Notes for Math 571 – Numerical Linear Algebra

Yiwei Fu, Instructor: Divakar Viswanath

FA 2022

Contents

1				1
	1.1	Rank of Matrices	3	. 1
	1.2	Cauchy-Schwarz		. 1
	1.3 Projection Matrices, Gram-Schmidt Process		ces, Gram-Schmidt Process	. 1
	1.4	Applications of M	MGS and QR Factorization	. 6
		1.4.1 Solution of	of $Ax = b$ for $A \in \mathbb{R}^{m,n}$, rank $(A) = n$. 6
		1.4.2 Connection	on with Volumes and QR	. 6
		1.4.3 Determin	ants	. 6
_				-
2				7
	2 1	Norm		7

Chapter 1

1.1 Rank of Matrices

1.2 Cauchy-Schwarz

1.3 Projection Matrices, Gram-Schmidt Process

Suppose we have a plane of dimension n-1 and a direction orthogonal to it. A unit vector q with $q^Tq=1$.

Through a q a dim is specified as well as the n-1 dimensional plane orthogonal to it.

Given x we want to decompose it as y + z with

- 1. y parallel to q
- 2. z orthogonal to q

We note $q^T z = 0$. So

$$x = \alpha a + z$$
$$q^{T}z = \alpha q^{T}q = \alpha$$
$$x = q(q^{T}x) + z$$

If x = y + z is the decomposition of x then

$$y = q(q^T x) = (qq^T)x$$
$$z = x - (qq^T)x$$

The matrix qq^T is a projection matrix. Applied to x it gives the component along q. If

 $p = qq^T$ then $P_x =$ component of x along q. (I - P)x = component of x along the plane orthogonal to q.

(All projection are orthogonal throughout the class.)

Let us try to understand P.

- 1. What is the rank of P? rank P = 1. (all columns multiples of q)
- 2. Eigenvalues and eigenvectors of P?

Pq=q. Suppose $x\perp q$ then Px=0. And eigenvalue = 1, eigenvalue = 0 with multiplicity n-1.

- 3. $P^2 = P$. $(qq^T)(qq^T) = q(q^Tq)q^T = qq^T$. $P^2 = Px$ for all $x \implies P^2 = P$.
- 4. $(I-P)^2 = I P$.
- 5. P(I P) = 0.

Given x and unit vector q, how many operations to compute $(I - P)x = x - q(q^Tx)$?

- 1. $q^T x$ takes n multiplications and n-1 additions
- 2. $q(q^Tx)$ takes n multiplications
- 3. $x q(q^Tx)$ takes n subtractions

In total it takes 4n - 1 or 4n arithmetic operations.

Suppose q_1 and q_2 are unit vectors with $q_1 \perp q_2$. Then which matrix projects to $\langle q_1, q_2 \rangle$, the plane spanned by q_1 and q_2 ?

$$P = P_1 + P_2$$
 with $P_1 = q_1 q^T, P_2 = q_2 q_2^T$.

Definition 1.3.1. q_1, \ldots, q_k is called an orthonormal set of vectors if

- 1. $q_i q_i^T = 1$ for all i,
- 2. $q_i^T q_i = 0$ for all $i \neq q$.

$$Q = \begin{pmatrix} \begin{vmatrix} & & & \\ q_1 & \cdots & q_k \\ & & & \end{vmatrix} \in \mathbb{R}^{n,k} \text{ is a matrix with orthonormal columns.}$$

If q_1, \ldots, q_k are orthonormal then

$$P = q_1 q_1^T + q_2 q_2^T + \ldots + q_x q_x^T$$

projects to $\langle q_1, \ldots, q_k \rangle$.

P can be expressed as $P = QQ^T$ where $Q \in \mathbb{R}^{n,k}$ with q_j as its columns.

What is the interpretation of Q^Tx ? Q^Tx gives the coefficients when the projection of x to $\langle q_1, \ldots, q_k \rangle$ is written as a linear combination of q_j .

What is Q^TQ ? Identity matrix. Columns of Q forms as orthogonal set iff $Q^TQ = I$.

- 1. What is $I QQ^T$? Projection to $\langle q_1, \dots, q_k \rangle^{\perp} = (n k)$ dim plane orthogonal to $\langle q_1, \dots, q_k \rangle$.
- 2. $\operatorname{rank}(QQ^T) = k$.
- 3. $\operatorname{rank}(I QQ^T) = n k$.

Definition 1.3.2. A matrix $Q \in \mathbb{R}^{n,n}$ with orthonormal columns is called an orthogonal matrix. The columns of an orthogonal matrix Q form an orthogonal basis.

- 1. $QQ^T = id$ since $QQ^Tx = x$ for all x (projection to the whole space.)
- 2. What is the interpretation of Q^Tx ? The coefficients for x as linear combinations of columns of Q.
- 3. Q^TQ still equal to identity.
- 4. The rows of Q also form an orthonormal basis.
- 5. $Q^{-1} = Q^T$.

CLASSICAL GRAM-SCHMIDT PROCESS

Suppose $A \in \mathbb{R}^{n,k}$ with $n \geq k$ and rank A = k. Let a_1, \ldots, a_k be the columns of A. The Gram-Schmidt process generates an orthonormal set q_1 through q_k such that

- 1. $\langle q_1 \rangle = \langle a_1 \rangle$,
- 2. $\langle q_1, q_2 \rangle = \langle a_1, a_2 \rangle$,

:

k.
$$\langle q_1, q_2, \dots, q_k \rangle = \langle a_1, a_2, \dots, a_k \rangle$$
.

An algorithm for computing q_1, \ldots, q_k :

$$q_{1} = \frac{a_{1}}{\|a_{1}\|} = \frac{a_{1}}{(a_{1}^{T}a_{1})}$$

$$\tilde{q}_{2} = a_{2} - P_{1}a_{2} = a_{2} - q_{1}(q_{1}^{T}a_{2}), q_{2} = \frac{\tilde{q}_{2}}{\|q_{2}\|}$$

$$\vdots$$

$$\tilde{q}_{k} = a_{k} - \sum_{i=1}^{k-1} P_{i}a_{k} = a_{k} - \sum_{i=1}^{k-1} q_{i}q_{i}^{T}a_{k}, q_{k} = \frac{\tilde{q}_{k}}{\|q_{k}\|}.$$

Expression of Gram-Schmidt as A = QR with R upper triangles. Suppose q_1, \ldots, q_k are computed by applying Gram-Schmidt to the columns of A.

Let Q be the matrix whose columns are q_1, \ldots, q_k . Both A and Q are $n \times k$.

$$\begin{split} A &= Q(k \times k \text{ matrix}) \\ &= QR. \end{split}$$

Every column of A is expressed as a linear combination of q_1, \ldots, q_k .

What are the entries of R?

Note that $a_j = q_1(q_1^T a_j) + \ldots + a_j(a_j^T a_j)$ because $a_j \in \langle q_1, \ldots, q_j \rangle$. Write $a_j = q_1 r_{1j} + \ldots + a_j r_{ij}$. Thus

$$r_{ij} = \begin{cases} q_i^T a_j & i \le j, \\ 0 & i > j. \end{cases}$$

During Gram=Schmidt process these coefficients are computed

$$r_{ij} = q_i^T a_j, \quad i < j$$
$$r_{jj} = \|\tilde{q}_j\|$$

APPLICATION OF CLASSICAL GRAM-SCHMIDT

Think of a_1, \ldots, a_k as defining a k-dim parallelepiped in \mathbb{R}^n . What is the volume of the parallelepiped defined by a_1, \ldots, a_k ?

 $\prod r_{ii}$.

 $\underline{\text{NOTE}}$ Classical Gram-Schmidt (CGS) is not numerically stable. More precisely, when A has near rank efficiency, then CGS does not behave well.

We can use modified Gram-Schmidt (MGS):

Lemma 1.3.1. If q_1, \ldots, q_j are an orthonormal set and P_1, \ldots, P_j are corresponding projections, then

$$I - P_1 - \ldots - P_j = (I - P_j) \ldots (I - P_2)(I - P_1)$$

(Projection one at a time (RHS) vs. project at once (LHS))

Proof. $P_i P_j = 0$ if $i \neq j$. Expand RHS and we are done.

MGS has step
$$j$$
 given by $\tilde{q}_j = (I - P_{j-1}) \dots (I - P_1) a_j, q_j = \frac{\tilde{q}_j}{\|q_j\|}$.
In CGS, $A = QR$ with $a_j = q_i r_{ij} + \dots + q_j r_{jj}$. $r_{ij} = q_i^T a_j i \neq j, \|\tilde{q}_j\|$.

 $q_i^T a_j$ are not available as intermediate quantities in MGS.

$$\begin{split} \tilde{q_j} &= (I - P_{j-1}) \dots (I - P_1) a_j \\ a_{j,1} &= (I - P_1) a_j \quad (= a_j - P_1 a_j) \\ a_{j,2} &= (I - P_2) a_{j,1} \quad (= a_j - P_2 a_j - P_1 a_j \text{ mathematically}) \\ a_{j,3} &= (I - P_3) a_{j,2} \quad (= a_j - P_3 a_j - P_2 a_j - P_1 a_j \text{ mathematically}) \\ &\vdots \end{split}$$

In practice the rounding error will accumulate differently, which makes MGS stable. So

$$r_{i,j} = q_i^T a_{j,i-1}$$

$$= q_i^T (I - P_1 - \dots - P_{i-1}) a_i$$

$$= q_i^T a_j$$

Operations count for MGS (or CGS): In step j we have the following:

$$a_{j,1} = (I - P_1)a_j$$

$$a_{j,2} = (I - P_2)a_{j,1}$$

$$\vdots$$

$$a_{j,j-1} = (I - P_{j-1})a_{j,j-2}$$

$$q_j = \frac{a_{j,j-1}}{\|a_{j,j-1}\|}$$

To count operations, recall that (I - P)x requires 4n operations.

$$(I - P)x = x - q(q^T x)$$

2n-1 for q^Tx , n for $q(q^Tx)$, n for $x-q(q^Tx)$. Operation count for step i is (4n)(j-1)+3n. The total count is

$$\sum_{j=1}^{k} (4n-1)(j-1) + 3n = (4n-1)\frac{k(k-1)}{2} 3nk = 2nk^2 \text{ leading terms}$$

Also:

$$\sum_{j=1}^{k} 4nj = 4n \sum_{i=1}^{k} j = 4n \int_{0}^{k} x dx = 4nk^{2}.$$

1.4 Applications of MGS and QR Factorization

1.4.1 Solution of Ax = b for $A \in \mathbb{R}^{m,n}$, rank(A) = n

$$QRx = b \implies Rx = Q^Tb$$

Now $Rx = \tilde{b}$ can be solved by back substitution.

Operation count for solving Ax = b using QR.

- 1. calculating $QR : 2n^3$
- 2. $\tilde{b} = Q^T b, 2n^2 n$
- 3. solving $Rx = \tilde{b}$ using back substitution: n^2 .

Linear system solved using Gaussian elimination with partial pivoting is n^3 .

1.4.2 Connection with Volumes and QR

Let a_1 and a_2 be vectors in \mathbb{R}^m . They will define a parallelogram as follows.

1.4.3 Determinants

Chapter 2

2.1 Norm

Definition 2.1.1. Suppose $x \in \mathbb{R}^n$, then

$$||x||_{1} = |x_{1}| + \dots + |x_{n}|$$

$$||x||_{2} = \sqrt{|x_{1}|^{2} + \dots + |x_{n}|^{2}}$$

$$||x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$

$$||x||_{\infty} = \max_{j} |x_{j}|.$$

Some properties

- 1. $||x|| \ge 0$ with equality iff x = 0,
- 2. $||x+y|| \le ||x|| + ||y||$,
- 3. $\|\alpha x\| = |\alpha| \|x\|$ for $\alpha \in \mathbb{R}$.

Lemma 2.1.1. *If* $\|\cdot\|$ *is a norm and A is then*

$$\left\Vert x\right\Vert _{A}=\left\Vert Ax\right\Vert$$

is also a norm over vectors.

Proof. A

The unit ball of a norm $\{x \mid ||x|| \le 1\}$.