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Chapter 1

1.1 Rank of Matrices

1.2 Cauchy-Schwarz

1.3 Projection Matrices, Gram-Schmidt Process

Suppose we have a plane of dimension n − 1 and a direction orthogonal to it. A unit
vector q with qT q = 1.

Through a q a dim is specified as well as the n− 1 dimensional plane orthogonal to it.

Given x we want to decompose it as y + z with

1. y parallel to q

2. z orthogonal to q

We note qT z = 0. So

x = αa+ z

qT z = αqT q = α

x = q(qTx) + z

If x = y + z is the decomposition of x then

y = q(qTx) = (qqT )x

z = x− (qqT )x

The matrix qqT is a projection matrix. Applied to x it gives the component along q. If
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Projection Matrices, Gram-Schmidt Process Yiwei Fu

p = qqT then Px = component of x along q. (I − P )x = component of x along the plane
orthogonal to q.

(All projection are orthogonal throughout the class.)

Let us try to understand P .

1. What is the rank of P ? rankP = 1. (all columns multiples of q)

2. Eigenvalues and eigenvectors of P ?

Pq = q. Suppose x ⊥ q then Px = 0. And eigenvalue = 1, eigenvalue = 0 with
multiplicity n− 1.

3. P 2 = P . (qqT )(qqT ) = q(qT q)qT = qqT . P 2 = Px for all x =⇒ P 2 = P .

4. (I − P )2 = I − P .

5. P (I − P ) = 0.

Given x and unit vector q, how many operations to compute (I − P )x = x− q(qTx)?

1. qTx takes n multiplications and n− 1 additions

2. q(qTx) takes n multiplications

3. x− q(qTx) takes n subtractions

In total it takes 4n− 1 or 4n arithmetic operations.

Suppose q1 and q2 are unit vectors with q1 ⊥ q2. Then which matrix projects to 〈q1, q2〉,
the plane spanned by q1 and q2?

P = P1 + P2 with P1 = q1q
T , P2 = q2q

T
2 .

Definition 1.3.1. q1, . . . , qk is called an orthonormal set of vectors if

1. qiqTi = 1 for all i,

2. qTi qj = 0 for all i 6= q.

Q =

q1 · · · qk

 ∈ Rn,k is a matrix with orthonormal columns.

If q1, . . . , qk are orthonormal then

P = q1q
T
1 + q2q

T
2 + . . .+ qxq

T
x

projects to 〈q1, . . . , qk〉.

P can be expressed as P = QQT where Q ∈ Rn,k with qj as its columns.
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What is the interpretation of QTx? QTx gives the coefficients when the projection of x
to 〈q1, . . . , qk〉 is written as a linear combination of qj .

What is QTQ? Identity matrix. Columns of Q forms as orthogonal set iff QTQ = I .

1. What is I − QQT ? Projection to 〈q1, . . . , qk〉⊥ = (n − k) dim plane orthogonal to
〈q1, . . . , qk〉.

2. rank(QQT ) = k.

3. rank(I −QQT ) = n− k.

Definition 1.3.2. A matrix Q ∈ Rn,n with orthonormal columns is called an orthogonal
matrix. The columns of an orthogonal matrix Q form an orthogonal basis.

1. QQT = id since QQTx = x for all x (projection to the whole space.)

2. What is the interpretation of QTx? The coefficients for x as linear combinations of
columns of Q.

3. QTQ still equal to identity.

4. The rows of Q also form an orthonormal basis.

5. Q−1 = QT .

CLASSICAL GRAM-SCHMIDT PROCESS

Suppose A ∈ Rn,k with n ≥ k and rankA = k. Let a1, . . . , ak be the columns of A. The
Gram-Schmidt process generates an orthonormal set q1 through qk such that

1. 〈q1〉 = 〈a1〉,

2. 〈q1, q2〉 = 〈a1, a2〉,
...

k. 〈q1, q2, . . . , qk〉 = 〈a1, a2, . . . , ak〉.

An algorithm for computing q1, . . . , qk:

q1 =
a1
‖a1‖

=
a1

(aT1 a1)

q̃2 = a2 − P1a2 = a2 − q1(qT1 a2), q2 =
q̃2
‖q2‖

...

q̃k = ak −
k−1∑
i=1

Piak = ak −
k−1∑
i=1

qiq
T
i ak, qk =

q̃k
‖qk‖

.
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Expression of Gram-Schmidt as A = QR with R upper triangles. Suppose q1, . . . , qk are
computed by applying Gram-Schmidt to the columns of A.

Let Q be the matrix whose columns are q1, . . . , qk. Both A and Q are n× k.

A = Q(k × k matrix)

= QR.

Every column of A is expressed as a linear combination of q1, . . . , qk.

What are the entries of R?

Note that aj = q1(q
T
1 aj) + . . . + aj(a

T
j aj) because aj ∈ 〈q1, . . . , qj〉. Write aj = q1r1j +

. . .+ ajrij . Thus

rij =

qTi aj i ≤ j,

0 i > j.

During Gram=Schmidt process these coefficients are computed

rij = qTi aj , i < j

rjj = ‖q̃j‖

APPLICATION OF CLASSICAL GRAM-SCHMIDT

Think of a1, . . . , ak as defining a k−dim parallelepiped in Rn. What is the volume of the
parallelepiped defined by a1, . . . , ak?∏
rii.

NOTE Classical Gram-Schmidt (CGS) is not numerically stable. More precisely, when A
has near rank efficiency, then CGS does not behave well.

We can use modified Gram-Schmidt (MGS):

Lemma 1.3.1. If q1, . . . , qj are an orthonormal set and P1, . . . , Pj are corresponding projections,
then

I − P1 − . . .− Pj = (I − Pj) . . . (I − P2)(I − P1)

(Projection one at a time (RHS) vs. project at once (LHS))

Proof. PiPj = 0 if i 6= j. Expand RHS and we are done. �

MGS has step j given by q̃j = (I − Pj−1) . . . (I − P1)aj , qj =
q̃j
‖qj‖ .

In CGS, A = QR with aj = qirij + . . .+ qjrjj . rij = qTi aji 6= j, ‖q̃j‖.
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qTi aj are not available as intermediate quantities in MGS.

q̃j = (I − Pj−1) . . . (I − P1)aj

aj,1 = (I − P1)aj (= aj − P1aj)

aj,2 = (I − P2)aj,1 (= aj − P2aj − P1aj mathematically)

aj,3 = (I − P3)aj,2 (= aj − P3aj − P2aj − P1aj mathematically)

...

In practice the rounding error will accumulate differently, which makes MGS stable.

So

ri,j = qTi aj,i−1

= qTi (I − P1 − . . .− Pi−1)ai

= qTi aj

Operations count for MGS (or CGS): In step j we have the following:

aj,1 = (I − P1)aj

aj,2 = (I − P2)aj,1

...

aj,j−1 = (I − Pj−1)aj,j−2

qj =
aj,j−1
‖aj,j−1‖

To count operations, recall that (I − P )x requires 4n operations.

(I − P )x = x− q(qTx)

2n−1 for qTx, n for q(qTx), n for x−q(qTx). Operation count for step i is (4n)(j−1)+3n.

The total count is

k∑
j=1

(4n− 1)(j − 1) + 3n = (4n− 1)
k(k − 1)

2
3nk = 2nk2 leading terms

Also:
k∑

j=1

4nj = 4n

k∑
i=1

j = 4n

∫ k

0

xdx = 4nk2.
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1.4 Applications of MGS and QR Factorization

1.4.1 Solution of Ax = b for A ∈ Rm,n, rank(A) = n

QRx = b =⇒ Rx = QT b

Now Rx = b̃ can be solved by back substitution.

Operation count for solving Ax = b using QR.

1. calculating QR : 2n3

2. b̃ = QT b, 2n2 − n

3. solving Rx = b̃ using back substitution: n2.

Linear system solved using Gaussian elimination with partial pivoting is n3.

1.4.2 Connection with Volumes and QR

Let a1 and a2 be vectors in Rm. They will define a parallelogram as follows.

1.4.3 Determinants
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Chapter 2

2.1 Norm

Definition 2.1.1. Suppose x ∈ Rn, then

‖x‖1 = |x1|+ . . .+ |xn|

‖x‖2 =
√
|x1|2 + . . .+ |xn|2

‖x‖p =

(
n∑

i=1

|xi|p
) 1

p

‖x‖∞ = max
j
|xj |.

Some properties

1. ‖x‖ ≥ 0 with equality iff x = 0,

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

3. ‖αx‖ = |α| ‖x‖ for α ∈ R.

Lemma 2.1.1. If ‖·‖ is a norm and A is then

‖x‖A = ‖Ax‖

is also a norm over vectors.

Proof. A

The unit ball of a norm {x | ‖x‖ ≤ 1}. �
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