rho(D_5) = \frac{\sqrt{2}}{2}, \det D_5 = 2. \ \sigma(D_5) = \frac{\pi^2}{15\sqrt{2}} \approx 0.465$$

Densest lattice packing (Korkin Zolotaren), 40 balls touching central ball.

For n = 8, consider E_8 .

 $\rho(E_8) = \frac{\sqrt{2}}{2}, \det E_8 = 1, \sigma(E_8) = \frac{\pi^4}{24} \frac{1}{16} = \frac{\pi^4}{384} \approx 0.254$. Densest lattice packing(Blichfeldt), densest overall(M. Vyazovska, 1984-)

240 vectors of length $\sqrt{2}$: $(\pm 1, 0, \pm 1, 0, ...) (-\frac{1}{2}, -\frac{1}{2}, ...)$ with an even number of $-\frac{1}{2}$ turned into positive ones.

240 balls touching the central ball, cannot fir more (Odlyzko and sloane, 1979) (it is rigid) For n = 7, $\rho(D_7) = \frac{\sqrt{2}}{2}$, det $D_7 = 2$. $\rho(E_7) = \frac{\sqrt{2}}{2}$, det $E_7 = \sqrt{2}$. $\sigma(E_7) = \frac{\pi^3}{105} \approx 0.292$. Densest lattice (Blichfeldt), not rigid. For n = 6, $\rho(D_7) = \frac{\sqrt{2}}{2}$, det $D_7 = 2$. $\rho(E_7) = \frac{\sqrt{2}}{2}$, det $E_7 = \sqrt{3}$. $\sigma(E_7) = \frac{\pi^3}{48\sqrt{3}} \approx 0.373$. Densest lattice (Blichfeldt)

1.7 Leech Lattice

John Leech, 1926-1992

Consider \mathbb{R}^{26} , number coordinates, $D_{26} \subset \mathbb{Z}^{26} : \sum_{k=0}^{2} 5 \equiv 0 \pmod{2}$ $u = (\frac{1}{2}, \dots, \frac{1}{2}).$ $D_{26}^{+} = D_{26} \cup (D_{26} + u)$

$$\sum_{k=0}^{24} = k^2 = 4900 = 70^2.$$

(No other integer satisfies this afterwards)

 $w_+ = (0, 1, \dots, 24, 70), w_- = (0, 1, \dots, 24, -70), W_+, W_- \in D_{26}.$ $\sum_{k=0}^{24} \pm 70 = \frac{25 \cdot 24}{2} \pm 60 \equiv 0 \pmod{2}.$

Look at the hyperplane $H \subset \mathbb{R}^{26} = \{x : \langle x, w_{-} \rangle = 0\}.$

 $\Lambda_{25} = D_{25}^+ \cap H$ is a lattice of rank 25. We see that w_+ lies in the lattice. Take $L = w_+^{\perp} \subset H$, dim L = 24. Define Λ_{24} to be the orthogonal projection of Λ_{25} onto L.

 Λ_{24} is discrete because span $(w_+) \subset H$ is a lattice subspace.

 Λ_{24} is the Leech lattice.

Useful formula for the length.

Pick $(x_0, x_1, \ldots, x_{25})$ in Λ_{25} , what is the length of projection in Λ_{24} ?

Let
$$\hat{x} \in \Lambda_{24}$$
 be the projection: $\hat{X} = x - \alpha w_+$ so that $\langle \hat{x}, w_+ \rangle = 0$. So $\langle x, w_+ \rangle - \alpha \langle w_+, w_+ \rangle = 0 \implies \frac{\langle x, w_+ \rangle}{\langle w_+, w_+ \rangle}$.
 $\|\hat{x}\|^2 = \|x\|^2 - \|\alpha w_+\|^2 = \|x\|^2 - \frac{\langle x, w_+ \rangle^2}{\langle w_+, w_+ \rangle}$
 $x \in \Lambda_{25} \subset H \implies \langle x, w_- \rangle = 0$. $w_+ = w_- + 140 \implies \langle x, w_+ \rangle = \langle x, w_- \rangle + 140x_{25} = 0$

 $140x_{25}$.

 $\begin{aligned} \|\widehat{x}\|^2 &= \sum_{k=0}^{25} x_k^2 - \frac{140^2 x_{25}^2}{\sum_{k=0}^{24} k^2 + 70^2} = \sum_{k=0}^{25} x_k^2 - 2 \cdot x_{25}^2 = \sum_{k=0}^{24} x_k^2 - x_{25}^2. \end{aligned}$ Some shortest non-zero vectors in Λ_{24} . $x = (0, 1, -1, -1, 1, 0, \dots, 0) \in D_{25} \subset D_{26}^+.$ $\langle x, w_- \rangle &= 0 + 1 - 2 - 3 + 4 = 0 \implies x \in \Lambda_{25},$ also $\langle x, w_+ \rangle = 0 + 1 - 2 - 3 + 4 = 0 \implies x \in \Lambda_{24}, \|x\| = 2.$

Pick
$$y = \left(\frac{1}{2}, \underbrace{-\frac{1}{2}, \ldots, -\frac{1}{2}}_{9 \text{ times}}, \underbrace{\frac{1}{2}, \ldots, \frac{1}{2}}_{15 \text{ times}}, \underbrace{\frac{3}{2}}_{15 \text{ times}}\right) \cdot y - u \in D_{26} \implies y \in D_{26}^+$$

 $\langle y, w_- \rangle = 0, \|\widehat{y}\|^2 = \sum_{k=0}^{24} \frac{1}{4} - \frac{9}{4} = \frac{25-9}{4} = 4.$

There are 196560 vectors of length 2. (<- many balls touching the central ball) cannot put more (Odlyzko & Sloane, 1979) and this configuration is rigid.

Rigid phenomenon in dim 2, 8, and 24.

EXERCISES

- 1. det $D_{26} = 2$, det $D_{26}^+ = 1$, det $\Lambda_{25} = 70\sqrt{2}$, det $\Lambda_{24} = 1$.
- 2. For any $x \in \Lambda_{24}$, $||x||^2$ is an even integer.
- 3. $\min_{x \in \Lambda_{24} \setminus 0} ||x|| = 2.$
- 4. $\Lambda_{24}^* \cong \Lambda_{24}$.

What happens if $n = \dim V$ is large?

Gilbert-Varshamov Bound (E.N. Gilbert, 1923-2013, R.R Varshamov, 1927-1999)

Theorem 1.7.1. *THere is a sphere packing in* \mathbb{R}^n *of density* $\geq 2^{-n}$.

Proof. Consider a saturated packing (young cannot add another ball to the poacking) of balls of radius 1.

Claim: its density $\geq 2^{-n}$.

Why? If $\bigcup_{i \in I} B(x, 1)$ is saturated then $\bigcup_{i \in I} B(x_i, 2) = \mathbb{R}^n$.

If it does not cover, say point $y \in \mathbb{R}^n$. We can add a ball B(y) to the packing. If $x_i \in B_{R-1}(0)$ then $B_1(x_i) \subset B_R(0)$. If $B_2(x_i) \cap B_{R-3}(0) \neq \emptyset$ then $x_i \in B_{R-1}$.

$$\sum_{x_i \in B_{R-1}(0)} \operatorname{vol} B_2(x_i) \ge \operatorname{vol} B_{R-3}(0) \implies \sum_{x_i \in B_{R-1}} 2^n \operatorname{vol} B_1(x_i) \ge \operatorname{vol} B_{R-3}(0).$$

Hence

$$\operatorname{vol}\left(B_{R}(0) \cap \bigcup_{i} B_{1}(x_{i})\right) \geq \sum_{x_{i} \in B_{R-1} \operatorname{vol} B_{1}(x_{i}) \geq 2^{-n} \operatorname{vol} B_{R-3}}(0)$$

Take $R \to \infty$.

1.8 Lattice Packings

We will prove "today" for any $0 < \alpha < 2^{-n}$ there is a lattice $\Lambda \subset \mathbb{R}^n$ with $\sigma(\Lambda) \ge a$. Later in this course $\sigma(\Lambda) \ge 2^{-n}$.

Real Minkowski-Hlawka theorem is $\sigma(\Lambda) \ge 2 \cdot \zeta(n) 2^{-n}$ (assuming n > 1) where $\zeta(n) = \sum_{k=1}^{\infty} \frac{1}{k^n}$.

What's known: There is a lattice $\Lambda \subset \mathbb{R}^n \sigma(\Lambda) \geq 1.68n2^{-n}$ (Davenport-Rogers, 1947)

 $\sigma(\Lambda) \ge 2(n-1)\zeta(n)2^{-n}$ (K. Ball, 1992)

 $\sigma(\Lambda) \geq \frac{1}{2}(n \ln \ln n)2^{-n}$ for infinitely many *n*. (Venkatesh, 2013)

What's going on with packing radius? Say we scale to $\det \Lambda = 1$.

$$\sigma(\Lambda) = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)\frac{\rho^n(\Lambda)}{\det\Lambda}} \ge 2^{-n}$$
$$\implies \rho(\Lambda) \ge \frac{1}{2} \frac{\left(\Gamma\left(\frac{n}{2}+1\right)\right)^{1/n}}{\sqrt{\pi}} \approx \frac{\sqrt{\pi}}{2\sqrt{2\pi e}}$$

 $\min_{x \in \Lambda \setminus \{0\}} \|x\| \ge \sqrt{\frac{n}{2\pi e}}$. Try to construct explicitly a lattice in \mathbb{R}^n of det $\Lambda = 1$ with $\min_{x \in \Lambda \setminus \{0\}} \|x\| \ge 10^{-9}\sqrt{n}$.

So the lower bound is not that trivial.

Now we go back to our theorems.

Theorem 1.8.1. For any $0 < \alpha < 2^{-n}$ there is a lattice $\Lambda \subset \mathbb{R}^n$ with $\sigma(\Lambda) \ge a$. Later in this course $\sigma(\Lambda) \ge a$.

This theorem can be deduced from the following theorem:

Theorem 1.8.2. If $M \subset \mathbb{R}^n$ is a bounded Jordan-measurable set of vol M < 1. Then there is a lattice $\Lambda \subset \mathbb{R}^n$ such that $\det \Lambda = 1$ and $M \cap (\Lambda \setminus \{0\}) = \emptyset$.

Proof. Pick $\alpha > 0$ so small that

1. $M \cap \{x_n = 0\}$ It is entirely contained in the cube $|x_i| < \alpha^{-\frac{1}{\alpha-1}}, i = 1, \dots, n-1$.

2. Let $H_k = \{x_n = k\alpha, k \in \mathbb{Z}\}.$

$$\alpha \sum_{k=-\infty}^{\infty} \operatorname{vol}_{n-1}(M \cap H_k) < 1.$$

Define the lattice Λ as follows: pick the first n-1 basis vectors $u_i = \alpha^{-\frac{1}{n-1}} e_i$ for i = $1, \ldots, i - 1$. Let Π be the fundamental parallelepiped of u_1, \ldots, u_{n-1} for $x \in \Pi$, let $u_n(x) = \alpha e_n + x$ and let Λ_x be the lattice with basis $u_1, \ldots, u_{n-1}, u_n(x)$.

$$\det \Lambda(x) = \operatorname{vol} \Pi \cdot \alpha = \left(\alpha^{-\frac{1}{n-1}}\right)^{n-1} \alpha = 1.$$

Claim: for some x, $|(\Lambda \setminus \{0\}) \cap M| = \emptyset$.

$$|(\Lambda \setminus \{0\}) \cap M| = \sum_{k \in \mathbb{Z} \setminus \{0\}} |M \cap (\Lambda_0 + kx)|$$

$$\begin{split} \frac{1}{\operatorname{vol}\Pi} \int_{x\in\Pi} |M \cap (\Lambda(x) \setminus \{0\})| \, \mathrm{d}x &= \alpha \sum_{k\in\mathbb{Z}\setminus\{0\}} \int_{\Pi} |M \cap (\Lambda_0 + kx)| \, \mathrm{d}x \\ &= \alpha \sum_{k=-\infty}^{\infty} \operatorname{vol}_{n-1}(M \cap H_k) < 1. \end{split}$$

So for some *x* we have $(\Lambda(x) \setminus \{0\}) \cap M = \emptyset$.

Choose $M = B_r(0)$ such that vol $B_r(0) = 2^n \cdot a < 1$. Construct a lattice $\Lambda \cap B_r(0) = 0$ and det $\Lambda = 1$. The $\min_{x \in \Lambda \setminus \{0\}} ||x|| \ge r \implies \rho(\Lambda) \ge \frac{r}{2}$. Then

$$\sigma(\Lambda) \ge \left(\frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}r^n\right)2^{-n} = a$$

Lemma 1.8.1. Let $M \subset V$ be a Lebesgue measurable. Let $\Lambda \subset V$ be a lattice. Let Π be a fundamental parallelepiped of Λ . Define $f: V \to \mathbb{R}$ by $f(x) = |M \cap (x + \Lambda)|$. Then

$$\int_{\Pi} f(x) \, \mathrm{d}x = \mathrm{vol}\, M$$

Proof. For $u \in \Lambda$. Let $f_a(x) = \mathbf{1}_M(x+u), f(x) = \sum_{u \in \Lambda} f_u(x)$. So

$$\int_{\Pi} f(x) \, \mathrm{d}x = \sum_{u \in \Lambda} \int_{\Pi} f_u(x) \, \mathrm{d}x = \sum_{u \in \lambda} \operatorname{vol}((\Pi + u) \cap M)$$

 $\Pi + u \text{ covers } V \text{ without holes } \implies \sum_{u \in \lambda} \operatorname{vol}((\Pi + u) \cap M) = \operatorname{vol} M.$

Lemma 1.8.2.

$$\int_{\Pi} |M \cap (x + \Lambda)| \, \mathrm{d}x = \mathrm{vol}\, M$$

Corollary 1.8.1. For $k \in \mathbb{Z} \setminus \{0\}$, $\int_{\Pi} |M \cap (kx + \Lambda)| dx = \operatorname{vol} M$ If k > 0, let y = kx, $x = k^{-1}y$.

$$\int_{\Pi} |M \cap (x + \Lambda)| \, \mathrm{d}x = \operatorname{vol} M = k^{-n} \int_{k\Pi} |M \cap (y + \Lambda)| \, \mathrm{d}y$$

($k\Pi$ is the disjoint union of k^n lattice shifts of Π .)

For k < 0, make y = -x and reduce to k > 0.

Some sharpening:

- 1. There exists $\Lambda \subset \mathbb{R}^n$, $\sigma(\Lambda) \geq 2^{-n}$ through compactness in the space of lattices
- 2. If *M* is symmetric, we can require instead that vol M < 2. (non-zero vectors come in pairs) $\implies \exists \Lambda, \sigma(\Lambda) \geq 2^{-n+1}$.
- 3. (Hlawka) If *M* is star shaped (for all $x \in M$, $[0, x] \subset M$) about 0 and M = -M. We can require vol $M < 2\zeta(n)$.

A lattice vector $u \in \Lambda \setminus \{0\}$ is primitive if you cannot write u = mv for $v \in \Lambda, |m| \ge 2$.

- 1. If *M* is star shaped and contains a non-zero lattice point, then it contains a primitive lattice point.
- 2. The density of primitive points is $\frac{1}{\zeta(n)}$.

1.9 Fourier Transform

(J. Fourier, 1786-1830) Given $f : \mathbb{R}^n \to \mathbb{C}$ such that $\int_{\mathbb{R}^n} |f(x)| \, dx$, $\int_{\mathbb{R}^n} |f(x)|^2 \, dx < \infty$. We define

$$\widehat{f}(y) = \int_{\mathbb{R}^n} e^{-2\pi i \langle x, y \rangle} f(x) \, \mathrm{d}x \iff f(x) = \int_{\mathbb{R}^n} e^{2\pi i \langle x, y \rangle} \widehat{f}(y) \, \mathrm{d}y.$$

 $\widehat{f}: \mathbb{R}^n \to \mathbb{C}.$

 $f(x) = e^{-\pi \|x\|^2} \iff \widehat{f}(y) = e^{-\pi \|y\|^2}.$

Poisson summation formula: if $|f(x)| + |\hat{f}(x)| \le \frac{C}{(1+\|\cdot\|+\|\cdot\|)^{n+\delta}}$ with $c, \delta > 0$ (admissible). Then $\sum_{u \in \mathbb{Z}^n} f(u) = \sum_{u \in \mathbb{Z}^n} \widehat{f}(u)$. **Lemma 1.9.1.** If $f, \hat{f} : \mathbb{R}^n \to \mathbb{C}$ are admissible and $\Lambda \subset \mathbb{R}^n$ is a lattice. Then

$$\sum_{u \in \Lambda} f(u) = \det \Lambda \sum_{\ell \in \lambda^*}$$

Proof. Let u_1, \ldots, u_n be a basis of Λ and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be linear such that $T(e_j) = u_j for j = 1, \ldots, n$

SO
$$\Lambda = T(\mathbb{Z}^n)$$
. So $\sum i \in \Lambda f(u) = \sum_{u \in \Lambda} f(u) = f(u) = \sum_{u \in \Lambda} f(Tu)$.

Define

$$g(x) = f(Tx), \implies \sum_{u \in \Lambda} \sum_{u \in \Lambda} f(u) = \sum_{u \in \Lambda} g(u) = \sum_{u \in \mathbb{Z}^n} \widehat{g}(u).$$
$$\widehat{g}(y) = \int_{\mathbb{R}^n} e^{-2\pi i \langle y, x \rangle} g(x) \, \mathrm{d}x = \int_{\mathbb{R}^n} e^{-2\pi i \langle y, x \rangle} f(Tx) \, \mathrm{d}x.$$

Let z = Tx, then $dx = \det T^{-1}$.

Theorem 1.9.1 (Cohn, Elkies, 2003). *Suppose that there is an admissible function* $f : \mathbb{R}^n \to \mathbb{R}$ *such that* $\hat{f} : \mathbb{R}^n \to \mathbb{R}$ *is also admissible and*

- 1. $f(x) \leq 0$ for every $x \in \mathbb{R}^n$ such that ||x|| > 1.
- 2. $\widehat{f}(y) \ge 9$ for all $y \in \mathbb{R}^n$

Then the density of a sphere packing in $\mathbb{R}^n \leq \frac{\pi^{11/2}}{\Gamma(\frac{n}{n+2})} \frac{f(0)}{2^n} \widehat{f}(0)$

Proof. Let m = .

Proof. Sketch, for any, not necessarily lattice, packing

First, prove for periodic packings. (the centers written as $v_i + \Lambda$, v_i , i = 1, ..., N are distinct cosets \mathbb{R}^n / Λ representatives) Scale the radius to $\frac{1}{2}$.

Consider the sum

$$S = \sum_{i,j=1}^{N} \sum_{u \in \Lambda} f(v_i - v_j + u).$$

If $i \neq j v_i + u$ and v_j are different centers.

If i = j, $u \neq 0$, then $v_i + u$ and $v_j = v_i$ are different centers.

We have

$$||v_i - v_j + u|| \ge 1$$
 if $i \ne j$ or $i = j, u \ne 0$

So $f(v_i - v_j + u) \ge 0$. By Poisson, $\sum_{u \in \Lambda} f(v_i - v_j + u) = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{2\pi i \langle v_i - v_j, \ell \rangle} \widehat{f}(\ell)$.

$$S = \frac{1}{\det \Lambda} \sum_{i,j=1}^{N} \sum_{\ell \in \Lambda^*} e^{2\pi i \langle v_i - v_j, \ell \rangle} \widehat{f}(\ell)$$
$$= \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell) \sum_{i,j=1}^{N} e^{2\pi i \langle v_i - v_j, \ell \rangle}$$
$$= \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell) \sum_{i=1}^{N} \left| e^{2\pi i \langle v_i - v_j, \ell \rangle} \right|^2$$
$$\ge \frac{1}{\det \Lambda} \widehat{f}(0) \cdot N^2.$$

Hence we have

$$\frac{1}{\det\Lambda} N^2 \widehat{f}(0) \le S \le N f(0)$$
$$\implies N f(0) \ge \frac{1}{\det\Lambda} \implies \frac{N}{\det\Lambda} \le \frac{f(0)}{\widehat{f}(0)}$$

Take a large ball of volumn V, each coset $v_i + \Lambda$ contains roughly $\frac{V}{\det \Lambda}$. number of centers inside $\frac{NV}{\det \Lambda}$, each contributes volume $\frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}\frac{1}{2^n}$.

So the density

$$\frac{NV}{\det\Lambda} \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)} \frac{1}{2^n} \frac{1}{V} = \frac{N}{\det\Lambda} \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)} \frac{1}{2^n} \le \frac{f(0)}{\widehat{f}(0)} \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)} \frac{1}{2^n}$$

For arbitrary packing: Claim: then density of an "arbitrary" packing can be approximated arbitrarily close by a periodic packing.

Why? Pick any dense packing with density d > 0. Consider a really large cube such that all balls inside that cube approximate the volume of the cube with density $\geq \sigma - \varepsilon$.

Now, tile \mathbb{R}^n with lattice translates of the cube and balls inside. You get a periodic packing with density $\geq \sigma - \varepsilon$.

A bunch of useful results and methods by W Banaszczyk (1993).

Goal:

Theorem 1.9.2. Pick any $\gamma > \frac{1}{2\pi}$, then for all sufficiently large $n \ge n_0(\gamma)$, for any lattice $\Lambda \subset \mathbb{R}^n$ such that det $\Lambda = 1$ there is $u \in \Lambda \setminus \{0\}$ such that $||u|| \le \sqrt{\gamma n}$.

$$\sum_{u \in \Lambda} f(u) = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell), \sum_{u \in \Lambda} e^{-\pi \|u\|^2} = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi \|\ell\|^2}$$

Lemma 1.9.2. For $0 < \tau < 1$,

$$\sum_{u\in\Lambda}e^{-\pi\tau\|u\|^2}\leq \tau^{-n/2}\sum_{u\in\Lambda}e^{-\pi\|u\|^2}$$

Proof.

$$\begin{split} \sum_{u \in \Lambda} e^{-\pi\tau \|u\|^2} &= \sum_{u \in \sqrt{\tau}\Lambda} e^{-\pi \|u\|^2} \\ &= \frac{1}{\det(\sqrt{n}\Lambda)} \sum_{\ell \in (\sqrt{\tau}\lambda)^*} e^{-\pi \|\ell\|^2} = \tau^{-n/2} \frac{1}{\det\Lambda} \sum_{\ell \in (\sqrt{\tau}\Lambda)^*} e^{-\pi \|\ell\|^2} \\ &= \tau^{-n/2} \frac{1}{\det\Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi \|\ell\|^2/\tau} \\ &\leq \tau^{-n/2} \frac{1}{\det\Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi \|\ell\|^2} = \tau^{-n/2} \frac{1}{\det\Lambda} \sum_{u \in \Lambda} e^{-\pi \|u\|^2} \end{split}$$

Lemma 1.9.3. For any $\gamma > \frac{1}{2\pi}$,

$$\sum_{u \in \Lambda, \|u\| \ge \sqrt{\gamma n}} e^{-\pi \|u\|^2} \le \left(e^{-\pi \gamma + \frac{1}{2}} \sqrt{2\pi \gamma} \right)^n \sum_{u \in \Lambda} e^{-\pi \|u\|^2}$$

Proof. Choose $0 < \tau < 1$. (to be adjusted later)

$$\sum_{u \in \Lambda, \|u\| \ge \sqrt{\gamma n}} e^{-\pi \|u\|^2} \le e^{-\pi \tau \gamma n} \sum_{u \in \Lambda, \|u\| \ge \sqrt{\gamma n}} \sqrt{\gamma n} e^{-\pi \|u\|^2} e^{\pi \tau \|u\|^2}$$
$$\le e^{-\pi \tau \gamma n} \sum_{u \in \Lambda} \sqrt{\gamma n} e^{-\pi \|u\|^2} e^{-\pi (1-\tau) \|u\|^2}$$
$$\le e^{-\pi \tau \gamma n} (1-\tau)^{\frac{n}{2}} \sum_{u \in \Lambda} \sqrt{\gamma n} e^{-\pi \|u\|^2} e^{-\pi \|u\|^2}$$

Choose $\tau = 1 - \frac{1}{2\pi\gamma}$. Then RHS $= \left(e^{-\pi\gamma + \frac{1}{2}}\sqrt{2\pi\gamma}\right)^n \sum_{u \in \Lambda} \sqrt{\gamma n} e^{-\pi ||u||^2} e^{-\pi ||u||^2}$ Now, pick some $\frac{1}{2\pi} < \gamma' < \gamma$. Let $\alpha = \sqrt{\frac{\gamma'}{\gamma}} < 1$. Consider lattice $\alpha \Lambda$. Apply lemma:

$$\sum_{\substack{u \in \alpha \Lambda \\ \|u\| = \sqrt{\gamma n}}} e^{-\pi \|u\|^2} \le \left(e^{-\pi \gamma' + \frac{1}{2}\sqrt{2\pi\gamma'}} \right) \sum_{u \in \alpha \Lambda} e^{-\pi \|u\|^2}$$
$$\sum_{\substack{u \in \alpha \Lambda \\ \|u\| = \sqrt{\gamma n}}} e^{-\pi \|u\|^2} \ge \left(1 - e^{-\pi \gamma' + \frac{1}{2}\sqrt{2\pi\gamma'}} \right) \sum_{u \in \alpha \Lambda} e^{-\pi \|u\|^2}$$

From Poisson,

$$\sum_{u \in \alpha\Lambda} = \frac{1}{\det(\alpha\Lambda)} \sum_{\ell \in (\alpha\Lambda)^*} e^{-\pi \|\ell\|^2} > \frac{1}{\det(\alpha\Lambda)}$$
$$= \frac{1}{\alpha^n \det \Lambda} = \frac{1}{\alpha^n} > 1$$

If *n* is large, there is $u \in \alpha \Lambda \setminus \{0\}$ with $||u|| < \sqrt{\gamma' n} \implies$ there is $u \in \Lambda \setminus \{0\}$ with $||u|| < \frac{\sqrt{\gamma' n}}{\alpha} = \sqrt{\gamma n}$.

Density of lattice packing:

$$\rho(\Lambda) \leq \frac{1}{2}\sqrt{\gamma n} \approx \frac{1}{2}\sqrt{\frac{n}{2\pi}}$$

$$\sigma(\Lambda) = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)} \frac{\rho(\Lambda)}{\det \Lambda} \approx \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)} \frac{1}{2^n} \left(\frac{n}{2\pi}\right)^{\frac{n}{2}}$$
$$\approx \frac{\pi^{n/2}}{\left(\frac{n}{2}\right)^{n/2} e^{-n/2} 2^n} \left(\frac{n}{2\pi}\right)^{\frac{n}{2}} = \frac{e^{n/2}}{2^n} \approx (0.82)^n \to 0.$$

<u>EXERCISE</u> We proved that $\sigma(\Lambda) \leq (0.82)^n \approx \left(\frac{\sqrt{e}}{2}\right)^n$. Prove the same bound for any packing.

Prove for periodic packings first, then consider the sum $\sum_{i,j=1}^{N} e^{-\pi \|v_i - v_j + u\|}$.

1.10 Covering Radius

Definition 1.10.1. Suppose $\Lambda \subset V$ a lattice.

$$\mu(\Lambda) = \max_{x \in V} \operatorname{dist}(x, \Lambda) = \max_{x \in \Pi} \operatorname{dist}(x, \Lambda).$$

This is the smallest radius such that the Balls $B_r(u), u \in \Lambda$ cover V.

Thickness:

$$\liminf_{\text{vol of space} \to \infty} = \frac{\text{total volume of balls}}{\text{total volume of space}} \ge 1$$

We are generally interested in the thinnest lattices.

EXERCISES Find the covering radius of
$$Z^n\left(\frac{\sqrt{n}}{2}\right)$$
, $A_n^*\left(\frac{1}{2}\sqrt{\frac{n(n+2)}{3(n+1)}}\right)$, $D_n\left(\frac{\sqrt{n}}{2}\right)$ for $n \ge 4, 1$ for D_3 , $E_8(1)$, Leech lattice (hard) $\sqrt{2}$.

If u_1, \ldots, u_n are linearly independent then $\mu(\Lambda) \leq \frac{1}{3} \sum_{i=1}^n ||u_i||$.

Definition 1.10.2. The global maximum of $x \to \text{dist}(x, \Lambda)$ is called a deep hold of Λ , the local maximum is called a shallow hole.

<u>EXERCISE</u> Show that (1, 0, 0) "octahedral hole" is a deep hole for D_3 and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ "tetrahedral hole" is a shallow hole.

Main Goal: ("transference" theorem)

Theorem 1.10.1. *If* $\Lambda \subset \mathbb{R}^n$ *is a lattice then*

$$\frac{1}{4} \le \mu(\Lambda)\rho(\Lambda^*) \le \operatorname{const}(n)$$

We will eventually show that $const(n) = \frac{n}{2}$. Elementary: $const(n) = \frac{n^{3/2}}{4}$. (Lagarias) First result: $const(n) \approx (n!)^2$ (Khinchin)

Lower Bound:

Construct $u_1, \ldots, u_n \in \Lambda$ as follows: ("successive minima")

$$\|u_1\| = \min_{u \in \Lambda \setminus \{0\}} \|u\|$$
$$\|u_2\| = \min_{\substack{u \in \Lambda \\ u, u_1 \text{ linearly independent}}} \|u\|$$
$$\vdots$$

So $||u_1|| \le ||u_2||, \ldots$

Pick $x = \frac{1}{2}u_n$.

<u>**CLAIM**</u> dist $(x, \Lambda) = \frac{1}{2} ||u_n||.$

Suppose not. There is a $u \in \Lambda$ such that

$$\left\|\frac{1}{2}u_n - u\right\| < \frac{1}{2} \|u_n\| \implies \|u\| < \|u_n\| \implies u \in \operatorname{span} \{u_1, \dots, u_{n-1}\}.$$

Then for $v = 2u - u_n$ we have

$$v \notin \operatorname{span} \{u_1, \dots, u_{n-1}\}, \|v\| = 2 \left\| u - \frac{1}{2} u_n \right\| < \|u_n\|,$$

contradiction.

Now, pick $w \in \Lambda^*$ such that $||w|| = 2\rho(\Lambda^+)$. We have for some k = 1, ..., n, $\langle w_1, U_K \rangle \in \mathbb{Z}$ and $\neq 0 \implies |\langle w_1, U_K \rangle| = 1$.

 $\implies ||w|| ||u_k|| \ge 1 \implies ||w|| ||u_n|| \ge 1$. So

$$2\rho(\Lambda^*) \cdot 2\mu(\Lambda) \ge 1 \implies \rho(\Lambda^*) \cdot \mu(\Lambda) \ge \frac{1}{4}$$

Upper bound (elementary) J.C. Lagarias, H.W. Lenstra Jr, C.-P. Schnorr (1990)

$$\sigma(\Lambda)\rho(\Lambda^*) \le \frac{n^{3/2}}{4}.$$

Lemma 1.10.1. Suppose $\Lambda \subset \mathbb{R}^n$ is a lattice then $\rho(\Lambda)\rho(\Lambda^*) \leq \frac{n}{4}$.

Proof. Minkowski convex body (long time ago)

$$\rho(\Lambda) \leq \frac{1}{2}\sqrt{n}(\det\Lambda)^{\frac{1}{n}}, \ \rho(\Lambda^*) \leq \frac{1}{2}\sqrt{n}(\det\Lambda^*)^{\frac{1}{n}}$$

 $(\det \Lambda)(\det \Lambda^*) = 1. \text{ Suppose } u_1, \dots, u_n \text{ is a basis of } \Lambda, u_1^*, \dots, u_n^* \text{ a basis of } \Lambda^*. \langle u_i^*, u_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

Proof. By induction on n.

Base case: n = 1, $\Lambda = \alpha \mathbb{Z}$, $\Lambda^* = \alpha^{-1} \mathbb{Z}$. $\mu(\Lambda) = \frac{1}{2} \alpha$ and $\rho(\Lambda^*) = \frac{1}{2\alpha}$. $\mu(\lambda)\rho(\Lambda^*) = \frac{1}{4}$.

Induction hypothesis

Induction step Pick $u \in \Lambda \setminus \{0\}$ so that $||u|| = 2\rho(\Lambda)$. Let $pr : \mathbb{R}^n \to H$ be the orthogonal projection. Let $\Lambda_1 = pr(\Lambda)$.

<u>CLAIM</u> $\Lambda_1^* \subset \Lambda \implies \rho(\Lambda^*) \ge \rho(A^*)$ must check if $x \in H$ is such that $\langle x, \operatorname{pr}(v) \rangle \in \mathbb{Z}$ for all $v \in \Lambda$. Then $\langle x, v \rangle \in \mathbb{Z}$ for all $v \le \Lambda$.

Pick any $x \in V$, need to bound $dist(x, \Lambda)$. Let y = pr(x) choose $y_1 \in \Lambda_1$ closest to y so that $||y_1 - y|| = \mu(\Lambda_1)$.

Look at the line through y_1 parallel to y. It contains points from Λ distance $||u|| = 2\rho(\Lambda)$

apart.

Pick $w \in \Lambda$ so that $||w - (x + y_1 - y)|| \le \rho(\Lambda)$. Use Pythagoras theorem, $||w - x||^2 \le \rho^2(\Lambda) + \mu^2(\Lambda_1) \implies \mu^2(\Lambda) \le \rho^2(\Lambda) + \mu^2(\Lambda_1)$. So

$$\begin{split} \rho^2(\Lambda^*)\mu^2(\Lambda) &\leq \rho^2(\Lambda^*)\rho^2(\Lambda) + \mu^2(\Lambda_1)\rho^2(\Lambda^*) \\ &\leq \left(\frac{n}{4}\right)^2 + \mu^2(\Lambda_1)\rho^2(\Lambda_1^*) \end{split}$$

We can use Fourier to prove an optimal bound $const(n) = \frac{n}{2}$.

Let's start with a lemma.

Lemma 1.10.2. Suppose $\Lambda \subset V$ a lattice and $x \in V$. Then

$$\sum_{u \in \Lambda} e^{-\pi \|x - u\|^2} \le \sum_{u \in \Lambda} e^{-\pi \|u\|^2}.$$

Proof. Using Poisson summation,

$$\sum_{u \in \Lambda} f(u) = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell).$$

Choose $f(x) = e^{-\pi ||x||^2}$ then $\hat{f}(y) = e^{-\pi ||y||^2}$. Choose $f(x) = e^{-\pi ||x-a||^2}$ then $\hat{f}(y) = e^{-2\pi i \langle y, a \rangle ||y||^2}$. So

$$\sum_{u \in \Lambda} e^{-\pi \|x-u\|^2} = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{-2\pi i \langle x, \ell \rangle} \|\ell\|^2$$
$$\leq \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi \|\ell\|^2} = \sum_{u \in \Lambda} e^{-\pi \|u\|^2}$$

EXERCISE

- 1. See if you can find an elementary proof
- $2. \ \sum_{u \in \Lambda} e^{-\pi \|x-u\|^2} \geq e^{-\|x\|^2} \sum_{u \in \Lambda} e^{-\pi \|u\|^2}.$

Lemma 1.10.3. For $0 < \tau < 1, x \in V$.

$$\sum_{u \in \Lambda} e^{-\pi\tau ||x-u||^2} \le \tau^{-n/2} \sum_{u \in \Lambda} e^{-\pi ||u||^2}.$$

We had it with x = 0, with

$$\sum_{u\in\Lambda}e^{-\pi\tau\|x-u\|^2}\leq \sum_{u\in\Lambda}e^{-\pi\tau\|u\|^2}.$$

Rescale $\Lambda = \sqrt{\tau}\Lambda$ to get

$$\sum_{u \in \Lambda e^{-\pi} ||x-u||^2} \le \sum_{u \in \Lambda} e^{-\pi ||u||^2}$$

Lemma 1.10.4. If $\Lambda \subset \mathbb{R}^n$ is a lattice, $x \in \mathbb{R}^n$ is a point. For any $\gamma > \frac{1}{2\pi}$,

$$\sum_{\substack{u\in\Lambda\\ \|u-x\|\geq \sqrt{\gamma n}}}e^{-\pi\|x-u\|^2}\leq \left(e^{-\pi\gamma+\frac{1}{2}}\sqrt{2\pi\gamma}\right)^n\sum_{u\in\Lambda}e^{-\pi\|u\|^2}.$$

Proof. Choose $0 < \tau < 1$ to be specified.

$$\begin{split} \sum_{\substack{u \in \Lambda\\ \|u-x\| \ge \sqrt{\gamma n}}} e^{-\pi \|x-u\|^2} &\leq e^{-\pi \gamma n\tau} \sum_{\substack{u \in \Lambda\\ \|u-x\| \ge \sqrt{\gamma n}}} e^{-\pi \|x-u\|^2} e^{\pi \tau \|x-u\|^2} \\ &\leq e^{-\pi \gamma n\tau} \sum_{\substack{u \in \Lambda\\ \|u-x\| \ge \sqrt{\gamma n}}} e^{-\pi (1-\tau) \|x-u\|^2} \\ &\leq e^{-\pi \gamma n\tau} (1-\tau)^{-\frac{n}{2}} \sum_{u \in \Lambda} e^{-\pi \|u\|^2}. \end{split}$$

Take $\tau = 1 - \frac{1}{2\pi\gamma}$.

Corollary 1.10.1. *Take* $\gamma = 1$ *,*

$$\sum_{\substack{u\in\Lambda\\ \|u-x\|\geq\sqrt{\gamma n}}}e^{-\pi\|x-u\|^2}\leq 5^{-n}\sum_{u\in\Lambda}e^{-\pi\|u\|^2}.$$

Now we have

Theorem 1.10.2.

$$\mu(\Lambda)\rho(\Lambda^*) \le \frac{n}{2}$$

Proof. Suppose not. Then $\mu(\Lambda)\rho(\Lambda^*) > \frac{n}{2}$. If we scale $\Lambda := \alpha \Lambda, \alpha > 0$, $\mu(\alpha \Lambda) =$

$$\begin{split} &\alpha\mu(\Lambda), (\alpha\Lambda)^* = \frac{1}{\alpha}\Lambda^*, \rho((\alpha\Lambda)^*) = \frac{1}{\alpha}\rho(\Lambda^*).\\ &\text{Let's scale so that } \mu(\Lambda) > \sqrt{n}, \rho(\Lambda^*) > \frac{\sqrt{n}}{2} \implies \text{ there is } x \in V \text{ such that } \text{dist}(x,\Lambda) > \sqrt{n}.\\ &\text{Let } L = \sum_{u \in \Lambda} e^{-\pi \|u\|^2}, L^* = \sum_{\ell \in \Lambda^*} e^{-\pi \|\ell\|^2}. \end{split}$$

$$\sum_{u \in \Lambda} e^{-\pi \|x - u\|^2} = \sum_{\substack{u \in \Lambda \\ \|u - x\| \ge \sqrt{n}}} e^{-\pi \|x - u\|^2} \le 5^{-n} L.$$

$$L^* = 1 + \sum_{\ell \in \Lambda^* \setminus \{0\}} e^{-\pi \|\ell\|^2} = 1 + \sum_{\ell \in \Lambda^* \|\ell\| \ge \sqrt{n}} e^{-\pi \|ell\|^2} \le 1 + 5^{-n} L^*$$

This $\implies (1-5^{-n})L^* \le 1 \implies L^* \le \frac{1}{1-5^{-n}} = \frac{5^n}{5^n-1}.$

We also have

$$\sum_{\ell \in \Lambda^* \setminus \{0\}} e^{-\pi \|\ell\|^2} = L^* - 1 \le \frac{1}{5^n - 1}.$$

By Poisson, $L = \frac{1}{\det \Lambda} L^*$.

Finally, getting a contradiction

$$\sum_{u \in \Lambda} e^{-\pi ||x-u||^2} \le 5^{-n} L = \frac{L^*}{5^n \det \Lambda} \le \frac{1}{\det \Lambda} \frac{1}{5^n - 1}.$$

On the other hand, by Poisson summation:

$$\sum_{u \in \Lambda} e^{-\pi ||x-u||^2} = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{2\pi i \langle \ell, x \rangle} e^{-\pi ||\ell||^2}$$
$$\sum_{\ell \in \Lambda^*} e^{2\pi i \langle \ell, x \rangle} e^{-\pi ||\ell||^2} = 1 + \sum_{\ell \in \Lambda^* \setminus \{0\}} e^{2\pi i \langle \ell, x \rangle} e^{-\pi ||\ell||^2} \ge 1 - \sum_{\ell \in \Lambda^* \setminus \{0\}} e^{-\pi ||\ell||^2} \ge 1 - \frac{1}{5^n - 1}$$

So we have

$$\frac{1}{\det \Lambda} \frac{1}{5^n - 1} \ge \frac{1}{\det \Lambda} \frac{5^n - 2}{5^n - 1}$$
$$\iff \frac{1}{5^n - 1} \le \frac{5^n - 2}{5^n - 1}$$
$$\iff 5^N \le 3$$

a contradiction. So we have proved the argument.

Later:

Corollary 1.10.2 (Flatness theorem). If $A \subset \mathbb{R}^n$ is convex, $A \cap Z^n = \emptyset$. Then there is

 $a \in \mathbb{Z}^n \setminus \{0\}$ such that $\max_{x \in A} \langle a, x \rangle - \min_{x \in A} \langle a, x \rangle \le c(n)$.

General case exercises:

- 1. Fill in gaps on ellipsoidal approximations
- 2. if K = -K, $E \subset K$ the maximum volumn ellipsoid then $E \subset K \subset \sqrt{nE}$.
- 3. (Easy) If $P \subset \mathbb{R}^2$ is a convex polygon with interger vertices and no other integer points other than vertices. Then there is a $u \in \mathbb{Z}^2$ such that $\max_{x \in P} \langle u, x \rangle \min_{x \in P} \langle u, x \rangle = 1$.
- 4. (Hard) If $P \subset \mathbb{R}^3$ is a convex polytope with integer vertices and no other integer points then there is $u \in \mathbb{Z}^3$ such that $\max_{x \in P} \langle x, u \rangle \min_{x \in P} \langle x, u \rangle \le 1$.

1.11 Existence of a Good Basis

Existence of a good ("nearly orthogonal") basis

 u_1, u_2, \ldots, u_n is a basis of Λ then $||u_1|| \cdot \ldots \cdot ||u_n|| \le \operatorname{const}(n) \det \Lambda$. For $n = 2, c(2) = \frac{2}{\sqrt{3}} \approx 1.15$. We will prove roughly $c(n) \approx n^n$.

Constuct such a basis efficiently (LLL) $c(n) \approx 2^{n^2}$.

Theorem 1.11.1 (2nd Minkowski convex body theorem). Let K be a convex body, $K \subset \mathbb{R}^n$ convex compact with non empty interior. Suppose that K = -K. Let $\Lambda \subset \mathbb{R}^n$ be a lattice. Define successive minima: for $i = 1, ..., n, \Lambda_i = \lambda_i(K) = \min \{\lambda > 0 : \dim \operatorname{span}(\lambda K \cap \Lambda) \ge i\}$ min $\lambda > 0$ such that λK contains (at least) i linearly independent lattice vectors.

$$\lambda_1(K) \le \lambda_2(K) \le \ldots \le \lambda_n(K)$$

Then

$$(\operatorname{vol} K) \prod_{i=1}^{n} \lambda_i(K) \le 2^n \det \Lambda$$

Plan:

We reduce it to the case $\Lambda = \mathbb{Z}^n$

Pick the fundamental parallelepiped $\Pi = \{x = (x_1, \dots, x_n) : 0 \le x_i < 1\}$ and stare ar the projection $\mathbb{R}^n / \mathbb{Z}^n \to \Pi$.

 $P: (x_1, \ldots, x_n) \mapsto (\{x_1\}, \ldots, \{x_n\})$ and prove various things about it.

some notes missing

Last time: If $\Lambda \subset \mathbb{R}^n$ is a lattice then there is a basis u_1, \ldots, u_n such that $||u_1|| \ldots ||u_n|| \leq 1$

 $c(n) \det \Lambda$,

$$c(n) = \frac{(n+1)!\Gamma\left(\frac{n}{2}+1\right)}{\pi^{n/2}}$$

Convergence: If $\{\Lambda_k \subset \mathbb{R}^n\}$, k = 1, ... are lattices and $\Lambda \subset \mathbb{R}^n$ is a lattice. We say that $\lim_{k\to\infty} \Lambda_k = \Lambda$ is we can find a basis $u_{k_1}, ..., u_{k_n}$ of Λ_k and a basis $u_1, ..., u_n$ of Λ so that $\lim_{k\to\infty} u_{k_i} = u_i$ for i = 1, ..., n.

Mahler Compactness Criterion: (K. Mahler, 1903 - 1988) If $\Lambda_i \subset \mathbb{R}^n, i \in I$ is an infinite family of lattices, and for some c > 0, C > 0 we have det $\Lambda_i \leq C$ abd $\rho(\Lambda_i) \geq c$ for all $i \in I$. Then there is a sequence Λ_{i_k} such that $\lim_{k\to\infty} \Lambda_k = \Lambda$.

<u>EXERCISE</u>: If $\lim_{n\to\infty} \Lambda_n = \Lambda$ then $\lim_{n\to\infty} \rho(\Lambda_n) = \rho(\Lambda)$.

In Minkowski-Hlawka, we showed that for every $0 < \alpha < 2^{-n}$ there is $\Lambda_a \subset \mathbb{R}^n$ such that $\sigma(\Lambda_a) \geq a$. We can choose det $\Lambda_a = 1$ and Mahler compactness so there is a limit lattice Λ as $a \to 2^{-n}$ with $\sigma(\Lambda) \geq 2^{-n}$.

(Weakly) reduced basis

Say, u_1, \ldots, u_n is a basis of Λ . Let $L_0 = \langle 0, L_k = \text{span} \{u_1, \ldots, u_k\}, k = 1, \ldots, n$. Let w_k be the orthogonal projection of u_k onto $L_{k-1}^{\perp}, w_1, \ldots, w_k, w_n$ is the Gram-Schmidt orthogonalization (without normalization) of u_1, \ldots, u_n . Then $u_k = w_k + \sum_{i=1}^{k-1} \alpha_{ki} w_i, k = 1, \ldots, n$.

We say that u_1, \ldots, u_n is (weakly) reduced, provided $|\alpha_{ki}| \leq \frac{1}{2}$ for all k and i.

How to reduce a basis quickly. If all $|\alpha_{ki}| \leq \frac{1}{2}$ already reduced. If not, choose the largest I such that $|\alpha_{ki}| > \frac{1}{2}$. Let m_i be the integer closet to α_{ki} then $|\alpha_{ki} - m_i| \leq \frac{1}{2}$. Update $u_k := u_k - m_i u_i$. What happens? L_0, \ldots, L_n do not change. $\alpha_{ki} \mapsto \alpha_{ki} - m_i$. Now $|\alpha_{ki}| \leq \frac{1}{2}$ may messup α_{ki} with j < i.

Repeat. In at most $\binom{n}{2}$ steps, we'll have it reduced.

Theorem 1.11.2 (Lagarias, Lenstra, Schnorr, 1990). If $\Lambda \subset \mathbb{R}^n$, and u_1, \ldots, u_n is a (weakly) reduced Korkin-Zolotarev basis. Then $||u_k|| \leq \frac{\sqrt{k+3}}{2}\lambda_k$, $k = 1, \ldots, n$, where λ_k is the k-th successive minimum w.r.t unit ball.

- *Remark.* 1. Korkin-Zorotarev basis. Choose u_1 to be the shortest non-zero, u_2 to be closest to $L_1 = \text{span} \{u_1\}$ and not in L_1 ... Choose u_k closest to L_{k-1} but not in L_{k-1} .
 - 2. The reduction procedure does not change $w_1, \ldots, w_k, \ldots, w_n$ and does not change $\operatorname{dist}(u_k, L_{k-1}) = ||w_k||$. Starting with K-Z basis we still get K-Z basis.
 - 3. $\lambda = \min \{\lambda > 0, \dim \operatorname{span} \{\lambda \cap \{x, \|x\| \le \lambda\}\} \ge K\}.$

Compared to the basis we constructed last time

1. last time we had $||u_k|| \leq \frac{k+1}{2}\lambda_k$ for k = 1, ..., n. which gave $c(n) = \frac{(n+1)!\Gamma(\frac{n}{2}+1)}{\pi^{n/2}}$. Now we have $c(n) = \frac{\sqrt{(n+3)!}\Gamma(\frac{n}{2}+1)}{\sqrt{6\pi^{n/2}}}$, which is better.

Proof. <u>CLAIM</u> $||w_k|| \le \lambda_k$ for k = 1, ..., n. Why? $||w_k|| \leftarrow$ smallest distance from a point in Λ which is not in L_{k-1} to L_{k-1} . (Krokin-Zolotarev) Let Λ'_k be the orthogonal projection of Λ onto L_{k-1}^{\perp} , then $||w_k|| = \min_{v \in \Lambda'_k \setminus \{0\}} ||v||$. Pick linearly independent v_1, \ldots, v_k such that $||v_i|| \le \lambda_k$ for $i = 1, \ldots, k$, so $||w_k|| \le ||v|| \le \lambda_k$. The projection v of at least one of them onto L_{k-1}^{\perp} will be non-zero.

 $\frac{\text{REDUCED}}{\lambda_k^2 \frac{k+3}{4}} \implies \|u_k\|^2 = \|w_k\|^2 + \sum_{i=1}^{k-1} |\alpha_{ki}|^2 \|w_i\|^2 \le \lambda_k^2 + \sum_{i=1}^{k-1} \frac{1}{4} \lambda_i^2 \le \lambda_k^2 \left(1 + \frac{k-1}{4}\right) = \lambda_k^2 \frac{k+3}{4} \implies \|u_k\| \le \frac{\sqrt{k+3}}{4}.$

Certifying packing radius Given a Λ and u_1, \ldots, u_n a basis. Then $2\rho(\Lambda) \ge \min_{k=1,\ldots,n} \operatorname{dist}_{u_k,L_{k-1}}$. We will construct a basis such that $2\rho(\Lambda) \le n \min_{k=1,\ldots,n} \operatorname{dist}(n_k, L_{k-1})$.