
Attraction Second Draft

Kaushik Damle, Yiwei Fu, Zachary Halberstam

March 2021

1 Introduction

We will explore an attraction system which can be defined in general for k particles in Rn. In our examples,

we will generally focus on the cases where n is 2 or 3. We define the k particles such that the ith particle is

attracted to the i ` 1th (and the kth is attracted to the first) by having the ith particle move at unit speed

towards the i` 1th at unit speed.

More formally, the positions of the k particles are given by functions A1, . . . , Ak : RÑ Rn such that we

have Aip0q “ ai for some values ai P Rn (the initial position of particle i), and A1iptq “
Ai`1ptq´Aiptq
|Ai`1ptq´Aiptq|

for all i,

if Ai`1ptq ´Aiptq ‰ 0, where we let Ak`1 “ A1. (If Ai`1ptq ´Aiptq, we let A1iptq “ 0.)

Section 2 includes results about particles in an attraction system converging to a single point. Section

3 discusses the problem from a differential equations perspective. Section 4 covers symmetry, which in some

cases is preserved very nicely over time. Section 5 introduces a modification of the attraction system to a

discrete setting, and explores the consequences. Section 6 briefly touches on possible future directions. Section

7 is the appendix, which includes code and extra examples.

2 Converging to a Point

The particles in an attraction system will always converge to a single point. This section will prove this claim,

as stated below.

Theorem 2.1. Given an attraction system with k particles in Rn, there exists p P Rn, for all ε ą 0 there

exists N P R such that for all t ą N, A1ptq, ..., Akptq P Bεppq, the closed ε-ball centered at p.

For p as in the theorem above, we call p a common limit of the attraction system.

Theorem 2.2. Let R Ă Rn be a closed convex region. If at time t0 all of the particles in an attraction system

are in R, for all t ą t0 the particles will be contained in R.

Proof. Suppose there is a time s ą t0 at which at least one particle is not in R. Since the Ai are continuous,

the inverse image A´1
i pRq is closed in R for all i.

Now, consider only the i such that Aipsq R R. Since t0 P A
´1
i pRq, and s R A´1

i pRq, we know since A´1
i pRq

is closed there is a maximum ti such that for all t0 ď x ď ti, Aipxq P R.

Next, let ti0 be the smallest of the ti’s. But, consider the movement of particle i0 at time ti0 . We have

Ai0pti0q P R, and the velocity vector A1i0pti0q has to be pointed from Ai0pti0q to Ai0`1pti0q. By definition of
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ti0 we have Ai0`1pti0q P R, so since R is convex this means the velocity vector for particle i0 at time ti0 is

pointed into R, so there particle i0 does not immediately leave R after time ti0 . This gives contradiction, so

all the particles must always remain in R at all future times.

(This proof can be boiled down to the following idea: if the particles ever leave the convex region R,

there must be a first particle to leave the convex region. But the only way for a particle to leave the region

R, since R is convex, is if it’s chasing a particle which is already outside the region R, contradicting that this

particle is the first one to leave.)

So, we have shown the particles must be contained in a convex region, which can only grow smaller over

time. In particular, this rules out any configurations in which the particles travel out to infinity while chasing

each other, which is a type of configuration we initially thought might be plausible.

We will now show the particles must converge to a single point, making use of this result.

Theorem 2.3. For any attraction system with any initial conditions, for all ε ą 0 there exists tε P R for

which at time tε all the particles are contained in some common ε-ball.

Sketch of Proof. Assume for sake of contradiction this condition didn’t hold. Then, consider

tε ě 0 : there is no time at which all the particles are contained in an ε-ballu. This set must have an least

upper bound, ε0. Then, for all δ ą 0 there is some time at which all particles are contained in an ε0 ` δ-ball,

centered at P. If we let δ ăă ε0 the velocities of the particles are roughly constant as we work with time

changes on the order of δ. (If any two particles where one is attracted to each other are close to each other

with distance on the order of δ, we can treat these two particles essentially as a single particle, since they are

so close to each other and essentially move together.) If any of these particles are outside the ball of radius

ε0 ´ δ centered at P, their velocity vectors must be pointed towards the inside of that ball. This is because

Bε0`δpP qzBε0´δpP q is essentially a hollow sphere, and the vector from one point on a sphere to another point

on the sphere must point through the sphere. Then, after a time increment on the order of δ, the particles

will all be inside Bε0´δpP q, contradicting the definition of ε0.

Next, we show one corollary of these two results, which gives one sense in which the particles must

converge together.

Corollary 2.3.1. For any attraction system with any initial conditions, for all ε ą 0 there exists N P R such

that for all t ą N the particles are all within a common ε-ball.

Proof. From Theorem 2.3, for all ε ą 0 there exists tε P R such that all particles are in a common ε-ball at

time tε. Then, for all t ą t0, the particles must be contained in this ε-ball, by Theorem 2.2, since a ε-ball is

always convex. So tε is the N we seek.

Next, we prove Theorem 2.1. The result is now essentially a corollary of Corollary 2.3.1, and we use

Corollary 2.3.1 and ideas from analysis for the proof.

Proof. By Corollary 2.3.1, for all ε ą 0 there exists N P R such that for all t ą N, the particles are all

contained within a common ε-ball. This means the sequence A1p0q, . . . , Akp0q, A1p1q, . . . , Akp1q, . . . is Cauchy

as a sequence in Rn. Therefore, this sequence must converge in Rn, since Rn is complete. So, there exists p

such that for all δ ą 0 there exists M such that for all n ąM, A1pnq, . . . , Akpnq are all in Bδppq. Then, for all
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t ą n for t P R, A1ptq, . . . , Anptq P Bδppq, by Theorem 2.2. So, for all δ ą 0 there exists n P R such that for all

t ą n, we have A1ptq, . . . , Anptq P Bδppq, so the particles all converge to p.

3 Existence and Uniqueness of a Solution

Suppose an attraction system of k particles in Rn, with the position functions A1ptq, . . . , Akptq.

The system-state S can be described by a vector in Rnk which can be written as follows:

S : RÑ Rnk,Sptq “ pA1ptq, ..., Akptqq.

The system can then be described by the following differential equation:

dS

dt
“ fpSq (1)

where f : Rnk Ñ Rnk, and,
¨
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‚
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For now we will consider a system of 3 particles in R2. Suppose the 3 particles are described by the position

functions A1ptq, A2ptq, A3ptq, and the velocity of each particle is as described in the problem statement. We

can then describe the system as follows:

y1ptq “ fpyptqq (3)

where f : Rˆ R6 Ñ R6 is given by:
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(4)

For a given time t, if Ap2qptq “ pp1qptq or pp3qptq “ pp2qptq or pp1qptq “ pp1qptq, then f evaluates to 0. From a quick

look at the formula, it is not difficult to see that f is discontinuous when pp2qptq “ pp1qptq or pp3qptq “ pp2qptq or

pp1qptq “ pp1qptq and continuous otherwise (A more detailed proof for a system of n particles in m dimensions

will be in our next draft). Let D be the subset of R6 with all these discontinuities removed. Given an initial

time t0, if the initial condition ypt0q “ y0 P D, then the Peano Existence Theorem tells us that there exists a

neighborhood I Ă R of t0 such that there is a function g with the property g1ptq “ fpt, gptqq and gpt0q “ y0

for all t P I.

Conjecture 3.1. The solution Sptq with respect to a initial state Sp0q is uniquely determined by Sp0q, which

in turn is determined by the starting position of the particles.
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Remark. One way to formally prove the uniqueness of the solution re

4 Invariant of Attraction System

In this section, the indices of particles in an attraction system of k particles are in the group

pZ{kZ,`q.

4.1 Symmetries of a Attraction System

Given a set of particles A1, . . . , Ak in Rn with a certain order, intuitively we can think of the symmetry of the

shape formed by the line segment between the particles Ai and Ai`1, and between Ak and A1. However, in

our attraction system, the symmetry of such shape is not enough because the velocity vector of each particle

Ai points to the next particle Ai`1, pAk points to A1q, which is not necessarily symmetric.

Definition 4.1. Suppose an attraction system consisting of k particles A1, . . . Ak. The attraction system has

symmetry T at time t if there exists an orthogonal transformation T such that T pAiptqq “ Ai`pptq for any

1 ď i ď k.

In particular, we denote the inital position of the particles a1, . . . , ak, t attraction system has initial

symmetry T if there exists an orthogonal transformation T such that T paiq “ ai`p for any 1 ď i ď k.

Example 4.1 (Rotational Symmetry in R2). The square rotation is still quite intuitive as the T paiq “ ai`1

Figure 4.1: A square has rotational symmetry

Non-Example 4.1 (Not a reflection symmetry). We still take the square from last example. Normally we

also have reflection symmetries on sqaures, one of which is defined by

T : R2 Ñ R2, T pvq “

«

´1 0

0 1

ff

¨ v.

However, this operation failed to meet our definition of symmetry since we have T pa1q “ a2 “ a1`1 and

T pa2q “ a1 “ a2`3.

Intuitively, this fails because we can see that, after the transformation, the velocity vectors do not align.
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Figure 4.2: This is not a symmetry

Figure 4.3: This is a reflection symmetry.

Example 4.2 (Reflection Symmetry in R2). However, if we change the ordering of the particles in the square,

we can still yield a symmetry when we have the same orthogonal transformation T as in Non-example 4.1.

In Figure 4.3, we see that T paiq “ ai`2 for every i. Intuitively, after the transformation, the velocity

vectors do align with the diagram before.

Given the definition of symmetry, we may naturally think of the center of the symmetry:

Definition 4.2. The center of the symmetry defined by orthogonal transformation T is the subspace M Ĺ Rd

such that T pxq “ x for all x PM .

The center of symmetry is very useful in investigate the a special property of the attraction system,

introduced below:

Definition 4.3. Suppose k particles in Rn with positions Aiptq, the average position at time t is defined by

A : RÑ Rn is obtained by

Aptq “
1

k

k
ÿ

i“1

Aiptq

Remark. Note that this definition resembles the center of mass of a system of particles. In fact, if we consider

each particle with unit mass, the definition above coincides with the definition for the center of mass.
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4.2 Invariants

Theorem 4.1. Suppose a system of k particles tAiu in Rn has symmetry T at time 0 with the center of

symmetry M , then the attraction systems would have symmetry T at any time t with the center of symmetry

M . In particular, the average position A would always be contained in the center of symmetry M .

Proof. Suppose another system B1, . . . , Bk where Bip0q “ T pAip0qq “ Ai`pp0q for all 1 ď i ď k.Then we have

»

—

—

–

B1p0q
...

Bkp0q

fi

ffi

ffi

fl

“

»

—

—

–

T pA1p0qq
...

T pAkp0qq

fi

ffi

ffi

fl

We know that from Conjecture 3.1 (which is very likely true), that solution of the attraction system

Sptq is uniquely determined by the vector in Rnk describing the initial state of the system. So we would have

S1ptq “ S2ptq where S1 is determined by

»

—

—

–

B1p0q
...

Bkp0q

fi

ffi

ffi

fl

and S2 is determined by

»

—

—

–

T pA1p0qq
...

T pAkp0qq

fi

ffi

ffi

fl

.

By our construction,

S1ptq “

»

—

—

–

B1ptq
...

Bkptq

fi

ffi

ffi

fl

“

»

—

—

–

A1`pptq
...

Ak`pptq

fi

ffi

ffi

fl

“ S2ptq “

»

—

—

–

T pA1ptqq
...

T pAkptqq

fi

ffi

ffi

fl

So we conclude that T ppAiqptqq “ Ai`pptq for any i, so at any time p the attraction has the same

symmetry T , thus the same center of symmetry M .

To investigate the location of the average position, we first look at a lemma.

Lemma 4.1. Suppose a system of k particles tAiu in Rn has symmetry T at time t with the center of symmetry

M , then M contains the point of average position Aptq

Proof. We have

T pAptqq “ T

˜

1

k

k
ÿ

i“1

Aiptq

¸

“
1

k

k
ÿ

i“1

T pAiptqq “
1

k

k
ÿ

i“1

Ai`pptq “ Aptq

So we have T pAptqq “ Aptq, we conclude that Aptq PM .

From Lemma 4.1, we have that the average position will always stays in M regardless of time t.

5 Discrete Case

In this section, we investigate combinatorial versions of the systems discussed in previous sections. The analysis

is quite different but still interesting.

We will consider particles moving around on graphs. To have a well-defined notion of a particle moving

“towards” another particle, we need graphs where there is at most one path of minimal length between any
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two vertices. A sufficient, but not necessary, condition for these graphs is that they contain no cycles of even

length. The graph must necessarily be connected, so that there is a path between any two vertices.

Definition 5.1. A graph G is called path-determining if it contains a unique shortest path between any

two vertices.

Figure 5.1: Two graphs which are not path-determining.

For now, we will work with only undirected, unweighted graphs (although extensions with directed and

weighted graphs are surely possible).

To describe a discrete attraction system, let G be a path-determining with vertex set V. Take k particles

on the graph, with positions given by functions A1, . . . , Ak : N Y t0u Ñ V. These functions are defined

inductively, with some initial condition A1p0q “ v1, . . . , Akp0q “ vk, for v1, . . . , vk P V.

At each timestep, particle i, with position given by Ai, moves towards particle i ` 1. It moves towards

the current value of Ai`1 by at most one edge. So, we have that Aipt` 1q is the vertex neighboring Aiptq that

is closest to Ai`1ptq. This vertex is well-defined since G is path-determining. (If Aiptq “ Ai`1ptq, then we have

Aipt` 1q “ Aiptq.)

We will now define the period, which we will spend most of our time in this section investigating.

Definition 5.2. Let G be a path-determining graph, and let A1, . . . , Ak give the positions of k particles on

G in an attraction system. Then, let t0 be the minimum value in N0 such that there exists n ą 0 for which

Aipt0 ` nq “ Aipt0q for all i. Then, let T be the minimum value in Ną0 such that Aipt0 ` T q “ Aipt0q for all

i. We define the period of the attraction system to be T.

Note T must exist since there are only finitely many states for the Ai and NY t0u is infinite, and future

states of the system are determined exclusively by the current positions of the particles (time or past states

reached are not relevant). Also, for all t ą t0, we have Aipt` T q “ Aiptq for all i where T is the period of the

attraction system.

We will now give some theorems about the period in certain cases.

Figure 5.2: An example of an attraction system with three particles on a 7-cycle graph
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Figure 5.3: An example of an attraction system with four particles on a tree. After the first timestep, the
particles never move from the central vertex.

Theorem 5.1. Let G be a complete graph. For any k P N, for any initial condition A1p0q, . . . , Akp0q, let the

Ai be defined as above. Then, the period of the attraction system is a factor of k.

Proof. For any complete graph, any two vertices are connected by an edge. This means that Aipnq “ Ai`1pn´

1q for all n ą 0. So, pA1p1q, . . . , Akp1qq is pA1p0q, . . . , Akp0qq, after each element is shifted by one to the left,

and the same relation holds for pA1pnq, . . . , Akpnqq and pA1pn´ 1q, . . . , Akpn´ 1qq for any n ą 0. So, we can

think of tpA1pnq, . . . , Akpnqqu as the orbit of pA1p0q, . . . , Akp0qq under a natural action by the cyclic group of

order k, where a generator g of the cyclic group Ck acts on ordered k-tuples by shifting every element one

to the left. Then, note pA1pnq, . . . , Akpnqq “ gnpA1p0q, . . . , Anp0qq. So, the period of the attractive system

is the minimum value T ą 0 such that gT pA1p0q, . . . , Anp0qq “ pA1p0q, . . . , Anp0qq. To show T must divide

k, suppose there exists a P N, 0 ď r ă T such that k “ aT ` r. Then, gk and gT fix pA1p0q, . . . , Anp0qq, so

g´T fixes pA1p0q, . . . , Anp0qq, so gk´aT “ gr fixes pA1p0q, . . . , Anp0qq. Therefore, since T ą 0 was minimal and

r ă T, we have r “ 0, so T divides k.

Theorem 5.2. Let G be a cycle of odd length l, and take a three-particle attraction system on G with any

initial condition. Then, the period of the attraction system is 1, 3 or l.

Proof. Note the length of G is required to be odd so that G is path-determining. There are three distinct

cases.

Case 1: The particles all start on the same point, so the system has period 1.

This case is illustrated on the 5-gon in Figure 5.4.

Case 2: The particles do not all start on the same point, but are all contained on some proper subset H

of the l-cycle containing the shortest paths between any two of its vertices.

This case is illustrated on the 5-gon in Figure 5.5. In this case, we have a period of 3. The condition

means that the three points are contained on some segment that the particles never leave. The only relevant

component of the graph for the discrete attraction system is this segment, and the length of the segment

containing all three particles shrinks over time, until it is length 2. At this point, two particles share one

vertex, and the other particle is at a neighboring vertex, giving us a system with period 3.

Case 3: The particles are such that the shortest paths between them together contain all of G.

This case is illustrated on the 5-gon in Figure 5.6. In this case, we have a period of l. The three particles

are necessarily arranged either clockwise or counterclockwise by their order of attraction, and the shortest

paths run around G, so the particles will rotate around G, returning to their original positions only after l
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Figure 5.4: Discrete attraction system with 3 particles on a 5-cycle and period 1

Figure 5.5: Discrete attraction system with 3 particles on a 5-cycle and period 3

steps.

These theorems have all concerned restrictions on which periods are possible. Now, we will show some

theorems in the other direction, namely, that certain periods are always possible. We will also try to count

the number of ways to produce certain periods.

Theorem 5.3. Let G be a path-determining graph which has at least two vertices. Then, for any k P N, for

any factor f of k, there is a discrete attraction system on G with k particles and a period of f.

Proof. Initially, place the 1st, 1` fth, 1` 2fth, ... particles on one vertex, and all of the other particles on a

neighboring vertex. Then, after t timesteps, the particles on the first vertex will be those with index 1` t mod

f. In particular, after f timesteps, the particles on the first vertex are particles 1, 1 ` f, 1 ` 2f, ..., and this

is the first time this occurs, so the period is exactly f. This construction is illustrated for k “ 6 and f “ 2, 3

in Figure 5.7 and Figure 5.8.

After this basic existence result, we now start to count the numbers of initial conditions on Kn yielding

certain periods.
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Figure 5.6: Discrete attraction system with 3 particles on a 5-cycle and period 5

Figure 5.7: A period-2 attraction system with 6 particles

Figure 5.8: A period-3 attraction system with 6 particles
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Theorem 5.4. On Kn, the number of initial conditions for f particles yielding a discrete attraction system

with period f is the same as the number of initial conditions for k particles yielding a discrete attraction system

with period k, for any multiple k of f.

Proof. From the proof of Theorem 5.1, we know that for k particles on Kn, after f timesteps, particle i is in

the original position of particle i ` f. So, if we have k particles on Kn, positioned so that we have period f,

we must have all particles with equal residue mod f occupying the same vertices. Then, this system behaves

exactly like a discrete attraction with f particles, since the particles with residue i mod f move all together,

attracted to the particles with residue i` 1 mod f, for any i.

Using this theorem, we make a definition.

Definition 5.3. Define Pn,k to be the number of initial conditions with k particles on Kn that yield a period

of k.

By Theorem 5.4, Pn,k is the number of initial conditions for any multiple of k on Kn that yield a period

of k. With this observation, we show a recursive result about these Pn,k.

Theorem 5.5. For any n, k, we have

Pn,k “ nk ´
ÿ

f |k,f‰k

Pn,f .

Proof. There are nk possible initial conditions, since there are n ways to place each particle. By Theorem 5.1,

each of these initial conditions yields a period that is a factor of k. So, the period could fail to be k only if

it is a proper factor of k. From Theorem 5.4, the number of initial conditions with k particles on Kn so that

the period is f is exactly Pn,f . So, the number of initial conditions with k particles on Kn with period not k

is
ř

f |k,f‰k Pn,f , and the result follows.

Our next avenue is to try to better understand these polynomials Pn,k. For now, we include one conjecture

(which we believe is quite likely to be true) which gives a flavor of the types of questions we are now asking.

Conjecture 5.1. If p is a prime number dividing k, then Pnp,k “ Pn,pk.

Sketch. This involves how to calculate Pn,k. As we can see, the definition offers a recursive way that involves

calculating Pn,f when f is a proper factor k. Consider a factor f0 of k, the contribution of Pn,f0 to Pn,k is by

subtracting nf0 and adding all the Pn,f 1 when f 1 is a proper factor of f0. For k “ 12, we can explicitly write

down the recursion tree:

As we can see, the level of the nodes in the recursion tree, together with the value of the node determines

how it contributes to Pn,k. We have terms n3 and n cancel out each other, thus

Pn,12 “ n12 ´ n6 ´ n4 ` n2.

So for Pn,pk, while 1, f1, . . . , fm are proper factors of k, we can have the following recursion tree: We see

the recursion subtree 1, f1, . . . , fm has the same node with one level difference in the recursion subtree k. So

the terms will cancel out. We are then left with all the factor of k, but multiplied by p. We can treat it as if

we are doing the recursion tree of k, but with np as the variable. So we have Pnp,k “ Pn,pk.
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Figure 5.9: Recursive tree for Pn,12

Figure 5.10: Recursive tree for Pn,pk

6 Future Directions

There are several additional modifications to the conditions on an attraction system that we might study in

the future. These may include

• Different metrics. What happens on a hyperbolic plane? A sphere? Other surfaces? The taxicab metric?

What if there are two points we can teleport between?

• Different attraction functions. What if we give some particles a higher ”mass,” making other particles

move more quickly to those particles and those particles move more slowly towards other particles. Can

we incorporate acceleration functions, or attraction that increases in strength when two particles are

close?

We also have a major question related to symmetry that we have not yet resolved: Which symmetry

groups are possible for a k-particle attraction system in Rn? In R3, there are limited options for subgroups of
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the group of orthogonal transformations. We would like to determine which of these subgroups are possible

to attain as symmetry groups of k particles, both for specific values of k, and which can be attained at all.

7 Code and Examples

7.1 Code

The simulator allows the user to input the masses and initial positions of up to 10 particles. The simulator

also plots the center of mass / average position of the entire system.An arbitrary number of particles can be

supported, but we will run out of Matlab colors for plotting.

1 #ifndef ATTRACTION_H

2 #define ATTRACTION_H

3

4 #include <vector>

5 #include <cmath>

6 #include <string>

7 #include <iostream>

8 #include <cstdio>

9 #include <exception>

10

11 const int MAXPARTICLES = 10;

12 const int NUMSTEPS = 10000;

13 const long double TIME = 0.0001;

14

15

16 using std::vector;

17 using std::string;

18 using std::ostream;

19

20 // POD type for holding information about a particle e.g. mass etc.

21 struct particle {

22 long double mass;

23 };

24

25 // R3_vector class

26 struct R3_vector {

27 long double x;

28 long double y;

29 long double z;

30 R3_vector();

31 R3_vector(const long double, const long double, const long double);

32 R3_vector(const R3_vector&);

33 long double magnitude() const;
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34 R3_vector& normalize();

35 R3_vector operator+(const R3_vector&) const;

36 R3_vector& operator+=(const R3_vector&);

37 R3_vector operator-(const R3_vector&) const;

38 R3_vector& operator-=(const R3_vector&);

39 R3_vector& operator=(const R3_vector&);

40 friend bool operator==(const R3_vector&, const R3_vector&);

41 };

42

43 R3_vector operator*(const long double, const R3_vector&);

44

45 // Particle Path Simulator Class

46 class physicsEngine {

47 size_t numParticles;

48 vector<particle> particles;

49 vector<R3_vector> positions;

50 vector<R3_vector> velocities;

51 void update_positions();

52 void update_velocities();

53 R3_vector average_position();

54 public:

55 physicsEngine(vector<particle>&,

56 vector<R3_vector>&);

57 //void printPositions(ostream&);

58 //void printState();

59 void simulate(vector<vector<long double>>&);

60 };

61

62

63 /* R3_vector member functions and overloads. */

64 // Default constructor: produces zero vector.

65 R3_vector::R3_vector() : x(0), y(0), z(0) {}

66

67 // Constructor with parameters: pass in coordinates.

68 R3_vector::R3_vector(long double x, long double y, long double z) :

69 x(x), y(y), z(z) {}

70

71 // Copy constructor: makes a copy of the vector passed in.

72 R3_vector::R3_vector(const R3_vector& temp) :

73 x(temp.x), y(temp.y), z(temp.z) {}

74

75 // Returns magnitude of vector.

76 long double R3_vector::magnitude() const {
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77 return sqrt(pow(x, 2) + pow(y, 2) + pow(z, 2));

78 }

79

80 // Normalizes vector.

81 R3_vector& R3_vector::normalize() {

82 long double factor = this->magnitude();

83 this->x /= factor;

84 this->y /= factor;

85 this->z /= factor;

86 return *this;

87 }

88

89 // Overloading + operator for vectors.

90 R3_vector R3_vector::operator+(const R3_vector& lhs) const {

91 R3_vector temp;

92 temp.x = this->x + lhs.x;

93 temp.y = this->y + lhs.y;

94 temp.z = this->z + lhs.z;

95 return temp;

96 }

97

98 // Overloading += operator for vectors.

99 R3_vector& R3_vector::operator+=(const R3_vector& lhs) {

100 this->x += lhs.x;

101 this->y += lhs.y;

102 this->z += lhs.z;

103 return *this;

104 }

105

106 // Overloading - operator for vectors.

107 R3_vector R3_vector::operator-(const R3_vector& lhs) const {

108 R3_vector temp;

109 temp.x = this->x - lhs.x;

110 temp.y = this->y - lhs.y;

111 temp.z = this->z - lhs.z;

112 return temp;

113 }

114

115 // Overloading -= operator for vectors.

116 R3_vector& R3_vector::operator-=(const R3_vector& lhs) {

117 this->x -= lhs.x;

118 this->y -= lhs.y;

119 this->z -= lhs.z;
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120 return *this;

121 }

122

123 // Overloading = operator for vectors.

124 R3_vector& R3_vector::operator=(const R3_vector& lhs) {

125 this->x = lhs.x;

126 this->y = lhs.y;

127 this->z = lhs.z;

128 return *this;

129 }

130

131 // Overloading == operator for vectors.

132 bool operator==(const R3_vector& lhs, const R3_vector& rhs) {

133 if (lhs.x == rhs.x && lhs.y == rhs.y && lhs.z == rhs.z)

134 return true;

135 return false;

136 }

137

138 // Overloading * operator for vectors.

139 R3_vector operator*(const long double c, const R3_vector& lhs) {

140 R3_vector temp;

141 temp.x = c * lhs.x;

142 temp.y = c * lhs.y;

143 temp.z = c * lhs.z;

144 return temp;

145 }

146

147

148 /* physicsEngine member functions. */

149 // Default constructor. Accepts particle data and positions to initialize.

150 physicsEngine::physicsEngine(

151 vector<particle>& partData,

152 vector<R3_vector>& posData) :

153 numParticles(partData.size()),

154 particles(partData), positions(posData),

155 velocities(partData.size(), R3_vector()) {

156 if (positions.size() != numParticles || velocities.size() != numParticles)

157 throw std::runtime_error("Bad simulator initialization...\n");

158 }

159

160 // Updates position of each particle.

161 void physicsEngine::update_positions() {

162 for (size_t i = 0; i < numParticles; ++i)
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163 positions[i] += TIME * velocities[i];

164 }

165 // Updates velocity of each particle.

166 void physicsEngine::update_velocities() {

167 for (size_t i = 0; i < numParticles; ++i) {

168 if (positions[(i + 1) % numParticles] == positions[i])

169 velocities[i] = (positions[(i + 1) % numParticles] - positions[i]);

170 else

171 velocities[i] =

172 (positions[(i + 1) % numParticles] - positions[i]).normalize();

173 }

174 }

175

176 // Computes average position of all particles.

177 R3_vector physicsEngine::average_position() {

178 long double totalMass = 0;

179 R3_vector temp;

180 for (size_t i = 0; i < numParticles; ++i) {

181 totalMass += particles[i].mass;

182 temp += particles[i].mass * positions[i];

183 }

184 temp = 1 / totalMass * temp;

185 return temp;

186 }

187

188 // Performs simulation.

189 void physicsEngine::simulate(vector<vector<long double>>& data) {

190 for (size_t i = 0; i < NUMSTEPS; ++i) {

191 for (size_t j = 0; j < numParticles; ++j) {

192 data[2 * j][i] = positions[j].x;

193 data[2 * j + 1][i] = positions[j].y;

194 }

195 update_velocities();

196 update_positions();

197 R3_vector temp = average_position();

198 data[2 * MAXPARTICLES].push_back(temp.x);

199 data[2 * MAXPARTICLES + 1].push_back(temp.y);

200 }

201 }

202

203 #endif

This is the main function
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1 #include "matplotlibcpp.h"

2 #include "attraction.h"

3 #include <vector>

4 #include <cmath>

5 #include <string>

6 #include <iostream>

7 #include <cstdio>

8

9 using namespace std;

10 namespace plt = matplotlibcpp;

11

12 int main(int argc, char* argv[])

13 {

14 // Defining Masses, initial positions and initial velocities of particles.

15 vector<particle> particles = { {1}, {1}, {1}, {1}};

16 vector<R3_vector> positions = { {1, -1, 0}, {1, 1, 0}, {-1, 1, 0}, {-1, -1, 0} };

17

18 // Vector of vectors to hold graphing data.

19 vector<vector<long double>> data(2 * MAXPARTICLES + 2, vector<long double>(NUMSTEPS, 0));

20

21 // Initialize simulator.

22 physicsEngine simulator(particles, positions);

23

24 // Populate graphing data.

25 simulator.simulate(data);

26

27 // Choose python backend environment

28 plt::backend("tkAgg");

29

30 // Plot away!

31 plt::named_plot("Avg.", data[20], data[21], "k.");

32 for (size_t i = 1; i <= particles.size(); ++i) {

33 if (i == 1)

34 plt::named_plot("A", data[0], data[1], "xkcd:tomato");

35 else if(i == 2)

36 plt::named_plot("B", data[2], data[3], "xkcd:teal");

37 else if (i == 3)

38 plt::named_plot("C", data[4], data[5], "xkcd:orange");

39 else if (i == 4)

40 plt::named_plot("D", data[6], data[7], "xkcd:green");

41 else if (i == 5)

42 plt::named_plot("E", data[8], data[9], "xkcd:goldenrod");

43 else if (i == 6)
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44 plt::named_plot("F", data[10], data[11], "xkcd:tomato");

45 else if (i == 7)

46 plt::named_plot("G", data[12], data[13], "xkcd:orange");

47 else if (i == 8)

48 plt::named_plot("H", data[14], data[15], "xkcd:green");

49 else if (i == 9)

50 plt::named_plot("I", data[16], data[17], "xkcd:goldenrod");

51 else if (i == 10)

52 plt::named_plot("J", data[18], data[19], "xkcd:tomato");

53 }

54

55 // Add title.

56 plt::title("Attraction");

57

58 // Enable legend.

59 plt::legend();

60

61 // Display plot on screen.

62 plt::show();

63 }

7.2 Simulation of a Square

Attraction/images/square.png

Figure 7.1: Initial positions form a Square
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7.3 Simulation of Triangle

Figure 7.2: Initial Positions form a triangle
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