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1 Introduction

We will explore an attraction system which can be defined in general for k£ particles in R™. In our examples,
we will generally focus on the cases where n is 2 or 3. We define the k particles such that the ith particle is
attracted to the ¢ + 1th (and the kth is attracted to the first) by having the ith particle move at unit speed
towards the ¢ + 1th at unit speed.

More formally, the positions of the k particles are given by functions Ay, ..., A : R — R"” such that we
have A;(0) = a; for some values a; € R™ (the initial position of particle ¢), and A} (t) = % for all 4,
if Ajp1(t) — Ai(t) # 0, where we let Agyq = Ay, (If Aip1(8) — Ai(t), we let Ai(t) = 0.)

Section 2 includes results about particles in an attraction system converging to a single point. Section
3 discusses the problem from a differential equations perspective. Section 4 covers symmetry, which in some
cases is preserved very nicely over time. Section 5 introduces a modification of the attraction system to a
discrete setting, and explores the consequences. Section 6 briefly touches on possible future directions. Section

7 is the appendix, which includes code and extra examples.

2 Converging to a Point
The particles in an attraction system will always converge to a single point. This section will prove this claim,
as stated below.

Theorem 2.1. Given an attraction system with k particles in R™, there exists p € R™, for all € > 0 there
exists N € R such that for allt > N, Ay(t), ..., Ax(t) € B(p), the closed e-ball centered at p.

For p as in the theorem above, we call p a common limit of the attraction system.
Theorem 2.2. Let R c R™ be a closed convex region. If at time tg all of the particles in an attraction system
are in R, for all t >ty the particles will be contained in R.
Proof. Suppose there is a time s > ty at which at least one particle is not in R. Since the A; are continuous,
the inverse image A; ' (R) is closed in R for all 4.

Now, consider only the i such that A;(s) ¢ R. Since o € A;'(R), and s ¢ A; *(R), we know since A; *(R)

is closed there is a maximum ¢; such that for all tp < = < ¢;, A;(x) € R.

Next, let t;, be the smallest of the ¢;’s. But, consider the movement of particle iy at time ¢;,. We have
A, (tiy) € R, and the velocity vector A] (t;,) has to be pointed from A;,(t;,) to A;y11(ti,). By definition of



ti,

pointed into R, so there particle iy does not immediately leave R after time ¢;,. This gives contradiction, so

we have A;,4+1(t;,) € R, so since R is convex this means the velocity vector for particle iy at time ¢;, is

all the particles must always remain in R at all future times.

(This proof can be boiled down to the following idea: if the particles ever leave the convex region R,
there must be a first particle to leave the convex region. But the only way for a particle to leave the region
R, since R is convex, is if it’s chasing a particle which is already outside the region R, contradicting that this

particle is the first one to leave.) O

So, we have shown the particles must be contained in a convex region, which can only grow smaller over
time. In particular, this rules out any configurations in which the particles travel out to infinity while chasing

each other, which is a type of configuration we initially thought might be plausible.
We will now show the particles must converge to a single point, making use of this result.

Theorem 2.3. For any attraction system with any initial conditions, for all € > 0 there exists t. € R for

which at time t. all the particles are contained in some common e-ball.

Sketch of Proof. Assume for sake of contradiction this condition didn’t hold. Then, consider

{e = 0: there is no time at which all the particles are contained in an e-ball}. This set must have an least
upper bound, &y. Then, for all § > 0 there is some time at which all particles are contained in an g + é-ball,
centered at P. If we let § << g( the velocities of the particles are roughly constant as we work with time
changes on the order of §. (If any two particles where one is attracted to each other are close to each other
with distance on the order of §, we can treat these two particles essentially as a single particle, since they are
so close to each other and essentially move together.) If any of these particles are outside the ball of radius
go — 0 centered at P, their velocity vectors must be pointed towards the inside of that ball. This is because
B, +5(P)\Bcy—s(P) is essentially a hollow sphere, and the vector from one point on a sphere to another point
on the sphere must point through the sphere. Then, after a time increment on the order of ¢, the particles
will all be inside Bg,_s(P), contradicting the definition of €q. O

Next, we show one corollary of these two results, which gives one sense in which the particles must

converge together.

Corollary 2.3.1. For any attraction system with any initial conditions, for all € > 0 there exists N € R such

that for all t > N the particles are all within a common e-ball.

Proof. From for all e > 0 there exists . € R such that all particles are in a common e-ball at
time t.. Then, for all ¢ > tg, the particles must be contained in this e-ball, by since a e-ball is

always convex. So t. is the N we seek. O

Next, we prove The result is now essentially a corollary of and we use
and ideas from analysis for the proof.

Proof. By for all € > 0 there exists N € R such that for all ¢ > N, the particles are all
contained within a common e-ball. This means the sequence A;(0),..., A5(0), A1(1),..., Ax(1),... is Cauchy
as a sequence in R". Therefore, this sequence must converge in R™, since R™ is complete. So, there exists p
such that for all § > 0 there exists M such that for all n > M, A;(n),..., Ax(n) are all in Bs(p). Then, for all



t>nforteR, Ai(t),...,An(t) € Bs(p), by [Theorem 2.2l So, for all § > 0 there exists n € R such that for all
t > n, we have A1(t),..., A,(t) € Bs(p), so the particles all converge to p. O

3 Existence and Uniqueness of a Solution

Suppose an attraction system of k particles in R™, with the position functions A;(¢t),..., Ax(t).

The system-state S can be described by a vector in R™* which can be written as follows:
S:R - R™ S(t) = (AL(t), ..., A(t)).

The system can then be described by the following differential equation:

ds
FraRAC) (1)
where f: R™ — R and,

As()— A (1)

Aw(t) TAXE AT Ai(t)

N e : = : (2)

Aq1(t)—Ag(t

An(t) )\ A

For now we will consider a system of 3 particles in R2. Suppose the 3 particles are described by the position
functions A;(t), A2(t), As(t), and the velocity of each particle is as described in the problem statement. We
can then describe the system as follows:

y'(t) = f(y(t) (3)
where f : R x R® — RS is given by:
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For a given time t, if A®)(t) = p™M(¢) or pB®)(t) = p3)(¢) or p(M) (t) = p(1)(t), then f evaluates to 0. From a quick
look at the formula, it is not difficult to see that f is discontinuous when p (t) = p™M(t) or p® () = pP () or
p(l)(t) = p(l)(t) and continuous otherwise (A more detailed proof for a system of n particles in m dimensions
will be in our next draft). Let D be the subset of RS with all these discontinuities removed. Given an initial
time tg, if the initial condition y(tg) = yo € D, then the Peano Existence Theorem tells us that there exists a
neighborhood I < R of ¢y such that there is a function g with the property ¢'(¢t) = f(t, g(t)) and g(to) = yo
for all t e I.

Conjecture 3.1. The solution S(t) with respect to a initial state S(0) is uniquely determined by S(0), which

in turn is determined by the starting position of the particles.



Remark. One way to formally prove the uniqueness of the solution re

4 Invariant of Attraction System

In this section, the indices of particles in an attraction system of k£ particles are in the group
(Z/KZ, +).

4.1 Symmetries of a Attraction System

Given a set of particles Ay,..., Ax in R™ with a certain order, intuitively we can think of the symmetry of the
shape formed by the line segment between the particles A; and A;,1, and between Ay and A;. However, in
our attraction system, the symmetry of such shape is not enough because the velocity vector of each particle

A; points to the next particle A;41, (Ag points to A;), which is not necessarily symmetric.

Definition 4.1. Suppose an attraction system consisting of k particles Ay, ... Ay. The attraction system has
symmetry T at time ¢ if there exists an orthogonal transformation T such that T(A4;(¢)) = A;4p(t) for any
1<i<k.

In particular, we denote the inital position of the particles ai,...,ax, t attraction system has initial

symmetry 7' if there exists an orthogonal transformation 7" such that T'(a;) = a;4, for any 1 <i < k.

Example 4.1 (Rotational Symmetry in R?). The square rotation is still quite intuitive as the T'(a;) = a;41

Qv ) 0y l(ab) -—
< v
/ sl —snE (S f\lca )
- Ls.\»%, m%l

A " Tl

Figure 4.1: A square has rotational symmetry

Non-Example 4.1 (Not a reflection symmetry). We still take the square from last example. Normally we

also have reflection symmetries on sqaures, one of which is defined by

-1 0
T:R?> - R%T(v) = -0
0 1

However, this operation failed to meet our definition of symmetry since we have T(a1) = as = a;41 and

T(ag) = a1 = 4243.

Intuitively, this fails because we can see that, after the transformation, the velocity vectors do not align.
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Figure 4.2: This is not a symmetry
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Figure 4.3: This is a reflection symmetry.

Example 4.2 (Reflection Symmetry in R?). However, if we change the ordering of the particles in the square,

we can still yield a symmetry when we have the same orthogonal transformation T as in [Non-example 4.1|

In [Figure 4.3] we see that T'(a;) = a;42 for every . Intuitively, after the transformation, the velocity

vectors do align with the diagram before.
Given the definition of symmetry, we may naturally think of the center of the symmetry:

Definition 4.2. The center of the symmetry defined by orthogonal transformation 7 is the subspace M < R¢
such that T'(x) = x for all x € M.

The center of symmetry is very useful in investigate the a special property of the attraction system,

introduced below:

Definition 4.3. Suppose k particles in R™ with positions A;(t), the average position at time ¢ is defined by
A:R — R" is obtained by

Remark. Note that this definition resembles the center of mass of a system of particles. In fact, if we consider

?rM—‘

each particle with unit mass, the definition above coincides with the definition for the center of mass.



4.2 Invariants

Theorem 4.1. Suppose a system of k particles {A;} in R™ has symmetry T at time 0 with the center of
symmetry M, then the attraction systems would have symmetry T at any time t with the center of symmetry

M. In particular, the average position A would always be contained in the center of symmetry M.
Proof. Suppose another system By, ..., By where B;(0) = T(A4;(0)) = A;4,(0) for all 1 < i < k.Then we have

B1(0) T(A1(0))

By(0) T(Ar(0))

We know that from [Conjecture 3.1| (which is very likely true), that solution of the attraction system

S(t) is uniquely determined by the vector in R™* describing the initial state of the system. So we would have

B1(0) T(A1(0))
S1(t) = Sa(t) where Sy is determined by : and Sy is determined by
By (0) T'(Ax(0))
By our construction,
Bi(t) Ap(t) T(A: (1))
Sit)=1 : |= : = Ss(t) = :
By (1) Ap1p(t) T(Ax(t))

So we conclude that T'((4;)(t)) = A;4p(¢) for any 4, so at any time p the attraction has the same

symmetry 7', thus the same center of symmetry M.

To investigate the location of the average position, we first look at a lemma.

Lemma 4.1. Suppose a system of k particles {A;} in R™ has symmetry T at time t with the center of symmetry

M, then M contains the point of average position A(t)
Proof. We have
— 1 & 1 & 1 & —
TAWD) =T [+ 3 A0 ) =+ S T(AMW) = 1 ) Acplt) = A()
i=1 i=1 ;
So we have T(A(t)) = A(t), we conclude that A(t) € M.

From we have that the average position will always stays in M regardless of time ¢. O

5 Discrete Case
In this section, we investigate combinatorial versions of the systems discussed in previous sections. The analysis
is quite different but still interesting.

We will consider particles moving around on graphs. To have a well-defined notion of a particle moving

“towards” another particle, we need graphs where there is at most one path of minimal length between any



two vertices. A sufficient, but not necessary, condition for these graphs is that they contain no cycles of even

length. The graph must necessarily be connected, so that there is a path between any two vertices.

Definition 5.1. A graph G is called path-determining if it contains a unique shortest path between any

two vertices.

L¢3

Figure 5.1: Two graphs which are not path-determining.

For now, we will work with only undirected, unweighted graphs (although extensions with directed and

weighted graphs are surely possible).

To describe a discrete attraction system, let G be a path-determining with vertex set V. Take k particles
on the graph, with positions given by functions Aj,..., A : Nu {0} — V. These functions are defined

inductively, with some initial condition A;(0) = vy, ..., Ak(0) = vg, for vy,..., v € V.

At each timestep, particle 4, with position given by A;, moves towards particle ¢ + 1. It moves towards
the current value of A;;; by at most one edge. So, we have that A;(¢t + 1) is the vertex neighboring A;(¢) that
is closest to A;41(t). This vertex is well-defined since G is path-determining. (If A;(t) = A;41(t), then we have
At +1) = 4i(t).)

We will now define the period, which we will spend most of our time in this section investigating.

Definition 5.2. Let G be a path-determining graph, and let A;,..., A give the positions of k£ particles on
G in an attraction system. Then, let ¢y be the minimum value in Ny such that there exists n > 0 for which
A;(to +n) = A;(tp) for all i. Then, let T be the minimum value in N~¢ such that A;(to + T) = A;(to) for all
1. We define the period of the attraction system to be T.

Note T must exist since there are only finitely many states for the A; and N u {0} is infinite, and future
states of the system are determined exclusively by the current positions of the particles (time or past states
reached are not relevant). Also, for all ¢ > g, we have A;(t + T) = A;(t) for all ¢ where T is the period of the

attraction system.

We will now give some theorems about the period in certain cases.
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Figure 5.2: An example of an attraction system with three particles on a 7-cycle graph
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Figure 5.3: An example of an attraction system with four particles on a tree. After the first timestep, the
particles never move from the central vertex.

Theorem 5.1. Let G be a complete graph. For any k € N, for any initial condition A1(0),..., Ax(0), let the
A; be defined as above. Then, the period of the attraction system is a factor of k.

Proof. For any complete graph, any two vertices are connected by an edge. This means that 4;(n) = A;41(n—
1) for all n > 0. So, (A1(1),..., Ax(1)) is (A1(0),..., Ax(0)), after each element is shifted by one to the left,
and the same relation holds for (Ai(n),..., Ax(n)) and (A1(n —1),..., Ax(n — 1)) for any n > 0. So, we can
think of {(A1(n),..., Ar(n))} as the orbit of (A41(0),..., Ax(0)) under a natural action by the cyclic group of
order k, where a generator g of the cyclic group C} acts on ordered k-tuples by shifting every element one
to the left. Then, note (Ai(n),...,Ar(n)) = ¢"(A1(0),...,A,(0)). So, the period of the attractive system
is the minimum value 7' > 0 such that g7 (A41(0),...,A4,(0)) = (A41(0),...,A4,(0)). To show T must divide
k, suppose there exists a € N, 0 < r < T such that & = aT + 7. Then, ¢* and g7 fix (4,(0),...,A4,(0)), so
g~ T fixes (A1(0),...,A4,(0)), so g*=9T = g fixes (A1(0),..., A,(0)). Therefore, since T > 0 was minimal and
r < T, we have r = 0, so T divides k. O

Theorem 5.2. Let G be a cycle of odd length I, and take a three-particle attraction system on G with any

initial condition. Then, the period of the attraction system is 1,3 or .

Proof. Note the length of G is required to be odd so that G is path-determining. There are three distinct

cases.
Case 1: The particles all start on the same point, so the system has period 1.

This case is illustrated on the 5-gon in

Case 2: The particles do not all start on the same point, but are all contained on some proper subset H

of the [-cycle containing the shortest paths between any two of its vertices.

This case is illustrated on the 5-gon in In this case, we have a period of 3. The condition
means that the three points are contained on some segment that the particles never leave. The only relevant
component of the graph for the discrete attraction system is this segment, and the length of the segment
containing all three particles shrinks over time, until it is length 2. At this point, two particles share one

vertex, and the other particle is at a neighboring vertex, giving us a system with period 3.
Case 3: The particles are such that the shortest paths between them together contain all of G.

This case is illustrated on the 5-gon in[Figure 5.6} In this case, we have a period of I. The three particles
are necessarily arranged either clockwise or counterclockwise by their order of attraction, and the shortest

paths run around G, so the particles will rotate around G, returning to their original positions only after [



Figure 5.4: Discrete attraction system with 3 particles on a 5-cycle and period 1

Figure 5.5: Discrete attraction system with 3 particles on a 5-cycle and period 3

steps. ]

These theorems have all concerned restrictions on which periods are possible. Now, we will show some
theorems in the other direction, namely, that certain periods are always possible. We will also try to count

the number of ways to produce certain periods.

Theorem 5.3. Let G be a path-determining graph which has at least two vertices. Then, for any k € N, for

any factor f of k, there is a discrete attraction system on G with k particles and a period of f.

Proof. Initially, place the 1st, 1 + fth, 1+ 2fth, ... particles on one vertex, and all of the other particles on a
neighboring vertex. Then, after ¢ timesteps, the particles on the first vertex will be those with index 1+ ¢ mod
f- In particular, after f timesteps, the particles on the first vertex are particles 1, 1 + f, 1 + 2f, ..., and this
is the first time this occurs, so the period is exactly f. This construction is illustrated for k = 6 and f = 2,3
in [Figure 5.7] and [Figure 5.8 O

After this basic existence result, we now start to count the numbers of initial conditions on K, yielding

certain periods.
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Figure 5.6: Discrete attraction system with 3 particles on a 5-cycle and period 5
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Figure 5.7: A period-2 attraction system with 6 particles

A'f A" a'l, AL
=Y
‘z'l *’f a-".a\"‘“ A i Atf Atl *S
7]
by, Fs /
A"{ Ai,"“t"&

Figure 5.8: A period-3 attraction system with 6 particles
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Theorem 5.4. On K, the number of initial conditions for f particles yielding a discrete attraction system
with period f is the same as the number of initial conditions for k particles yielding a discrete attraction system

with period k, for any multiple k of f.

Proof. From the proof of we know that for k particles on K, after f timesteps, particle i is in
the original position of particle ¢ + f. So, if we have k particles on K,,, positioned so that we have period f,
we must have all particles with equal residue mod f occupying the same vertices. Then, this system behaves
exactly like a discrete attraction with f particles, since the particles with residue ¢ mod f move all together,

attracted to the particles with residue 7 + 1 mod f, for any 3. O

Using this theorem, we make a definition.

Definition 5.3. Define P, j to be the number of initial conditions with k& particles on K,, that yield a period
of k.

By P, ; is the number of initial conditions for any multiple of k£ on K, that yield a period
of k. With this observation, we show a recursive result about these P, .

Theorem 5.5. For any n, k, we have

Pn,k = nk — Z me.
flk,f#k

Proof. There are n* possible initial conditions, since there are n ways to place each particle. By
each of these initial conditions yields a period that is a factor of k. So, the period could fail to be k only if
it is a proper factor of k. From the number of initial conditions with k particles on K, so that
the period is f is exactly P, . So, the number of initial conditions with k particles on K, with period not %

i8 ¢k, fk Pn,r, and the result follows. O

Our next avenue is to try to better understand these polynomials P, ;. For now, we include one conjecture

(which we believe is quite likely to be true) which gives a flavor of the types of questions we are now asking.

Conjecture 5.1. If p is a prime number dividing k, then Pyp i = Py, pi.

Sketch. This involves how to calculate P, ;. As we can see, the definition offers a recursive way that involves
calculating P, r when f is a proper factor k. Consider a factor fy of k, the contribution of P, #, to P, j is by
subtracting n/° and adding all the P, # when f’ is a proper factor of fy. For k = 12, we can explicitly write

down the recursion tree:

As we can see, the level of the nodes in the recursion tree, together with the value of the node determines

how it contributes to P, ;. We have terms n3 and n cancel out each other, thus

P12 = nt? —nb —n* + n2
So for P, pr, while 1, f1,..., f,, are proper factors of £, we can have the following recursion tree: We see
the recursion subtree 1, f1,..., fi, has the same node with one level difference in the recursion subtree k. So

the terms will cancel out. We are then left with all the factor of k, but multiplied by p. We can treat it as if

we are doing the recursion tree of k, but with n” as the variable. So we have Ppr 1 = P pr.

11
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6 Future Directions

There are several additional modifications to the conditions on an attraction system that we might study in

the future. These may include

e Different metrics. What happens on a hyperbolic plane? A sphere? Other surfaces? The taxicab metric?
What if there are two points we can teleport between?

»

e Different attraction functions. What if we give some particles a higher "mass,” making other particles
move more quickly to those particles and those particles move more slowly towards other particles. Can
we incorporate acceleration functions, or attraction that increases in strength when two particles are

close?

We also have a major question related to symmetry that we have not yet resolved: Which symmetry

groups are possible for a k-particle attraction system in R®? In R3, there are limited options for subgroups of

12



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

the group of orthogonal transformations. We would like to determine which of these subgroups are possible

to attain as symmetry groups of k particles, both for specific values of k, and which can be attained at all.

7 Code and Examples

7.1 Code

The simulator allows the user to input the masses and initial positions of up to 10 particles. The simulator
also plots the center of mass / average position of the entire system.An arbitrary number of particles can be

supported, but we will run out of Matlab colors for plotting.

int MAXPARTICLES 10;
int NUMSTEPS 10000;
long double TIME 0.0001;

std: :vector;
std: :string;

std: :ostream;

struct particle {
long double
3

struct R3_vector {
long double
long double
long double
R3_vector();
R3_vector(const long double, const long double, const long double) ;

R3_vector(const R3_vectork);

long double magnitude() const;

13



R3_vector& normalize();

R3_vector operator+(const R3_vector&) const;
R3_vector& operator+=(const R3_vector);
R3_vector operator-(const R3_vector&) const;
R3_vector& operator-=(const R3_vector&);
R3_vector& operator=(const R3_vector);

friend bool operator==(const R3_vector&, const R3_vector&);

};

R3_vector operator*(const long double, const R3_vector);

class physicsEngine {
size_t numParticles;
vector<particle> particles;
vector<R3_vector> positions;
vector<R3_vector> velocities;
void update_positions();
void update_velocities();
R3_vector average_position();
public
physicsEngine (vector<particle>,

vector<R3_vector>&) ;

void simulate(vector<vector<long double>>&) ;

R3_vector: :R3_vector() : x(0), y(0), z(0) {}

R3_vector: :R3_vector(long double x, long double y, long double z)
x(x), y(y), z(z) {*

R3_vector: :R3_vector(const R3_vector& temp)

x(temp.x), y(temp.y), z(temp.z) {3}

long double R3_vector::magnitude() const {




return sqrt(pow(x, 2) + pow(y, 2) + pow(z, 2));

R3_vector& R3_vector: :normalize() {
long double factor = this->magnitude();
this—>x factor;
this—>y factor;
this—>z factor;

return *this;

R3_vector R3_vector: :operator+(const R3_vectorZ lhs) const {
R3_vector temp;
temp.x = this—>x lhs.x;
temp.y = this->y + lhs.y;
temp.z this->z lhs.z;

return temp;

R3_vectorZ R3_vector: :operator+=(const R3_vectorZ lhs) {

this—>x lhs.x;
this—>y lhs.y;
this->z lhs.z;

return *this;

R3_vector R3_vector: :operator-(const R3_vector& lhs) const {
R3_vector temp;
temp.x = this—>x lhs.x;
temp.y = this—>y - lhs.y;
temp.z = this->z - lhs.z;

return temp;

R3_vector& R3_vector: :operator-=(const R3_vectorZ lhs) {
this—>x lhs.x;
this—>y lhs.y;
this->z lhs.z;




return *this;

R3_vector& R3_vector: :operator=(const R3_vector& lhs) {
this-—>x lhs.x;
this->y = lhs.y;
this->z lhs.z;

return *this;

bool operator==(const R3_vector& lhs, const R3_vector
if (lhs.x rhs.x lhs.y rhs.y lhs.z
return true;

return false;

R3_vector operator*(const long double const R3_vector& 1lhs) {
R3_vector temp;
temp.x @© lhs.x;
temp.y = c * lhs.y;
temp.z @ lhs.z;

return temp;

physicsEngine: : physicsEngine(
vector<particle>& partData,
vector<R3_vector>& posData)
numParticles(partData.size()),
particles(partData), positions(posData),

velocities(partData.size(), R3_vector()) {

if (positions.size() numParticles velocities.size() numParticles)

throw std::runtime_error("Bad simulator initialization...\n");

void physicsEngine: :update_positions() {

for (size_t i = 0; i < numParticles; i)




positions[i] TIME * velocities[i];

void physicsEngine: :update_velocities() {
for (size_t i = 0; i < numParticles; i) {
if (positions[(i + 1) 7, numParticles] positions[il)
velocities[i] (positions[(i + 1) 7, numParticles] - positions[i])
else

velocities[i]

(positions[(i + 1) 7, numParticles] - positions[i]) .normalize();

R3_vector physicsEngine: :average_position() {

long double totalMass = O;

R3_vector temp;

for (size_t i = 0; i < numParticles; i) {
totalMass particles[i] .mass;
temp particles[i] .mass * positions[i];

}

temp 1 totalMass temp;

return temp;

void physicsEngine: :simulate(vector<vector<long double data) {
for (size_t i 0; 1 NUMSTEPS; i) {

for (size_t j = 0; j < numParticles; ++j) {
data[2 * jl1[i] = positiomns[j].x;
datal[2 * j + 1][i] = positions[j].y;

}

update_velocities();

update_positions() ;

R3_vector temp = average_position();

data[2 * MAXPARTICLES] .push_back(temp.x) ;

data[2 * MAXPARTICLES + 1].push_back(temp.y);

This is the main function




using namespace std;

namespace plt matplotlibcpp;

int main(int argc, char* argv[])

{

vector<particle> particles = { {1}, {1}, {1}, {1}};
vector<R3_vector> positions = { {1, -1, 0}, {1, 1, 0}, {-1, 1, 0}, {-1, -1, O} };

vector<vector<long double data(2 MAXPARTICLES 2, vector<long double>(NUMSTEPS, O

physicsEngine simulator(particles, positions);

simulator.simulate(data);

plt: :backend("tkAgg") ;

plt::named_plot("Avg.", data[20], data[21], "k.");

(size_t i 1; i particles.size(); i) {
if (4 1)

plt::named_plot("A", datal[0], data[l], "xkcd:tomato");
else if(d 2)

plt::named_plot("B", datal[2], data[3], "xkcd:teal");
else if (i 3)

plt::named_plot("C", datal[4], data[5], "xkcd:orange");
else if (4 4)

plt: :named_plot("D", datal[6], datal[7], "xkcd:green");
else if (i 5)

plt::named_plot("E", datal[8], data[9], "xkcd:goldenrod");
else if (4 6)
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plt::named_plot ("F",
else if (4 7)

plt: :named_plot ("G",
else if (4 8)

plt::named_plot ("H",
else if (4 9)

plt: :named_plot("I",
else if (4 10)

plt::named_plot("J",

title("Attraction");

legend();

7.2 Simulation of a Square

datal[10],

datal12],

datal[14],

datal16],

datal[18],

datal[11], "xkcd:tomato");

data[13], "xkcd:orange");

data[15], "xkcd:green");

data[17], "xkcd:goldenrod");

data[19], "xkcd:tomato");

Attrac

tion/images/square.png

Figure 7.1: Initial positions form a Square
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7.3 Simulation of Triangle

Attraction
1.00 . Avg.
A
0.75 A — B
— C
0.50
0.25 A
0.00 4 *
—0.25 1
S
—0.50 1
—0.75 1 ’/
—=1.00 4

T T T T T T T T T
-1.00 -0.75 -050 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 7.2: Initial Positions form a triangle
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