Notes for Math 597 – Real Analysis

Yiwei Fu

WN 2022

Contents

1	Abstract Measure						
	1.1	σ -Algebra	1				
	1.2	Measures	2				
	1.3	Outer Measures	4				
	1.4	Hahn-Kolmogorov Theorem	9				
	1.5	Borel Measures on \mathbb{R}	12				
	1.6	Lebesgue-Stieltjes Measures on $\mathbb R$	14				
	1.7	Regularity Properties of Lebesgue-Stieltjes Measures	15				
2	Inte	Integration					
	2.1	Measurable Functions	19				
	2.2	Integration of Nonnegative Functions	22				
	2.3	Integration of Complex Functions	27				
	2.4	L^1 space	29				
	2.5	Riemann Integrability	31				
	2.6	Modes of Convergence	32				
3	Product Measures						
	3.1	Product σ -algebra	35				
	3.2	Product Measures	37				
	3.3	Monotone Class Lemma	38				
	3.4	Fubini-Tonelli Theorem	40				
	3.5	Lebesgue Measure on \mathbb{R}^d	42				
4	Differentiation on Euclidean Space						
	4.1	Hardy-Littlewood Maximal Function	45				
	4.2	Lebesgue Differentiation Theorem	46				

5	Normed Vector Spaces							
	5.1	Metric Spaces and Normed Spaces	49					
	5.2	L^p Spaces	50					
	5.3	Embedding Properties of L^p spaces $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	53					
	5.4	Banach Spaces	54					
	5.5	Bounded Linear Transformation	54					
	5.6	Dual of L^p Spaces	55					
6	Signed and Complex Measures							
	6.1	Signed Measures	56					
	6.2	Absolutely Measurable Spaces	59					
	6.3	Lebesgue Differentiation Theorem for Regular Borel Measures on \mathbb{R}^d	62					
	6.4	Monotone Differentiation Theorem	63					
	6.5	Functions of Bounded Variation	64					
	6.6	Absolutely Continuous Functions	67					
7	7 Hilbert Spaces							
	7.1	Inner Product Spaces	70					
	7.2	Orthonormal Basis	71					
8	Intr	o to Fourier Analysis	74					
	8.1	Fourier Series	74					
Of	Office hour is Mon 12:30 - 1:30, Tue 12:30 - 1:30 in person EH 5838, Th 1 - 2 online.							

Chapter 1

Abstract Measure

1.1 σ -Algebra

Definition 1.1. Let *X* be a set. A collection \mathcal{M} of subsets of *X* is called a σ -algebra on *X* if

- $\emptyset \in \mathcal{M}$.
- \mathcal{M} is closed under *complements*: $E \in \mathcal{M} \implies E^c \in \mathcal{M}$.
- \mathcal{M} is closed under *countable unions*: $E_1, E_2, \ldots \in \mathcal{M} \implies \bigcup_{i=1}^{\infty} E_i \in \mathcal{M}$.

SIMPLE PROPERTIES:

- $X = \emptyset^c \in \mathcal{M}.$
- $\bigcap_{i=1}^{\infty} E_i = (\bigcup_{i=1}^{n} E_i^c)^c \in \mathcal{M}$. It is closed under countable intersections.
- $\bigcup_{i=1}^{N} E_i = E_i \cup \ldots \cup E_n \cup \emptyset \cup \ldots$ It is closed under finite unions (similarly, intersections). sigma
- $E \setminus F = E \cap F^c \in \mathcal{M}, E \triangle F = (E \cap F^c) \cup (F \cap E^c) \in \mathcal{M}.$

Example 1.2. (a) $\mathcal{A} = \mathcal{P}(X)$ power algebra.

- (b) $\mathcal{A} = \{\emptyset, X\}$ trivial algebra.
- (c) Let $B \subset X, B \neq \emptyset, B \neq X.\mathcal{A} = \{\emptyset, B, B^c, X\}.$

Lemma 1.3. (An intersection of σ -algebras is a σ -algebra) Let $\mathcal{A}_{\alpha}, \alpha \in I$, be a family a σ -algebras of X. Then $\bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$ is a σ -algebra. (I can be uncountable.)

Proof. DIY

Definition 1.4. For $\mathcal{E} \subset \mathcal{P}(X)$ (not necessarily a σ -algebra), let $\langle \mathcal{E} \rangle$ be the intersection of all σ -algebras on X that contains \mathcal{E} . Call it the σ -algebra generated by \mathcal{E} .

- $\langle \mathcal{E} \rangle$ is the *smallest* σ -algebra containing \mathcal{E} and is *unique*.
- $\{\emptyset, B, B^c, X\} = \langle \{B\} \rangle = \langle \{B^c\} \rangle = \langle \{\emptyset, B\} \rangle.$

The above definition gives us (potentially) lots of examples of σ -algebra on a set X

Lemma 1.5. (a) Suppose $\mathcal{E} \subset \mathcal{P}(X)$, \mathcal{A} is a σ -algebra on X. $\mathcal{E} \in \mathcal{A} \implies \langle \mathcal{E} \rangle \in \mathcal{A}$. (b) $E \subset F \subset \mathcal{P}(X) \implies \langle \mathcal{E} \rangle \subset \langle \mathcal{F} \rangle$.

Proof.

Definition 1.6. For a topological space *X*, the Borel σ -algebra $\mathcal{B}(X)$ is the σ -algebra generated by the collection of open sets.

Example 1.7. $(X = \mathbb{R}) \mathcal{B}(\mathbb{R})$ contains the following collections:

$$\begin{aligned} \mathcal{E}_1 &= \{(a,b) \mid a < b\}, \quad \mathcal{E}_2 &= \{[a,b] \mid a < b\}, \\ \mathcal{E}_3 &= \{(a,b] \mid a < b\}, \quad \mathcal{E}_4 &= \{[a,b) \mid a < b\}, \\ \mathcal{E}_5 &= \{(a,\infty) \mid a \in \mathbb{R}\}, \quad \mathcal{E}_6 &= \{[a,\infty) \mid a \in \mathbb{R}\}, \\ \mathcal{E}_7 &= \{(-\infty,a) \mid a \in \mathbb{R}\}, \quad \mathcal{E}_8 &= \{(-\infty,a] \mid a < b\}. \end{aligned}$$

Proposition 1.8. $\mathcal{B}(\mathbb{R}) = \langle \mathcal{E}_i \rangle$ for each i = 1, ..., 8.

Proof. Use 1.5.

Definition 1.9. (X, \mathcal{A}) is called a measurable space.

1.2 Measures

Definition 1.10. A measure on (X, \mathcal{A}) is a function $\mu : \mathcal{A} \to [0, \infty] s.t.$

- (a) $\mu(\emptyset) = 0$
- (b) (countable additive) For $A_1, A_2, \ldots \in \mathcal{A}$ disjoint we have

$$\mu\left(\bigcup_{1}^{\infty}A_{i}\right) = \sum_{i=1}^{\infty}\mu(A_{i}).$$

 (X, \mathcal{A}, μ) is then called a measure space.

Example 1.11. (a) For any (X, A), $\mu(A) = #A$ counting measure.

(b) For any (X, \mathcal{A}) , let $x_0 \in X$. The Dirac measure at x_0 is

$$\mu(A) = \begin{cases} 1 & x_0 \in A, \\ 0 & x_0 \notin A. \end{cases}$$

(c) For $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, let $a_1, a_2, \ldots \in [0, \infty)$. $\mu(A) = \sum_{i \in A} a_i$ is a measure.

- (X, \mathcal{A}) measurable space
- (X, \mathcal{A}, μ) measure space

 $\mu: \mathcal{A} \to [0,\infty] \ s.t. \ \mu(\emptyset) = 0$, countable additivity.

NOTE: $A, B \in \mathcal{A}, A \subset B$, then $\mu(B \setminus A) + \mu(A) = \mu(B) \implies \mu(B \setminus A) = \mu(B) - \mu(A)$ if $\mu(A) < \infty$.

Theorem 1.13. Suppose (X, \mathcal{A}, μ) a measure space. Then

(a) (monotonicity)

$$A, B \in \mathcal{A}, A \subset B \implies \mu(A) \le \mu(B).$$

(b) (countable subadditivity)

$$A_1, A_2, \ldots, \in \mathcal{A}, \implies \mu\left(\bigcup_i^\infty A_i\right) \leq \sum_i^\infty \mu(A_i).$$

(c) (continuity from below/(MCT) from sets)

$$A_1, A_2, \ldots \in \mathcal{A}, A_1 \subset A_2 \subset A_3 \subset \ldots \implies \mu\left(\bigcup_i^\infty A_i\right) = \lim_{n \to \infty} \mu(A_n).$$

(*d*) (continuity from above)

$$A_1, A_2, \ldots \in \mathcal{A}, A_1 \supset A_2 \supset A_3 \supset \ldots, \mu(A_1) < \infty \implies \mu\left(\bigcap_i^\infty A_i\right) = \lim_{n \to \infty} \mu(A_n).$$

Proof. (a), (b), DIY.

For (c), let $B_1 = A_1, B_i = A_i \setminus A_{i-1}, i \ge 2.B_i \in A$ and are disjoint.

$$\bigcup_{i}^{\infty} A_{i} = \bigcup_{i}^{\infty} B_{i}$$
$$\implies \mu\left(\bigcup_{i}^{\infty} A_{i}\right) = \mu\left(\bigcup_{i}^{\infty} B_{i}\right) = \sum_{i}^{\infty} \mu(B_{i}) = \lim_{n \to \infty} \sum_{i}^{n} \mu(B_{i}) = \lim_{n \to \infty} \mu(A_{n}).$$

For (d), let $E_i = A_1 \setminus A_i$. Hence $E_i \in \mathcal{A}, E_1 \subset E_2 \subset \ldots$ We have

$$\bigcup_{i}^{\infty} E_{i} = \bigcup_{i}^{\infty} (A_{1} \setminus A_{i}) = A_{1} \setminus \left(\bigcap_{1}^{\infty} A_{i}\right) \implies \bigcap_{1}^{\infty} A_{i} = A_{1} \setminus \left(\bigcup_{1}^{\infty} E_{i}\right).$$

Hence

$$\mu\left(\bigcap_{1}^{\infty}A_{i}\right) = \mu(A_{1}) - \mu\left(\bigcup_{1}^{\infty}E_{i}\right) = \mu(A_{1}) - \lim_{n \to \infty}\mu(E_{n}) = \mu(A_{1}) - \lim_{n \to \infty}\mu(A_{1}) - \mu(A_{n}).$$

<u>NOTE</u>: the condition that $\mu(A_1) < \infty$ cannot be dropped.

For example, in $(\mathbb{N}, \mathcal{P}(N))$, counting measure), let $A_n = \{n, n+1, n+2\}, A_1 \supset A_2 \supset A_3 \supset \dots$ We have $\bigcap_1^{\infty} = \emptyset \implies \mu (\bigcap_1^{\infty} A_i) = 0$.

Definition 1.14. For (X, \mathcal{A}, μ) measure space,

- $A \subset X$ is a μ -null set if $A \in \mathcal{A}, \mu(A) = 0$.
- $A \subset X$ is a μ -subnull set if $\exists B, \mu$ -null set $A \subset B$.
- (X, \mathcal{A}, μ) is a complete measure space if every μ -subnull set is \mathcal{A} -measurable.

Definition 1.15. (X, \mathcal{A}, μ) measure space. A statement $P(x), x \in X$ holds μ -almost everywhere (a.e.) if the set $\{x \in X \mid P(x) \text{ does not hold}\}$ is μ -null.

Definition 1.16. (X, \mathcal{A}, μ) measure space.

- μ is a finite measure is $\mu(X) < \infty$.
- μ is a σ -finite measure if $X = \bigcup_{1}^{\infty} X_n, X_n \in \mathcal{A}, \mu(X_n) < \infty$.

HW: every measure space can be "completed."

1.3 Outer Measures

Definition 1.17. An *outer measure* on X is $\mu^* : \mathcal{P}(X) \to [0, \infty] s.t.$

- $\mu^*(\emptyset) = 0$
- (monotonicity) $\mu^*(A) \leq \mu^*(B)$ if $A \subset B$.
- (countable subadditivity)

$$\forall A_1, A_2, \ldots \in X, \mu^* \left(\bigcup_i^\infty A_i \right) \le \sum_i^\infty \mu^*(A_i).$$

Example 1.18. For $A \subset \mathbb{R}$,

$$\mu^*(A) = \inf\left\{\sum_{i=1}^\infty (b_i - a_i) \mid \bigcup_{i=1}^\infty (a_i, b_i) \supset A\right\}.$$

is an outer measure due to the next proposition.

Proposition 1.19. (1.19) Let $\mathcal{E} \in \mathcal{P}(X)$ s.t. $\emptyset, X \in \mathcal{E}$. Let $\rho : \mathcal{E} \to [0, \infty]$ s.t. $\rho(\emptyset) = 0$. Then

$$\mu^*(A) = \inf\left\{\sum_{i=1}^{\infty} \rho(E_i) \mid E_i \in \mathcal{E}, \forall i \in N, \bigcup_{i=1}^{\infty} E_i \supset A\right\}$$

is an outer measure on X.

Proof. (a) μ^* is well-defined (inf is taken over non-empty set.)

- (b) $\mu^*(\emptyset) = 0$
- (c) $A \subset B \implies \mu^*(A) \le \mu^*(B)$.

We check the countable subadditivity.

Let $A_1, A_2, \ldots \subset X$. If one of $\mu^*(A_i) = \infty$, then the result holds. Suppose $\mu^*(A_n) < \infty, \forall n \in \mathbb{N}$.

"Give your self a room of epsilon":

Fix $\varepsilon > 0$. We will show

$$\mu^*\left(\bigcup_{1}^{\infty} A_n\right) \le \sum_{1}^{\infty} \mu^*(A_i) + \varepsilon.$$

For each $n \in \mathbb{N}, \exists E_{n,1}, E_{n,2}, \ldots \in \mathcal{E} \ s.t.$

$$\bigcup_{k=1}^{\infty} E_{n,k} \supset A_n \quad \text{and} \quad \mu^*(A_n) + \frac{\varepsilon}{2^n} \geq \sum_{k=1}^{\infty} \rho(E_{n,k}).$$

Then,

$$\bigcup_{1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} E_{n,k} = \bigcup_{(n,k) \in \mathbb{N}^2} E_{n,k}.$$

<u>**RECALL:</u>** Tonelli's thm for series. If $a_{ij} \in [0, \infty], \forall i, j \in \mathbb{N}$, then</u>

$$\sum_{(i,j)\in\mathbb{N}^2} a_{ij} = \sum_{i=1}^{\infty} \sum_{j=1^{\infty}} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_i j.$$

Hence

$$\mu^*\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} \rho(E_{k,n}) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \rho(E_{k,n}) \le \sum_{n=1}^{\infty} \left(\mu^*(A_n) + \frac{\varepsilon}{2^n}\right) = \sum_{n=1}^{\infty} \mu^*(A_n) + \varepsilon.$$

We have shown countable subadditivity.

Outer measure is very close to a measure. Here the textbooks diverge.

[Tao11] introduces Lebesgue measure on \mathbb{R} using topological qualities of subsets of \mathbb{R} . [Fol99] introduces abstract method by Carathéodory and Kolmogorov.

Definition 1.20. Let μ^* be an outer measure on *X*. We say $A \subset X$ is Carathéodory measurable with respect to μ^* if $\forall E \subset X$, $\mu^*(E) = \mu^*(E \setminus A) + \mu^*(E \cap A)$.

Lemma 1.21. Let μ^* be an outer measure on X. Suppose B_1, B_2, \ldots, B_N are disjoint C-measurable sets. Then,

$$\forall E \subset X, \mu^* \left(E \cap \left(\bigcup_{i=1}^N B_i \right) \right) = \sum_{i=1}^n \mu^* (E \cap B_i)$$

Proof.

$$\mu^*\left(E\cap\left(\bigcup_1^N B_i\right)\right) = \mu^*(E\cap B_1) + \mu^*\left(E\cap\left(\bigcup_2^N B_i\right)\right)$$

because B_1 is *C*-measurable. Then, iterate.

Improved version:

 $B_1, B_2, \ldots C$ -measurable and *disjoint* $\implies \mu^* (E \cap \bigcup_1^\infty B_n) = \sum_1^\infty \mu^* (E \cap B_n), \forall E \subset X.$

Proof.

$$\sum_{1}^{\infty} \mu^{*}(E \cap B_{n}) \ge \mu^{*} \left(E \cap \bigcup_{1}^{\infty} B_{n} \right)$$
$$\ge \mu^{*} \left(E \cap \bigcup_{1}^{N} B_{n} \right) = \sum_{1}^{N} \mu^{*}(E \cap B_{n})$$

Take $N \to \infty$ or note that $N \in \mathbb{N}$ is arbitrary we get the result.

First big theorem:

Theorem 1.22 (Carathéodory extension theorem). Let μ^* be an outer measure on X. Let \mathcal{A} be the collection of C-measurable sets with respect to μ^* . Then

- (a) A us a σ -algebra on X.
- (b) $\mu = \mu^*|_{\mathcal{A}}$ is a measure on (X, \mathcal{A}) .
- (c) (X, \mathcal{A}, μ) is a complete measure space.

Proof. (a) (1) $\emptyset \in \mathcal{A}$.

- (2) A is closed under complements.
- (3) To show A closed under countable unions.
 - (finite union)

 $\underline{\mathsf{CLAIM}} A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}.$

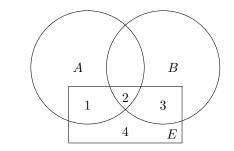


Figure 1.1: Venn diagram of A, B, E

Fix arbitrary $E \subset X$. We need to show

$$\mu^*(E) = \mu^*(E \cap (A \cup B)) + \mu^*(E \setminus (A \cup B)).$$

i.e.

$$\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2 \cup 3) + \mu^*(4)$$

Since *A* is *C*-measurable, we have

$$\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2) + \mu^*(3 \cup 4)$$

 $\mu^*(1 \cup 2 \cup 3) = \mu^*(1 \cup 2) + \mu^*(3)$

Similarly since *B* is *C*-measurable, we have

$$\mu^*(3 \cup 4) = \mu^*(3) + \mu^*(4)$$

Hence

$$\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2) + \mu^*(3 \cup 4)$$

= $\mu^*(1 \cup 2 \cup 3) - \mu^*(3) + \mu^*(3) + \mu^*(4)$
= $\mu^*(1 \cup 2 \cup 3) + \mu^*(4).$

• (countable disjoint unions)

Let $A_1, A_2, \ldots \in \mathcal{A}$ and *disjoint*.

Fix $E \subset X$ arbitrary. Since μ^* is countably subadditive,

$$\mu^*(E) \le \mu^*\left(E \cap \bigcup_{1}^{\infty}\right) + \mu^*\left(E \setminus \bigcup_{1}^{\infty} A_n\right)$$

Fix $n \in \mathbb{N}$.

$$\implies \bigcup_{1}^{N} A_{n} \in \mathcal{A}$$
$$\implies \mu^{*}(E) = \mu^{*} \left(E \cap \bigcup_{1}^{N} \right) + \mu^{*} \left(E \setminus \bigcup_{1}^{N} A_{n} \right)$$
$$\geq \sum_{1}^{N} \mu^{*}(E \cap A_{n}) + \mu^{*} \left(E \setminus \bigcup_{1}^{\infty} A_{n} \right) \text{ by lemma}$$

Take $n \to \infty$.

• (countable unions)

Let $A_1, A_2, \ldots \in \mathcal{A}$. Take $E_1 = A_1, E_n = A_n \setminus \left(\bigcup_{1}^{n-1} A_i\right)$ for $n \ge 2$. Then $\bigcup A_n = \bigcup E_n$ and E_n 's are disjoint.

(b) Firstly we have $\mu(\emptyset) = \mu^*(\emptyset) = 0$.

Countable additivity of μ^* on \mathcal{A} follows from the improved lemma with E = X.

(c) HW.

1.4 Hahn-Kolmogorov Theorem

<u>**RECALL</u></u> 1.19 Let \mathcal{E} \subset \mathcal{P}(X) s.t. \emptyset, X \in \mathcal{E}. Let \rho : \mathcal{E} \to [0, \infty] s.t. \rho(\emptyset) = 0</u>**

$$(\mathcal{E},\rho) \xrightarrow[1.19]{} (\mathcal{P}(X),\mu^*) \xrightarrow[\mathsf{C-theorem}]{} (A,\mu)$$

QUESTION $\mathcal{E} \subset \mathcal{A}$ and $\mu|_{\mathcal{E}} = \rho$? No!

Definition 1.23. Let \mathcal{A}_0 be an algebra on *X*. We say $\mu_0 : \mathcal{A}_0 \to [0, \infty]$ is a *pre-measure* if

- (a) $\mu_0(\emptyset) = 0.$
- (b) (finite additivity)

$$\mu_0\left(\bigcup_{i=1}^N A_i 1\right) = \sum_{i=1}^N \mu_0(A_i) \text{ if } A_1, \dots, A_N \in \mathcal{A}_0 \text{ are disjoint.}$$

(c) (countable additivity within the algebra) If $A \in A_0$ and

$$A=\bigcup_1^\infty A_n, A_n\in \mathcal{A}_0$$
 and are disjoint, then $\mu_0(A)=\sum_1^\infty \mu_0(A_n)$

<u>NOTATION</u>: Folland uses \mathcal{M} for σ -algebra and \mathcal{A} for algebra. (Jinho) uses \mathcal{A} for σ -algebra and \mathcal{A}_0 for algebra.

Example 1.24. A_0 finite disjoint unions of (a, b].

$$\mu_0\left(\bigcup_{1}^{\infty}(a_i,b_i]\right) = \sum_{1}^{\infty}(b_i - a_i) \text{ or } b_i^n - a_i^n, e^{b_i} - e^{a_i}, \text{ etc.}$$

Lemma 1.25. • $(a) + (c) \implies (b)$.

• μ_0 is monotone.

Theorem 1.26 (Hahn-Kolmogorov Theorem). Let μ_0 be a pre-measure on algebra \mathcal{A}_0 on X. Let μ^* be the outer measure induced by (\mathcal{A}_0, μ_0) in 1.19. Let \mathcal{A} and μ be the Carathéodory σ -algebra and measure for $\mu^* \implies (\mathcal{A}, \mu)$ extends (\mathcal{A}_0, μ_0) i.e. $\mathcal{A} \supset \mathcal{A}_0, \mu|_{\mathcal{A}_0} = \mu_0$.

Proof. (a) $(\mathcal{A} \supset \mathcal{A}_0)$ Let $A \in \mathcal{A}_0$.

Question: $A \in \mathcal{A}$? i.e. is A C-measurable? i.e. $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c), \forall E \subset A^c$

X.

Fix $E \subset X$.

- (countable) subadditivity of $\mu^* \implies \mu^*(E) \le \mu^*(E \cap A) + \mu^*(E \cap A^c)$.
- If $\mu^*(E) = \infty$ then $\mu^*(E) = \infty \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$.
- If $\mu^*(E) < \infty$.

Fix $\varepsilon > 0$. By the definition of $\mu^*, \exists B_1, B_2, \ldots \in \mathcal{A}_0 \ s.t. \bigcup_1^{\infty} B_n \supset E$ and

$$\mu^{*}(E) + \varepsilon \ge \sum_{1}^{\infty} \mu_{0}(B_{n}) = \sum_{1}^{\infty} \left(\mu_{0}(B_{n} \cap A) + \mu_{0}\left(B_{n} \cap A^{c}\right) \right) \right).$$

Note that

$$\bigcup_{1}^{\infty} (B_n \cap A) \supset E \cap A, \quad \bigcup_{1}^{\infty} (B_n \cap A^c) \supset E \cap A^c \implies \geq$$

(b) Let $A \in \mathcal{A}_0$. We want to show that $\mu(A) = \mu_0(A)$.

By definition, $\mu(A) = \mu^*(A)$.

• Let $B_i = \begin{cases} A & i = 1, \\ \emptyset & i = 2 \end{cases} \in \mathcal{A}_0 \text{ and } \bigcup_1^{\infty} B_i \supset A.$

Hence
$$\mu^*(A) \leq \sum_{1}^{\infty} \mu_0(B_i) = \mu_0(A)$$

• Let $B_i \in \mathcal{A}_0, \bigcup_1^\infty B_i \supset A$ an arbitrary collection of sets.

Let $C_1 = A \cap B_1, C_i = A \cap B_i \setminus \left(\bigcup_{j=1}^{i-1} B_j\right)$. Then $A = \bigcup_{j=1}^{\infty}$ is a disjoint countable union. By countable additivity we have

$$\mu_0(A) = \sum_{1}^{\infty} \mu_0(C_i) \implies \mu_0(A) \le \sum_{1}^{\infty} \mu_0(B_i).$$

Hence we have $\mu_0(A) = \mu^*(A) = \mu(A)$. We have completed our proof.

Definition 1.27. Such (\mathcal{A}, μ) is called the *Hahn-Kolmogorov extension* of (\mathcal{A}_0, μ_0) , and is also called the *Carathéodory* σ -algebra for (\mathcal{A}_0, μ_0) .

Theorem 1.28 (uniqueness of HK extension). Let A_0 be an algebra on X, μ_0 be a pre-measure on A_0 , (A, μ) be the Hahn-Kolmogorov extension of (A_0, μ_0) . And let (A', μ') be another extension of (A_0, μ_0) .

If μ_0 is σ -finite, then $\mu \mid_{\mathcal{A} \cap \mathcal{A}'} = \mu' \mid_{\mathcal{A} \cap \mathcal{A}'}$.

<u>NOTE</u> σ -finite means

$$\forall X, X = \bigcup_{1}^{\infty} X_n, X_n \in \mathcal{A}_0, \mu_0(X_n) < \infty.$$

Corollary 1.29. Let μ_0 be a pre-measure on algebra A_0 on X. Suppose μ_0 is σ -finite, then \exists ! measure μ on $\langle A_0 \rangle$ that extends A_0 . Furthermore,

(a) the completion of $(X, \langle A_0 \rangle, \mu)$ is the HK extension of (A_0, μ_0) .

(b)

$$\mu(A) = \inf\left\{\sum_{i=1}^{\infty} \mu_0(B_i) \mid B_i \subset A_0, \forall i \in \mathbb{N}, \bigcup_1^{\infty} B_i \supset A\right\}, \forall A \in \overline{\langle A_0 \rangle}.$$

Proof of 1.28. Let $A \in \mathcal{A} \cap \mathcal{A}'$. We need to show $\mu(A) = \mu^*(A) = \mu'(A)$.

- $\mu^*(A) \ge \mu'(A)$ (HW)
- $\mu(A) \leq \mu'(A)$:
 - (i) Assume $\mu(A) < \infty$. Fix $\varepsilon > 0$. Then $\exists B_i \in \mathcal{A}_0, \forall i \in \mathbb{N}, \bigcup_1^{\infty} B_i \supset A \ s.t.$

$$\mu(A) + \varepsilon = \mu^*(A) + \varepsilon \ge \sum_{i=1}^{\infty} \mu_0(B_i) = \sum_{i=1}^{\infty} \mu(B_i) \ge \mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \mu(B)$$

Hence $\mu(B \setminus A) = \mu(B) - \mu(A) \le \varepsilon$.

On the other hand,

$$\mu(B) = \lim_{N \to \infty} \mu\left(\bigcup_{1}^{N} B_{i}\right) = \lim_{N \to \infty} \mu'\left(\bigcup_{1}^{N} B_{i}\right) = \mu'(B)$$

by continuity of measure from below.

$$\mu(A) \le \mu(B) = \mu'(B) = \mu'(A) + \mu'(B \setminus A) \le \mu'(A) = \varepsilon$$

(ii) Assume $\mu(A) = \infty$.

Since μ_0 is σ -finite, $X = \bigcup_1^{\infty} X_n, X_n \in \mathcal{A}_0, \mu_0(X_0) < \infty$. Replacing X_n by $X_1 \cup \ldots \cup X_n$, we may assume $X_1 \subset X_2 \subset \ldots$.

$$\forall n \in N, \mu(A \cap X_n) < \infty \implies \mu(A \cap X_n) \le \mu'(A \cap X_n).$$

Hence

$$\mu(A) = \lim_{N \to \infty} \mu(A \cap X_n) \le \lim_{N \to \infty} \mu'(A \cap X_n) = \mu'(A).$$

Borel Measures on \mathbb{R} 1.5

Definition 1.30. $F : \mathbb{R} \to \mathbb{R}$ is an *increasing* function if $F(x) \leq F(y)$ for x < y. $F : \mathbb{R} \to \mathbb{R}$ is increasing and right-continuous \implies *F* is distribution function.

Example 1.31.

•
$$F(x) = \begin{cases} 1, & x \ge 0\\ 0, & x < 0. \end{cases}$$

• $\mathbb{Q} = \{r_1, r_2, \ldots\}, F_n(x) = \begin{cases} 1 & x \ge r_n\\ 0 & x < r_n \end{cases}$. $F(x) = \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n}$ is a distribution function

tion.

<u>NOTE</u> If F is increasing, $F(\infty) := \lim_{x \to \infty} F(x), F(-\infty) := \lim_{x \to -\infty} F(x)$ exists in $[-\infty,\infty].$

In probability theory, cumulative distribution function (CDF) is a distribution function with $F(\infty) = 1$ and $F(-\infty) = 0$.

There are distributions [Fol99, Ch.9], but these are different from *distribution functions*.

Definition 1.32. Suppose *X* a topological space. μ on $(X, \mathcal{B}(X))$ is called *locally finite* is $\mu(K) < \infty$ for any compact set $K \subset X$.

Lemma 1.33. Let μ be a locally finite Borel measure on $\mathbb{R} \implies$

$$F_{\mu}(x) = \begin{cases} \mu((0,x]), & x > 0\\ 0, & x = 0 \text{ is a distribution function.}\\ -\mu((x,0]), & x < 0 \end{cases}$$

Proof. DIY. Use continuity of measure.

Definition 1.34. *h*-intervals are \emptyset , (a, b], (a, ∞) , $(-\infty, b]$, (∞, ∞) .

Lemma 1.35. Let \mathcal{H} be the collections of finite disjoint unions of h-intervals. Then \mathcal{H} is an algebra on \mathbb{R} .

Proof. DIY.

Yiwei Fu

Proposition 1.36 (Distribution function defines a pre-measure). Let $F : \mathbb{R} \to \mathbb{R}$ be a *distribution function. For an h-interval I, define*

$$\ell(I) = \ell_F(I) = \begin{cases} 0, & I = \emptyset \\ F(b) - F(a), & I = (a, b] \\ F(\infty) - F(a), & I = (a, \infty) \\ F(b) - F(\infty), & I = (-\infty, b] \\ F(\infty) - F(-\infty), & I = (-\infty, \infty). \end{cases}$$

Define $\mu_0 = \mu_{0,F} : \mathcal{H} \to [0,\infty]$ by

$$\mu_0(A) := \sum_{k=1}^N \ell(I_k) \quad \text{if } A = \bigcup_{k=1}^N I_k, \text{ finite disjoint union of } h\text{-intervals}.$$

Then μ_0 *is a pre-measure.*

Proof. (a) μ_0 is well-defined.

- (b) μ_0 is finite additive.
- (c) μ_0 is countable additive within \mathcal{H} .

Suppose $A \in \mathcal{H}$ and $A = \bigcup_{i=1}^{\infty} A_i$ a disjoint union, $A_i \in \mathcal{H}$. It is enough to consider the case A = I, $A_k = I_k$ all *h*-intervals. (Why?)

Focus on the case I = (a, b]: (HW: check other cases) We have

$$(a,b] = \bigcup_{1}^{\infty} (a_n, b_n]$$
, a disjoint union.

Check

$$F(b) - F(a) \stackrel{?}{=} \sum_{1}^{\infty} (F(b_n) - F(a_n))$$

 $(a,b] \supset \bigcup_{1}^{N}(a_{n},b_{n}] \implies F(b) - F(a) \ge \sum_{1}^{N} F(b_{n}) - F(a_{n}), \forall N \in \mathbb{N}.$ (Arranging them in decreasing order) Take $N \to \infty$ we have

$$F(b) - F(a) \ge \sum_{1}^{\infty} (F(b_n) - F(a_n)).$$

Since *F* is right-continuous, $\exists a' > a \ s.t. \ F(a') - F(a) < \varepsilon$. For each $n \in \mathbb{N}, \ \exists b'_n > a \ s.t. \ F(a') - F(a) < \varepsilon$.

$$b_n \ s.t. \ F(b'_n) - F(b_n) < \frac{\varepsilon}{2^n}.$$

$$\implies [a',b] \subset \bigcup_1^{\infty} (a_n,b'_n)$$

$$\implies \exists N \in \mathbb{N} \ s.t. \ [a',b] \subset \bigcup_1^n (a_n,b'_n)$$

$$\implies F(b) - F(a') \le \sum_1^N F(b'_n) - F(a_n)$$

$$\implies F(b) - F(a) \le F(b) - F(a') + \varepsilon \le \sum_1^{\infty} (F(b'_n) - F(a_n)) + \varepsilon$$

$$\leq \sum_{1}^{\infty} \left(F(b_n) - F(a_n) + \frac{\varepsilon}{2^n} \right) + \varepsilon$$

Once we have this pre-measure, HK theorem allows us to extended it to a measure.

Theorem 1.37 (Locally finite Borel measures on \mathbb{R}).

- (a) $F : \mathbb{R} \to \mathbb{R}$ is a distribution function $\implies \exists!$ locally finite Borel measure μ_F on \mathbb{R} satisfying $\mu_F((a,b]) = F(b) F(a), \forall a, b, a < b$.
- (b) Suppose $F, G : \mathbb{R} \to \mathbb{R}$ are distribution functions. Then, $\mu_F = \mu_G$ on $\mathcal{B}(\mathbb{R})$ if and only if F G is a constant function.

Proof. HW

1.6 Lebesgue-Stieltjes Measures on \mathbb{R}

F distribution function $\implies \mu_F$ on Carathéodory σ -algebra \mathcal{A}_{μ_F} . Actually $(\mathcal{A}_{\mu_F}, \mu_F) = (\mathcal{B}(\mathbb{R}), \mu_F)$ (HW3).

- **Definition 1.38.** μ_F on \mathcal{A}_{μ_F} is called the Lebesgue-Stieltjes measure corresponding to *F*.
 - Special case: $F(x) = x \implies$ Lebesgue measure (\mathcal{B}, m) .

Example 1.39.

(a) μ_F((a,b]) = F(b) - F(a). F is right-continuous and increasing ⇒ F(x_-) ≤ F(x) = F(x_+).
(HW) μ_F({a}) = F(a) - F(a_-), μ_F([a,b]) = F(b) - F(a_-), μ_F((a,b)) = F(b_-) - F(a).

(b)

$$F(x) = \begin{cases} 1 & x \le 0 \\ 0 & x < 0 \end{cases} \implies \mu_F(\{0\}) = 1, \mu_F(\mathbb{R}) = 1, \mu_F(\mathbb{R} \setminus \{0\}) = 0. \end{cases}$$

 μ_F is the Dirac measure at 0.

(c)

$$\mathbb{Q} = \{r_1, r_2, \ldots\}, \ F(x) = \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n}, \ F_n(x) = \begin{cases} 1 & x \le r_n \\ 0 & x < r_n \end{cases}$$
$$\implies \mu_F(\{v\}) > 0, \forall v \in \mathbb{Q}, \ \mu_F(\mathbb{R} \setminus \mathbb{Q}) = 0 \end{cases}$$

(d) If *F* is continuous at $a, \mu_F(\{a\}) = 0$.

(e)
$$F(x) = x \implies m((a,b])) = m((a,b)) = m([a,b]) = b - a$$

(f) $F(x) = e^x, \implies \mu_F((a,b]) = \mu_F((a,b)) = e^b - e^a$

(a), (b) are examples of discrete measure.

Example 1.40 (Middle thirds Cantor set $C = \bigcup_{n=1}^{\infty} K_n$). *C* is uncountable set with m(C) = 0.

$$x \in \mathcal{C} \implies x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}, a_n \in \{0, 2\}.$$

We are interested in the Cantor function F.

Example 1.41. Cantor function *F* is continuous and increasing. This defines the Cantor measure $\mu_F(\mathbb{R} \setminus C) = 0, \mu_F(C) = 1, \mu_F(\{a\}) = 0$. Compare with Lebesgue measure $m(\mathbb{R} \setminus C) = \infty > 0, \mu(C) = 0, m(\{a\}) = 0$.

1.7 Regularity Properties of Lebesgue-Stieltjes Measures

Lemma 1.42. μ is Lebesgue-Stieltjes measure on $\mathbb{R} \implies$

$$\mu(A) = \inf \left\{ \sum_{1}^{\infty} \mu((a_i, b_i]) \mid \bigcup_{1}^{\infty} (a_i, b_i] \supset A \right\}$$
$$= \inf \left\{ \sum_{1}^{\infty} \mu((a_i, b_i)) \mid \bigcup_{1}^{\infty} (a_i, b_i) \supset A \right\}$$

Proof. Using the continuity of measure.

Theorem 1.43. μ *is a Lebesgue-Stieltjes measure. Then* $\forall A \in A_{\mu}$ *,*

(*a*) (*outer regularity*)

$$\mu(A) = \inf\{\mu(O) \mid open \ O \supset A\}.$$

(b) (inner regularity)

$$\mu(A) = \sup\{\mu(K) \mid compact \ K \subset A\}.$$

Proof. (a) Followed from 1.42.

- (b) Let $s = \sup\{\ldots\}$. Monotonicity $\implies \mu(A) \ge s$. • (A bounded) $\overline{A} \in \mathcal{B}(\mathbb{R}) \subset \mathcal{A}_{\mu}, \overline{A}$ bounded $\implies \mu(\overline{A}) < \infty$. Fix $\varepsilon > 0$. By 1, \exists open $O \supset \overline{A} \setminus A, \mu(O) - \mu(\overline{A} \setminus A) = \mu(O \setminus (\overline{A} \setminus A)) \le \varepsilon$. Let $K = \underbrace{A \setminus O}_{K \subset A} = \underbrace{\overline{A} \setminus O}_{\text{compact}}$. Show that $\mu(K) \ge \mu(A) - \varepsilon$.
 - (A unbounded but $\mu(A) < \infty$) We have

$$A = \bigcup_{1}^{\infty} A_n, \ A_n = A \cap [-n, n], \ A_1 \subset A_2 \subset \dots$$

Hence

$$\lim_{n \to \infty} \mu(A_n) = \mu(A) < \infty.$$

• $(\mu(A) = \infty)$ $\lim_{n \to \infty} \mu(A_n) = \mu(A) = \infty.$ Fix L > 0. $\exists N \ s.t. \ \mu(A_N) \ge L$.

Definition 1.44. Suppose *X* a topological space.

A
$$G_{\sigma}$$
-set is $G = \bigcap_{1}^{\infty} O_i$, O_i open. An F_{σ} -set is $F = \bigcup_{1}^{\infty} F_i$, F_i closed.

Theorem 1.45. Suppose μ a LS measure. Then the following statements are equivalent:

- (a) $A \in \mathcal{A}_{\mu}$.
- (b) $A = G \setminus M$, G is a G_{σ} -set, and M is μ -null.
- (c) $A = F \cup N$, F is an F_{σ} -set, and N is μ -null.

Proof. (b) \implies (a) and (c) \implies (a) are clear.

• (a) \implies (c)

(i) Assume $\mu(A) < \infty$. By inner regularity,

$$\forall n \in \mathbb{N}, \exists \operatorname{compact} K_n \subset A \ s.t. \ \mu(K_n) + \frac{1}{n} \ge \mu(A).$$

Let $F = \bigcup_{1}^{\infty} K_n$. Then $N = A \setminus F$ is μ -null.

(ii) Assume $\mu(A) = \infty$. We construct

$$A = \bigcup_{k \in \mathbb{Z}} A_k, A_k = A \cap (k, k+1].$$

By (i), $\forall k \in \mathbb{Z}, A_k = F_k \cup N_k$. Hence

$$A = \underbrace{\left(\bigcup_k F_k\right)}_{F\sigma} \cup \underbrace{\left(\bigcup_k N_k\right)}_{\mu\text{-null}}.$$

• (a) \implies (b)

$$A^c = F \cup N, A = F^c \cup N^c = F^c \setminus N.$$

Proposition 1.46. Suppose μ a LS measure, $A \in A_{\mu}$, $\mu(A) < \infty$. Then

$$\forall \varepsilon > 0, \exists I = \bigcup_{1}^{N=N(\varepsilon)} I_i, \text{ disjoint open intervals s.t. } \mu(A \triangle I) \leq \varepsilon.$$

Proof. DIY - use outer regularity.

Properties of Lebesgue measure

Theorem 1.47.

$$A \in \mathcal{L} \implies A + s \in \mathcal{L}, rA \in \mathcal{L}, \forall r, s \in \mathbb{R}.$$

In addition, m(A + r) = m(A) and m(rA) = rm(A).

Proof. DIY.

Example 1.48.

(a) $\mathbb{Q} = \{r_1\}_{i=1}^{\infty}$, which is dense in \mathbb{R} . Let $\varepsilon > 0$ and

$$O = \bigcup_{i=1}^{\infty} \left(r_i - \frac{\varepsilon}{2^i}, r_i + \frac{\varepsilon}{2^i} \right).$$

O is open and dense in $\mathbb R.$ We have

$$m(O) \le \sum_{i=1}^{\infty} \frac{2\varepsilon}{2^i} = 2\varepsilon, \partial O = \overline{O} \setminus O, m(O) = \infty.$$

- (b) \exists uncountable set *A* with m(A) = 0.
- (c) $\exists A \text{ with } m(A) > 0$, but A contains no non-empty open interval.
- (d) $\exists A \notin \mathcal{L}$ that is Vitali set.
- (e) $\exists A \in \mathcal{L} \setminus \mathcal{B}(\mathbb{R})$. We will deal with that later.

Chapter 2

Integration

2.1 Measurable Functions

Definition 2.1. Suppose (X, \mathcal{A}) , (Y, \mathcal{B}) two measurable spaces. $f : X \to Y$ is $(\mathcal{A}, \mathcal{B})$ -measurable if

$$\forall B \in \mathcal{B}, f^{-1}(B) \in \mathcal{A}.$$

Lemma 2.2. Suppose $\mathcal{B} = \langle \mathcal{E} \rangle$. Then

$$f: X \to Y \text{ is } (\mathcal{A}, \mathcal{B})\text{-measurable} \iff \forall E \in \mathcal{E}, f^{-1}(E) \in \mathcal{A}.$$

Proof. \implies clear

 $\leftarrow E = \{E \subset Y \mid f^{-1}(E) \in \mathcal{A}\}.$ We have $\mathcal{E} \subset \mathcal{D}$ by assumption. In addition \mathcal{D} is a σ -algebra $\implies \langle \mathcal{E} \rangle \subset \mathcal{D}.$

Definition 2.3. Suppose (X, A) a measurable space.

 $\left. \begin{array}{l} f:X \to \mathbb{R} \\ f:X \to \overline{\mathbb{R}} = [-\infty,\infty] \\ f:X \to \mathbb{C} \end{array} \right\} \text{ is \mathcal{A}-measurable if } \left\{ \begin{array}{l} f \text{ is } (\mathcal{A},\mathcal{B}(\mathbb{R}))\text{-measurable} \\ f \text{ is } (\mathcal{A},\mathcal{B}(\overline{\mathbb{R}}))\text{-measurable} \\ \text{Re } f, \text{Im } f:X \to \mathbb{R} \text{ are } \mathcal{A}\text{-measurable}. \end{array} \right.$

Here $\mathcal{B}(\overline{\mathbb{R}}) = \{ E \subset \overline{\mathbb{R}} \mid E \cap R \in \mathcal{B}(\mathbb{R}) \}.$

Lemma 2.4. Suppose $f : X \to \mathbb{R}$. Then the followings are equivalent:

(a) f is A-measurable

- (b) $\forall a \in \mathbb{R}, f^{-1}((a, \infty)) \in \mathcal{A}.$
- (c) $\forall a \in \mathbb{R}, f^{-1}([a,\infty)) \in \mathcal{A}.$
- (d) $\forall a \in \mathbb{R}, f^{-1}((-\infty, a)) \in \mathcal{A}.$
- (e) $\forall a \in \mathbb{R}, f^{-1}((-\infty, a]) \in \mathcal{A}.$

For $f: X \to \overline{\mathbb{R}}$ *, change the interval to include* $-\infty$ *and* ∞ *.*

Proof. By 2.2.

Example 2.5. $\mathcal{A} = \mathcal{P}(X) \implies$ every function is \mathcal{A} measurable.

 $\mathcal{A} = \{\emptyset, X\} \implies$ only \mathcal{A} functions are constant functions.

<u>PROPERTIES</u> Suppose $f, g: X \to \mathbb{R}$, *A*-measurable functions.

- (a) $\phi : \mathbb{R} \to \mathbb{R}, \mathcal{B}(\mathbb{R})$ measurable (i.e. Borel measurable) $\implies \phi \circ f : X \to \mathbb{R}$ is *A*-measurable.
- (b) $-f, 3f, f^2, |f|$ are \mathcal{A} -measurable, $\frac{1}{f}$ is \mathcal{A} -measurable if $f(x) = 0, \forall x \in X$.
- (c) f + g is A-measurable

$$(f+g)^{-1}((a,\infty)) = \bigcup_{r \in \mathbb{Q}} \left(f^{-1}((r,\infty)) \cap g^{-1}((a-r,\infty)) \right).$$

(d) fg is A-measurable

$$f(x)g(x) = \frac{1}{2} \left((f(x) + g(x))^2 - f(x)^2 - g(x)^2 \right).$$

- (e) $(f \wedge g)(x) = \min\{f(x), g(x)\}, (f \vee g)(x) = \max\{f(x), g(x)\}$ are \mathcal{A} -measurable.
- (f) $f_n: X \to \overline{\mathbb{R}}$ are a sequence of \mathcal{A} -measurable functions \Longrightarrow

$$\sup f_n, \inf f_n, \limsup_{n \to \infty} f_n, \liminf_{n \to \infty} f_n \text{ are } \mathcal{A}\text{-measurable.}$$

(g) If $f(x) = \lim_{n \to \infty} f_n(x)$ converges for every $x \in X$, then f is measurable.

Example 2.6. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous. Then f is Borel measurable $\implies f$ is Lebesgue measurable. (Preimage of an open set of a continuous function is open.)

Definition 2.7. For $f: X \to \overline{\mathbb{R}}$, let $f^+ = f \lor 0$, $f^- = (-f) \lor 0$.

<u>NOTE</u> supp $f^+ \cap$ supp $f^- = \emptyset$. $f(x) = f^+(x) - f^-(x)$. f is \mathcal{A} -measurable $\iff f^+, f^-$ measurable.

Definition 2.8. For $E \subset X$, characteristic (indicator) function of *E*

$$\chi_E(x) = 1_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \in E^c. \end{cases}$$

 1_E is \mathcal{A} -measurable $\iff E \in \mathcal{A}$.

Definition 2.9. Suppose (X, \mathcal{A}) a measurable space. A *simple function* $\phi : X \to \mathbb{C}$ that is \mathcal{A} -measurable and takes only finitely many values.

$$\phi(X) = \{c_1, \dots, c_N\}, c_i \neq \pm \infty, E_i = \phi^{-1}(c_i) \in \mathcal{A} \implies \phi = \sum_{i=1}^N c_i \mathbb{1}_{E_i}.$$

Theorem 2.10. Suppose (X, \mathcal{A}) a measurable space and $f : X \to [0, \infty]$. Then the followings are equivalent:

- (a) f is A-measurable.
- (b) \exists simple functions $0 \le \phi_1(x) \le \phi_2(x) \le \ldots \le f(x)$ such that

$$\lim_{n \to \infty} \phi_n(x) = f(x), \; \forall x \in X.$$

(f is the pointwise upward limit of simple functions.)

Proof. • (b) \implies (a) is easy: $f(x) = \sup_{n \in \mathbb{N}} \phi_n(x)$.

• (a) \implies (b): suppose *f* is *A*-measurable.

Fix $n \in \mathbb{N}$. Let $F_n = f^{-1}([2^n, \infty]) \in \mathcal{A}$. For

$$0 \le k \le 2^{2n} - 1, \ E_{n,k} = f^{-1}\left(\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]\right) \in \mathcal{A}.$$

Let $\phi_n(x) = \sum_{k=0}^{2^{2n}-1} 1_{E_{n,k}} + 2^n 1_{F_n}.$

This shows that

-
$$0 \le \phi_1(x) \le \phi_2(x) \le \ldots \le f(x), \ \forall x \in X.$$

- $\forall x \in X \setminus F_n, 0 \le f(x) - \phi_n(x) \le \frac{1}{2^n}.$

Since $F_1 \supset F_2 \supset \ldots$ and $\bigcap_{1}^{\infty} F_n = f^{-1}(\{\infty\})$, we have

$$-x \in f^{-1}([0,\infty)) = X \setminus \left(\bigcap_{1}^{\infty} F_{n}\right) \implies \lim_{n \to \infty} \phi_{n}(x) = f(x).$$
$$-x \in f^{-1}(\{\infty\}) = \bigcap_{1}^{\infty} X_{n} \implies \phi_{n}(x) \ge 2^{n} \implies \lim_{n \to \infty} \phi_{n}(x) = \infty = f(x).$$

Corollary 2.11. If f is bounded on a set $A \subset \mathbb{R}$ (i.e. $\exists L > 0$ s.t. $|f(x)| \leq L$, $\forall x \in A$) then $\phi_n \to f$ uniformly on A.

Proof. DIY.

Corollary 2.12. $f : X \to \mathbb{C}$, measurable function $\iff \exists$ simple functions $\phi_n : X \to \mathbb{C}$ s.t. $0 \le |\phi_1| \le |\phi_2| \le \ldots \le |f|$ and ϕ_n converges to f pointwise. (Again, if f is bounded the convergence can be uniform.)

2.2 Integration of Nonnegative Functions

Definition 2.13. Suppose (X, \mathcal{A}, μ) a measure space and $\phi = \sum_{i=1}^{N} c_i \mathbb{1}_{E_i} : X \to [0, \infty]$ a simple function. Let

$$\int \phi = \int \phi \, \mathrm{d}\mu = \int_X \phi \, \mathrm{d}\mu = \sum_1^N c_i \mu(E_i).$$

Proposition 2.14. Suppose $\phi, \psi \ge 0$ are simple functions. Then,

• 2.13 is well-defined.

•
$$\int c\phi = c \int \phi, c \in [0, \infty).$$

• $\int (\phi + \psi) = \int \phi + \int \psi.$

•
$$\phi(x) \ge \psi(x), \forall x \implies \int \phi \ge \int \psi.$$

• $\nu(A) = \int_A \phi \, d\mu \text{ is a measure on } (X, \mathcal{A}).$

Proof. DIY.

Definition 2.15. Suppose $(X, \mathcal{A}, \mu), f : X \to [0, \infty]$ is \mathcal{A} -measurable.

Define

$$\int f = \int f \, \mathrm{d}\mu = \sup \left\{ \int \phi \mid 0 \le \phi \le f, \phi \text{ simple} \right\}.$$

Proposition 2.16.

• If f is a simple function then two definitions are the same.

•
$$\int cf = c \int f$$
.
• $f \ge g \ge 0 \implies \int f \ge \int g$.
• $\int f + g = \int f + \int g$. (A bit harder to check)

Theorem 2.17 (Monotone convergence theorem). Suppose (X, A, μ) a measure space and

- $f: X \to [0, \infty]$ is A-measurable, $\forall n \in \mathbb{N}$.
- $0 \leq f_1(x) \leq \ldots$
- $\lim_{n \to \infty} f_n(x) = f(x).$

Then

$$\int f = \lim_{n \to \infty} \int f_n$$

Proof. Note that $\lim_{n\to\infty} f_n(x)$ converges $\forall x \in X$ and $\lim_{n\to\infty} f_n(x)$ converges.

- $f_n \leq f \implies \int f_n \leq \int f \implies \lim_{n \to \infty} \int f_n \leq \int f.$
- Fix simple function $0 \le \phi \le f$. Enough to show that $\lim_{n \to \infty} \int f_n \ge \int \phi$.

Now fix $\alpha \in (0, 1)$. Enough to prove that $\lim_{n \to \infty} \int f_n \ge \alpha \int \phi$.

Let
$$A_n = \{x \mid f_n(x) \ge \alpha \phi(x)\}.$$

- $A_n \in \mathcal{A}$. - $A_1 \subset A_2 \subset \dots$ - $\bigcup_{n=1}^{\infty} A_n = X$. (check!)

So we have

$$\int f_n \ge \int f_n \mathbf{1}_{A_n} \ge \int \alpha \phi \mathbf{1}_{A_n} = \alpha \nu(A_n)$$

where $\nu(A) = \int_A \phi$ is a measure.

$$\implies \lim_{n \to \infty} \int f_n \ge \lim_{n \to \infty} \nu(A_n) = \alpha \nu(x) = \alpha \int \phi.$$

Corollary 2.18. $f, g \ge 0$ measurable $\implies \int f + g = \int f + \int g$.

Proof. \exists simple functions $0 \le \phi_1 \le \phi_2 \le \ldots, \phi_n \to f$ pointwise and $0 \le \psi_1 \le \psi_2 \le \ldots, \psi_n \to g$ pointwise.

By MCT, we have

$$\int (f+g) = \lim_{n \to \infty} \int (\phi_n + \psi_n) = \lim_{n \to \infty} \int \phi_n + \int \psi_n = \int f + \int g.$$

Corollary 2.19 (Tonelli's theorem for series and integrals). *Given* $s_n \ge 0, \forall n \in \mathbb{N}$ *measurable functions. Then*

$$\int \sum_{n=1}^{\infty} s_n = \sum_{n=1}^{\infty} \int s_n$$

Proof. Let $f_N = \sum_{n=1}^N s_n, 0 \le f_1 \le f_2 \le \dots$

$$\lim_{N \to \infty} f_N(x) = \sum_{n=1}^{\infty} s_n(x)$$

By MCT, we have

$$\lim_{N \to \infty} \sum_{1}^{N} s_n = \sum_{1}^{\infty} s_n$$

Fheorem 2.20 (Fatou's lemma).	Suppose	f_n	\geq	0	measurable.	Then
--------------------------------------	---------	-------	--------	---	-------------	------

$$\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n.$$

Recall that

$$\liminf_{n \to \infty} f_n := \lim_{k \to \infty} \inf_{n \ge k} f_n = \sup_{k \in \mathbb{N}} \inf_{n \ge k} f_n,$$

and

$$\lim_{n \to \infty} a_n \text{ exists } \iff \limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n.$$

Proof. Let $g_k = \inf_{n \ge k} f_n \implies s_k$ measurable and $0 \le g_1 \le g_2 \le \dots$ By MCT, we have

$$\int \liminf_{n \to \infty} = \int \lim_{k \to \infty} s_k = \lim_{k \to \infty} \int s_k = \lim_{k \to \infty} \int \inf_{n \ge k} f_n$$

$$\inf_{n \ge k} f_n \le f_m, \forall m \ge k$$
$$\implies \int \inf_{n \ge k} f_n \le \int f_m, \forall m \ge k$$
$$\implies \int \inf_{n \ge k} f_n \le \inf_{m \ge k} \int f_m$$

Example 2.21. Suppose $(\mathbb{R}, \mathcal{L}, m)$

- (a) (escape to horizontal infinity) $f_n = 1_{(n,n+1)}$. We see that $f_n \to 0 = f$ pointwise and $\int f_n = 1, \forall n, \int f = 0$.
- (b) (escape to width infinity) $f_n = \frac{1}{n} \mathbb{1}_{(0,n)}$.
- (c) (escape to vertical infinity) $f_n = n \mathbb{1}_{(0,1/n)}$.

Lemma 2.22 (Markov's inequality). $f \ge 0$ is measurable \implies

$$\forall c \in (0,\infty), \ \mu\left(\{x \mid f(x) \ge c\}\right) \le \frac{1}{c} \int f.$$

Proof. Let $E = \{x \mid f(x) \ge c\}$. Then

$$f(x) \ge c1_E(x) \implies \int f \ge c \int 1_E = c\mu(E).$$

Proposition 2.23. Suppose $f \ge 0$ measurable. Then $\int f = 0 \iff f = 0$ almost everywhere (a.e.)

$$\int f \, \mathrm{d}\mu = \mu(A) = 0, \ A = \{x \mid f(x) > 0\} = f^{-1}((0,\infty])$$

Proof. (a) Assume $f = \phi$ a simple function. We may assume

$$\phi = \sum_{i=1}^N c_i \mathbb{1}_{E_i}, \ c_i \in (0,\infty), \ E_i$$
's are disjoint.

$$\int \phi = \sum_{i=1}^{N} c_i \mu(E_i) = 0$$
$$\iff \mu(E_1) = \dots = \mu(E_N) = 0$$
$$\iff \mu(A) = 0, \ A = \bigcup_{i=1}^{N} E_i.$$

- (b) General $f \ge 0$.
 - (1) Assume $\mu(A) = 0$ (i.e. f = 0 a.e.)

Let $0 \le \phi \le f, \phi$ is simple.

$$\implies \phi(x) = 0, \ \forall x \in A^c$$
$$\implies \phi = 0 \text{ a.e.}$$
$$\implies \int \phi = 0$$

Then $\int f = 0$ by the definition of $\int f$.

(2) Assume $\inf f = 0$. Let $A_n = f^{-1}\left(\left[\frac{1}{n}, \infty\right]\right)$

$$\implies A_1 \subset A_2 \subset \dots$$
$$\bigcup_{1}^{\infty} A_n = f^{-1} \left(\bigcup_{1}^{\infty} \left[\frac{1}{n}, \infty \right] \right) = f^{-1}((0, \infty)) = A$$
$$\mu(A_n) = \mu \left(\left\{ x \mid f(x) \ge \frac{1}{n} \right\} \right) \le n \int f = 0$$
$$\implies \mu(A) = \lim_{n \to \infty} \mu(A_n) = 0$$

by the continuity of measure from below.

Corollary 2.24. $f, g \ge 0$ are measurable, f = g a.e. $\implies \int f = \int g$.

Proof. Let $A = \{x \mid f(x) \ge g(x)\}$. A is measurable (why?). By assumption $\mu(A) = 0$. Hence $f1_A = 0$ a.e.

$$\int f = \int f(1_A + 1_{A^c})$$

= $\int f 1_A + \int f 1_{A^c}$
= $\int f 1_{A^c}$
= $\int g 1_{A^c} = \int g 1_A + \int g 1_{A^c} = \int g.$

Corollary 2.25. $f_n \ge 0$ measurable. Then

(a)

$$\begin{array}{c} 0 \leq f_1 \leq f_2 \leq \ldots \leq f \ a.e. \\ \lim_{n \to \infty} f_n = f \ a.e. \end{array} \end{array} \right\} \implies \lim_{n \to \infty} f_n = \int f.$$

(b)

$$\lim_{n \to \infty} f_n = f \ a.e \implies \int f \le \liminf_{n \to \infty} \int f_n.$$

2.3 Integration of Complex Functions

I was afraid that you are bored.

- Jinho Baik on homework

Definition 2.26. (X, \mathcal{A}, μ) measure space.

• $f: X \to \overline{\mathbb{R}}$ or $f: X \to \mathbb{C}$ measurable functions is called *integrable* if $\int |f| < \infty$. Then

$$\int f = \int f^+ - \int f^- \text{ or } \int f = \int u^+ - \int u^- + i \left(\int v^+ - \int v^- \right).$$

• Suppose $f: X \to \overline{\mathbb{R}}$. Define

$$\int f = \begin{cases} \infty & \int f^+ = \infty, \int f^- < \infty, \\ -\infty & \int f^+ < \infty, \int f^- = \infty. \end{cases}$$

Lemma 2.27. Suppose $f, g : x \to \overline{\mathbb{R}} \to \mathbb{C}$ integrable. Assume f(x) + g(x) is well-defined $\forall x \in X$. (i.e. $\infty + (-\infty), -\infty + \infty$ do not occur)

- (a) $f + g, cf, c \in \mathbb{C}$ are integrable.
- (b) $\int f + g = \int f + \int g.$ (c) $\left| \int f \right| \leq \int |f|.$ (This is essentially triangle inequality.)

Proof. Check [Fol99, p.53].

Lemma 2.28. (X, \mathcal{A}, μ) measure space and f integrable function on X.

- (a) f is finite a.e. (i.e. $\{x \in X : |f(x)| = \infty\}$ is a null set)
- (b) The set $\{x \in X : f(x) \neq 0\}$ is σ -finite.

Proof. HW5Q8.

Proposition 2.29. Suppose (X, \mathcal{A}, μ) a measure space.

(a) If h is integrable on X, then

$$\int_E h = 0, \forall E \in \mathcal{A} \iff \int |h| = 0 \iff h = 0 \text{ a.e.}$$

(b) If f, g are integrable on X then

$$\int_E f = \int_E g, \forall E \in \mathcal{A} \iff f = g \text{ a.e.}$$

Proof. (a) $\int |h| = 0 \iff h = 0$ is shown in 2.23.

$$\int |h| = 0 \implies \left| \int_E h \right| \le \int_E |h| \le \int |h| = 0.$$

On the other hand, assume $\int_E h = 0, \forall E \in A$. $h = u + iv = u^+ - u^- + i(v^+ - v^-)$. Let $B = \{x \mid u^+(x) > 0\}$.

$$0 = \operatorname{Re} \int_{B} h = \int_{B} u = \int_{B} u^{+} = \int_{B} u^{+} + \int_{B^{c}} u^{+} = \int u^{+} \implies u^{+} = 0 \text{ a.e.}$$

Similarly, we get $u^-, v^+, v^- = 0$ a.e..

(b) follows from (a).

Theorem 2.30 (Dominated convergence theorem). Suppose (X, A, μ) a measure space and

- (a) f_n integrable on $X, \forall n \in \mathbb{N}$.
- (b) $\lim_{n\to\infty} f_n(x) = f(x)$ a.e. (pointwise)
- (c) $\exists g: X \to [0,\infty] \ s.t.$
 - *g* is integrable.
 - $|f_n(x)| \le g(x) \text{ a.e., } \forall n \in \mathbb{N}.$

Then

$$\lim_{n \to \infty} \int f_n = \int f.$$

Proof. Let *F* be the countable union of null sets on which (a)-(c) may fail. Modifying the def of f_n , f, g on *F* we may assume (a)-(c) hold everywhere. (b)+(c) \implies *f* is integrable.

We consider $\overline{\mathbb{R}}$ -valued case only. (\mathbb{C} -valued case follows)

$$g + f_n \ge 0, g - f_n \ge 0$$

$$\xrightarrow{\text{Fatou}} \int g + f \le \liminf_{n \to \inf} \int g + f_n, \quad \int g - f \le \liminf_{n \to \inf} \int g - f_n$$

$$\implies \int g + \int f \le \int g + \liminf_{n \to \infty} \int f_n, \quad \int g - \int f \le \int g - \limsup_{n \to \infty} \int f_n$$

$$\xrightarrow{\int g < \infty} \int f \le \liminf_{n \to \infty} \int f_n, \quad -\int f \le -\limsup_{n \to \infty} \int f_n.$$

$$\implies \int f \le \liminf_{n \to \infty} \int f_n \le \limsup_{n \to \infty} \int f_n \le \int f$$

So we should have

$$\int f = \liminf_{n \to \infty} \int f_n = \limsup_{n \to \infty} \int f_n.$$

Next we investigate the question:

$$\int \sum_{1}^{\infty} f_n \stackrel{?}{=} \sum_{1}^{\infty} \int f_n.$$

Tonelli: yes if $f_n \ge 0$. Fubini:

Corollary 2.31 (Fubini's theorem for series and integrals).

$$\left. \begin{cases} f_n \text{ integrable} \\ \sum_{1}^{\infty} \int |f_n| < \infty \end{cases} \right\} \implies \int \sum_{1}^{\infty} f_n = \sum_{1}^{\infty} \int f_n f_n$$

Proof. $G(x) = \sum_{1}^{\infty} |f_n(x)| \ge |F_N(x)|, F_N(x) = \sum_{1}^{N} f_n(x).$

2.4 L^1 space

Definition 2.32. Suppose *V* is a vector space over field \mathbb{R} or \mathbb{C} . A *seminorm* on *V* is $\|\cdot\|: V \to [0, \infty) \ s.t.$

- $||cv|| = |c|||v||, \forall v \in V, \forall c \text{ scalar}$
- $||v + w|| \le ||v|| + ||w||$, triangle inequality

A *norm* is a seminorm such that $||v|| \iff v = 0$.

Lemma 2.33. A normed vector space is a metric space with metric $\rho(v, w) = ||v - w||$.

Proof. (DIY)

- $\rho(v, w) = 0 \iff ||v w|| = 0 \iff v w = 0 \iff v = w.$
- $\rho(v, w) = ||v w|| = ||-1(w v)|| = |-1|||w v|| = \rho(w, v).$
- $\rho(v,w) + \rho(w,z) = ||v-w|| + ||w-z|| \ge ||v-w+w-z|| = ||v-z|| = \rho(v,z).$

Example 2.34. \mathbb{R}^d with $||x||_p = \begin{cases} \left(\sum_{1}^d |x_i|^p\right)^{1/p} & p \in [1,\infty) \\ \max_{1 \le i \le d} |x_i| & p = \infty \end{cases}$ is a normed vector space.

Unit ball $\{x : ||x||_p < 1\}.$

All $\|\cdot\|_p$ norm induce the same topology i.e. if U is open in p-norm then it is open in p'-norm. This implies that a sequence converging under p-norm also converges under p'-norm.

<u>**RECALL</u>** f is integrable $\implies \int |f| < \infty$. f = g a.e. $\implies \int f = \int g$.</u>

Definition 2.35. Suppose (X, \mathcal{A}, μ) a measure space.

 $f \in L^1(X, \mathcal{A}, \mu) = L^1(X, \mu) = L^1(X) = L^1(\mu)$ means f is an integrable function on X.

Lemma 2.36. $L^1(X, \mathcal{A}, \mu)$ is a vector space with seminorm $||f||_1 = \int |f|$.

Definition 2.37. Define $f \sim g$ if f = g a.e. $L^1(X, \mathcal{A}, \mu)/_{\sim} = L^1(X, \mathcal{A}, \mu)$. " = " is just a notation for convenience!

With new definition we have $L^1(X, \mathcal{A}, \mu)$ is a normed vector space. $\rho(f, g) = \int |f - g|$.

Something interesting to discuss is what are the dense subsets of L^1 .

Theorem 2.38.

- (a) { integrable simple functions } is dense in $L^1(X, \mathcal{A}, \mu)$ (with respect to L^1 metric)
- (b) $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{A}_{\mu}, \mu), \mu$ is Lebesgue-Stieltjes measure \implies { integrable step functions } is dense in $L^1(X, \mathcal{A}, \mu)$
- (c) $C_c(\mathbb{R})$ is dense in $L^1(\mathbb{R}, \mathcal{L}, m)$.

Definition 2.39.

- A step function on \mathbb{R} is $\psi + \sum_{i=1}^{N} c_i \mathbf{1}_{I_i}$, where I_i is an interval.
- $C_c(\mathbb{R})$ is the collection of continuous functions with compact support supp(f) = $\overline{\{x \in \mathbb{R} \mid f(x) \neq 0\}}.$

(a) \exists simple functions $0 \leq |\phi_1| \leq |\phi_2| \leq \ldots \leq |f|, \phi_n \to f$ pointwise \Longrightarrow Proof.

- (b) 1_E approx by $\sum_{i=1}^{N} c_i 1_{I_i}$? Regularity theorem for Lebesgue-Stieltjes measure $\implies \forall \varepsilon' > 0, \exists I = \bigcup_{i=1}^{N} I_i \ s.t. \ \mu(E \triangle I) < \varepsilon'.$
- (c) Suppose $1_{(a,b)}$, $g \in C_c(\mathbb{R})$. $\int |1_{(a,b)} g| dm \le 1 \cdot \frac{\varepsilon}{2} + 1 \cdot \frac{\varepsilon}{2} = \varepsilon$.

2.5 Riemann Integrability

Suppose $P = \{a = t_0 < t_1 < ... < t_k = b\}$ a partition of [a, b]. Lower Riemann sum of f using P

$$L_P = \sum_{i=1}^{k} \left(\inf_{[t_{i-1}, t_i]} f \right) (t_i - t_{i-1})$$

and upper Riemann sum

$$U_p = \sum_{i=1}^{k} \left(\sup_{[t_{i-1}, t_i]} f \right) (t_i - t_{i-1})$$

Lower Riemann integral of $f = \underline{I} = \sup_{P} L_{P}$. Upper Riemann integral of $f = \overline{I} = \inf_{P} U_{P}$.

Definition 2.40. A *bounded* function $f : [a, b] \to \mathbb{R}$ is called Riemann (Darboux) integrable if $\underline{I} = \overline{I}$. (If so, $\underline{I} = \overline{I} = \int_a^b f(x) \, dx$.)

<u>Note</u>

- If $P \subset P'$, then $L_P \leq L_{P'}, U_{P'} \leq U_P$.
- Recall that continuous functions on [a, b] are Riemann integrable on [a, b].

Theorem 2.41. Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

- (a) If f is Riemann integrable, then f is Lebesgue measurable. (thus Lebesgue integrable) and $\int_{a}^{b} f(x) \, dx = \int_{[a,b]} f \, dm.$
- (b) f is Riemann integrable $\iff f$ is continuous Lebesgue a.e.

Proof. $\exists \text{partitions } P_1 \subset P_2 \subset P_3 \subset \dots \text{ s.t. } L_{P_n} \nearrow \underline{I}, U_{P_n} \searrow \overline{I}.$

Define simple (step) functions

$$\phi_n = \sum_{i=1}^k \left(\inf_{[t_{i-1}, t_i]} \right) \mathbf{1}_{(t_{i-1}, t_i]}$$

Define $\phi = \sup_n \phi_n$, $\psi = \inf_n \psi_n$. Then ϕ, ψ are Lebesgue measurable functions.

NOTE

- $\exists M > 0 \ s.t. \ |\phi_n|, |\psi_n| \le M 1[a, b], \forall n \in \mathbb{N}.$
- $\int \phi_n \, \mathrm{d}m = L_{P_n}, \int \psi_n \, \mathrm{d}m = U_{P_n}.$

By DCT, $\underline{I} = \lim_{n \to \infty} \int \phi_n \, \mathrm{d}m = \int \phi \, \mathrm{d}m, \overline{I} = \int \psi \, \mathrm{d}m.$

Thus, *f* is Riemann integrable $\iff \int \phi = \int \psi \iff \int (\phi - \psi) = 0 \iff \phi = \psi$ Lebesgue a.e.

Recall that $\phi \leq f \leq \psi, \forall x \in (a, b]$. So $f = \phi$ a.e. Since $(\mathbb{R}, \mathcal{L}, \mu)$ is complete, f is Lebesgue measurable (see HW). The second statement hence follows.

2.6 Modes of Convergence

Suppose $f_n, f: X \to \mathbb{C}, S \subset X$.

- $f_n \to f$ pointwise on $S: \forall x \in S, \forall \varepsilon > 0, \exists N \in \mathbb{N} \ s.t. \ \forall n \ge \mathbb{N}, |f_n(x) f(x)| < \varepsilon.$
- $f_n \to f$ uniformly on $S: \forall \varepsilon > 0, \exists N \in \mathbb{N} \ s.t. \ \forall x \in X, \forall n \ge \mathbb{N}, |f_n(x) f(x)| < \varepsilon.$

We can change $\forall \varepsilon > 0$ to $\forall k \in \mathbb{N}$ and bound the distance by $\frac{1}{k}$.

Lemma 2.42. Let $B_{n,k} = \{x \in X \mid |f_n(x) - f(x)| < \frac{1}{k}\}.$

(a) $f_n \to f$ pointwise on $S \iff S \subset \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} B_{n,k}$. (b) $f_n \to f$ uniformly on $S \iff \exists N_1, N_2, \ldots \in \mathbb{N} \ s.t. \ S \subset \bigcap_{k=1}^{\infty} \bigcap_{n=N}^{\infty} B_{n,k}$.

Definition 2.43. Suppose (X, \mathcal{A}, μ) a measure space.

- (a) $f_n \to f$ a.e means \exists null set $E s.t. f_n \to f$ pointwise on E^c .
- (b) $f_n \to f$ in L^1 means $\lim_{n \to \infty} ||f_n f|| = 0$.

Example 2.44. ($\mathbb{R}, \mathcal{L}, \mu$). f = 0.

- (a) $f_n = 1_{(n,n+1)}, f_n = \frac{1}{n} 1_{(0,n)}, f_n = n 1_{(0,\frac{1}{n})}$. All of $f_n \to f$ pointwise but $\not\to f$ in L^1 .
- (b) Typewriter functions: $f_n \to f$ in L^1 . $f_n \not\to f$ a.e.

Proposition 2.45 (Fast L^1 convergence \implies a.e. convergence). Suppose (x, \mathcal{A}, μ) measure

space. f_n , f measurable function on X.

$$\sum_{1}^{\infty} \|f_n - f\|_1 < \infty \implies f_n \to f \ a.e.$$

Proof. <u>RECALL</u> Markov's inequality.

Let $E = \bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{n=N}^{\infty} B_{n,k}^{c} = \{x \mid f_{n}(x) \not \rightarrow f(x)\}$. By Markov we have $\forall k, \forall N, \mu(B_{n,k}^{c}) \leq k \int |f_{n} - f|$ $\Longrightarrow \forall k, \mu\left(\bigcap_{n=N}^{\infty} B_{n,k}^{c}\right) \leq \sum_{n=N}^{\infty} k \|f_{n} - f\|_{1} \rightarrow 0 \text{ as } n \rightarrow 0$ $\Longrightarrow \forall k, \mu\left(\bigcap_{N=1}^{\infty} \bigcap_{n=N}^{\infty} B_{n,k}^{c}\right) = \lim_{N \rightarrow \infty} \mu\left(\bigcap_{n=N}^{\infty} B_{n,k}^{c}\right) = 0$ $\Longrightarrow \mu(E) = 0.$

Corollary 2.46. $f_n \to f$ in $L^1 \implies \exists subsequence f_{n_j} \to f$ a.e.

Proof. $\forall j \in \mathbb{N}, \exists n_j \in \mathbb{N} \ s.t. \ \left\| f_{n_j} - f \right\|_1 < \frac{1}{j^2}.$ Then $\sum_{j=1}^{\infty} \left\| f_{n_j} - f \right\|_1 < \infty.$

Definition 2.47. f_n , f measurable functions on (X, \mathcal{A}, μ) . $f_n \to f$ in measure means

$$\forall \varepsilon > 0, \lim_{n \to \infty} \mu \left(\{ x \in X \mid |f_n(x) - f(x)| \ge \varepsilon \} \right) = 0.$$

Example 2.48. • $f_n = n \mathbf{1}_{(0,\frac{1}{n})}, f = 0.$

$$\forall \varepsilon > 0, \{x \mid |f_n(x) - f(x)| > \varepsilon\} = \left(0, \frac{1}{n}\right).$$

(Recall that $f_n \not\rightarrow 0$ in L^1 .)

• Typewriter function. (Recall that $f_n \not\rightarrow 0$ a.e.)

We can easily check that $f_n \to f$ in $L^1 \implies f_n \to f$ in measure. But the converse is not true.

 $f_n \to f$ in measure $\implies \exists f_{n_j} \to f$ a.e. (Check [Fol99])

We have then the following diagram:

Definition 2.49. f_n , f measurable functions on (X, \mathcal{A}, μ) .

- (a) $f_n \to f$ uniformly *a.e* means \exists null set $F \ s.t. \ f_n \to f$ uniformly on F^c .
- (b) $f_n \to f$ almost uniformly means $\forall \varepsilon > 0, \exists F \in \mathcal{A}, s.t. \mu(F) < \varepsilon, f_n \to f$ uniformly on F^c .

Recall 2.42.

Theorem 2.50 (Egoroff). f_n , f measurable on (X, \mathcal{A}, μ) . Suppose $\mu(X) < \infty$. Then $f_n \to f$ a.e $\iff f_n \to f$ almost uniformly.

$$\textit{Proof.} " \Longleftarrow ": DIY$$

"
$$\implies$$
": Fix $\varepsilon > 0$.
 $f_n \to f \text{ a.e } \implies \mu\left(\bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} B_{n,k}^c\right) = 0 \implies \forall k, \mu\left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} B_{n,k}^c\right) = 0.$

By the continuity of measure from above and since $\mu(X) < \infty$,

$$\forall k, \lim_{N \to \infty} \mu\left(\bigcup_{n=N}^{\infty} B_{n,k}^{c}\right) = 0 \implies \forall k, \exists N_{k} \in \mathbb{N}, \mu\left(\bigcup_{n=N_{k}}^{\infty} B_{n,k}^{c}\right) < \frac{\varepsilon}{2^{k}}.$$

 $\text{Let }F=\bigcup_{k=1}^{\infty}\bigcup_{n=N_k}^{\infty}B_{n,k}^c\implies \mu(F)<\varepsilon, f_n\rightarrow F \text{ uniformly on }F^c.$

Chapter 3

Product Measures

(p.22 - 36, section 1.2 and section 2.5, 2.6 of [Fol99])

The ultimate goal is to prove Fubini's theorem. This is also related to probability in in the sense that a series of events is in product measure.

3.1 Product σ -algebra

- Product space $X = \prod_{\alpha \in I} X_{\alpha}, x = (x_{\alpha})_{\alpha \in I}$.
- Coordinate map $\pi_{\alpha} : X \to X_{\alpha}$.

Definition 3.1. $(X_{\alpha}, \mathcal{A}_{\alpha})$ measurable space. $\forall \alpha \in I$, the *product* σ -algebra on $X = \prod_{\alpha \in I} X_{\alpha}$ is

$$\bigotimes_{\alpha \in I} \mathcal{A}_{\alpha} = \left\langle \bigcup_{\alpha \in I} \pi_{\alpha}^{-1} \left(\mathcal{A}_{\alpha} \right) \right\rangle$$

where

$$\pi_{\alpha}^{-1}(A_{\alpha}) = \{\pi_{\alpha}^{-1}(E) | E \in \mathcal{A}_{\alpha}\}.$$

NOTATION

$$I = \{1, \dots, d\} \implies X = \prod_{i=1}^{d} X_i, x = (x_1, \dots, x_d), \bigotimes_{i=1}^{d} \mathcal{A}_i = \mathcal{A}_1 \otimes \dots \otimes \mathcal{A}_d.$$

Lemma 3.2. If I is countable, then

$$\bigotimes_{\alpha \in I} \mathcal{A}_{\alpha} = \left\langle \left\{ \prod_{i=1}^{\infty} E_i \mid E_i \in \mathcal{A}_i \right\} \right\rangle$$

Lemma 3.3. Suppose $A_{\alpha} = \langle \mathcal{E}_{\alpha} \rangle, \forall \alpha \in I.$

(a)
$$\pi_{\alpha}^{-1}(\mathcal{A}_{\alpha}) = \langle \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \rangle.$$

(b) $\bigotimes_{\alpha} \mathcal{A}_{\alpha} = \left\langle \bigcup_{\alpha} \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \right\rangle.$
(c) If I is countable, then $\bigotimes_{\alpha \in I} \mathcal{A}_{\alpha} = \left\langle \left\{ \prod_{i=1}^{\infty} E_{i} \mid E_{i} \in \mathcal{E}_{i} \right\} \right\rangle.$

Proof.

- (a) $f : Y \to Z$, \mathcal{B} a σ -algebra on $Z \implies f^{-1}(\mathcal{B})$ is a σ -algebra since set union commutes with preimage. Hence $\pi_{\alpha}^{-1}(\mathcal{A}_{\alpha})$ is a σ -algebra on X. Since $\pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \subset \pi_{\alpha}^{-1}(\mathcal{A}_{\alpha}) \implies \langle \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \rangle \subset \pi_{\alpha}^{-1}(\mathcal{A}_{\alpha}).$
 - Let $\mathcal{M} = \{ B \subset X_{\alpha} \mid \pi_{\alpha}^{-1}(B) \in \langle \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \rangle \}$. We show that $\mathcal{A}_{\alpha} \subset \mathcal{M}$.
 - \mathcal{M} is a σ -algebra. (easy)
 - $\mathcal{E}_{\alpha} \subset \mathcal{M}$. (by definition)

So
$$\mathcal{A}_{\alpha} = \langle \mathcal{E}_{\alpha} \rangle \subset \mathcal{M}$$
. Hence, if $E \in \mathcal{A}_{\alpha}, E \subset \mathcal{M} \implies \pi_{\alpha}^{-1}(E) \in \langle \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \rangle$ i.e. $\mathcal{A}_{\alpha} \subset \langle \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \rangle$.

(b, c) DIY.

Theorem 3.4. Suppose X_1, \ldots, X_d metric spaces. Let $X = \prod_{i=1}^{d} X_i$ with product metric $\rho(x, y) =$

$$\sum_{i=1}^{a} \rho_i(x, y).$$
 Then
(a) $\bigotimes_{i=1}^{d} \mathcal{B}(X_i) \subset \mathcal{B}(X).$

(b) If, in addition, each X_i has a countable dense subset, then $\bigotimes_{i=1}^{d} \mathcal{B}(X_i) = \mathcal{B}(X)$.

Proof. DIY.

As a consequence, we have $\mathcal{B}(\mathbb{R}^d) = \mathcal{B}(\mathbb{R}) \otimes \ldots \otimes \mathcal{B}(\mathbb{R})$.

Suppose $f = u + iv : X \to \mathbb{C}$. f is measurable $\iff u^{-1}(E) \in \mathcal{A}, v^{-1}(E) \in \mathcal{A}, \forall E \in \mathcal{B}(\mathbb{R}) \iff f^{-1}(F) \in \mathcal{A}, \forall F \in \mathcal{B}(\mathbb{C}) = \mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}).$

p.65. Let's focus on finite product.

You like Minecraft right? It's all rectangles.

Definition 3.5. Suppose *X*, *Y* sets.

- (a) For a $E \subset X \times Y$, $E_x = \{y \in Y \mid (x, y) \in E\}$ and $E^y = \{x \in X \mid (x, y) \in E\}$.
- (b) For $f: X \times Y \to \mathbb{C}$, define $f_x: Y \to \mathbb{C}$, $f^y: X \to \mathbb{C}$ by $f_x(y) = f(x, y) = f^y(x)$.
- (c)

Example 3.6. $(1_E)_x = 1_{E_x}$. $(1_E)^y = 1_{E^y}$.

Proposition 3.7. $(X, \mathcal{A}), (Y, \mathcal{B})$ measurable spaces.

- (a) $E \in \mathcal{A} \otimes \mathcal{B} \implies E_x \in \mathcal{B}, E^y \in \mathcal{A}, \forall x \in X, y \in Y.$
- (b) $f : X \times Y \to \mathbb{C}$ is $\mathcal{A} \otimes \mathcal{B}$ -measurable $\implies f_x$ is \mathcal{B} -measurable, f^y is \mathcal{A} -measurable, $\forall x \in X, y \in Y$.

Proof. (a) Let $\mathcal{F} = \{E \subset X \times Y \mid (a) \text{ holds}\}.$

- \mathcal{F} is a σ -algebra (easy)
- $\mathcal{R}_0 := \{A \times B \mid A \in \mathcal{A}, B \in \mathcal{B}\} \subset \mathcal{F} \text{ (easy)} \implies \mathcal{A} \otimes \mathcal{B} = \langle \mathcal{R}_0 \rangle \subset \mathcal{F}$

(b) DIY.

MIDTERM is up till here.

3.2 **Product Measures**

Definition 3.8. Suppose $(X, \mathcal{A}), (Y, \mathcal{B})$. A (measurable) rectangle is $R = A \times B, A \in \mathcal{A}, b \in \mathcal{B}$.

Let $\mathcal{R}_0 := \{ R = A \times B \mid A \in \mathcal{A}, B \in \mathcal{B} \}.$

$$\mathcal{R} := \left\{ \bigcup_{i=1}^{N} R_i \mid N \in \mathbb{N}, R_1, \dots, R_N \text{ disjoint rectangles} \right\}.$$

Lemma 3.9. \mathcal{R} is an algebra. $\langle \mathcal{R}_0 \rangle = \langle \mathcal{R} \rangle = \mathcal{A} \otimes \mathcal{B}$.

Theorem 3.10. Suppose (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) measure spaces.

- (a) \exists measure $\mu \times \nu$ on $\mathcal{A} \otimes \mathcal{B}$ satisfying $(\mu \times \nu)(A \otimes B) = \mu(A)\nu(B), \forall A \in \mathcal{A}, B \in \mathcal{B}$.
- (b) If μ , ν are σ -finite, then $\mu \times \nu$ is unique.

Proof. (a) Define $\pi : \mathcal{R} \to [0, \infty]$ by $\pi(A \times B) = \mu(A)\nu(B)$ and extend linearly.

<u>CLAIM</u> π is a pre-measure on \mathcal{R} .

Enough to check $\pi(A \times B) = \sum_{1}^{\infty} \pi(A_n \times B_n)$ if $A \times B = \bigcup_{1}^{\infty} (A_n \times B_n)$ disjoint union.

Since $A_n \times B_n$ are disjoint,

$$1_{A \times B}(x, y) = \sum_{1}^{\infty} 1_{A_n \times B_n}(x, y), \ 1_A(x) 1_B(y) = \sum_{1}^{\infty} 1_{A_n}(x) 1_{B_n}(y).$$

By Tonelli's theorem for series and integrals, we have

$$\mu(A)1_B(y) = \int_x 1_A(x)1_B(y) \, \mathrm{d}\mu(x)$$
$$= \sum_1^\infty \int_x 1_{A_n}(x)1_{B_n}(y) \, \mathrm{d}\mu(x) = \sum_1^\infty \mu(A_n)1_{B_n}(y).$$

We then integrate with respect to *y* to complete the claim.

By HK theorem, $\exists \mu \otimes \nu$ on $\langle \mathcal{R} \rangle = \mathcal{A} \otimes \mathcal{B}$ extending π on \mathcal{R} .

(b) $\mu, \nu \sigma$ -finite $\implies \pi$ is σ -finite on $\mathcal{R} \implies$ HK uniqueness them applies.

So we have a measure

$$(\mu \times \nu)(E) = \inf \left\{ \sum_{1}^{\infty} \mu(A_u) \nu(B_i) \middle| E \subset \bigcup_{1}^{\infty} A_i \times B_i, A_i \in \mathcal{A}, B_i \in \mathcal{B} \right\}.$$

Then one questions naturally arises: suppose $f : X \times Y \to \mathbb{C}$,

$$\int_{X \times Y} f \, \mathrm{d}(\mu \times v) \stackrel{?}{=} \int_{y} \left(\int_{x} f \, \mathrm{d}\mu \right) \, \mathrm{d}\nu.$$

3.3 Monotone Class Lemma

Definition 3.11. Suppose *X* is a set, $C \subset P(X)$. *C* is a *monotone class* on *X* if

closed under countable increasing unions
 (i.e. E_n ∈ C, E₁ ⊂ E₂ ⊂ ... ⇒ U₁[∞] C_i ∈ C.)

• closed under *countable decreasing intersections* (i.e. $E_n \in \mathcal{C}, E_1 \supset E_2 \supset \ldots \implies \bigcap_1^{\infty} C_i \in \mathcal{C}.$)

Example 3.12. • σ -algebra is a monotone class.

• $\bigcap_{\alpha} C_{\alpha}$ is a monotone class \implies if $\mathcal{E} \in \mathcal{P}(X)$, there is unique smallest monotone class containing \mathcal{E} .

The importance of this definition shows up in the following theorem:

Theorem 3.13. Suppose A_0 is an algebra on X. Then $\langle A_0 \rangle$ is the monotone class generated by A_0 .

Proof. Let $\mathcal{A} = \langle \mathcal{A}_0 \rangle$, \mathcal{C} = monotone class generated by \mathcal{A}_0 .

- (a) \mathcal{A} is a σ -algebra $\implies \mathcal{A}$ is a monotone class containing $\mathcal{A}_0 \implies \mathcal{A} \supset \mathcal{C}$.
- (b) To show that $C \supset A$, we show that C is a σ -algebra.
 - (1) $\emptyset \subset \mathcal{A}_0 \subset \mathcal{C}$.
 - (2) Let $\mathcal{C}' = \{E \subset X \mid E^c \subset \mathcal{C}\}.$
 - *C*′ is a monotone class (easy)
 - $\mathcal{A}_0 \subset \mathcal{C}'$ since $(E \in \mathcal{A}_0 \implies E^c \in \mathcal{A}_0 \subset \mathcal{C})$.

These two show that $C \subset C'$. So $E \in C \implies E \in C' \implies E^c \in C$. So C is closed under complements.

- (3) For $E \subset X$, let $\mathcal{D}(E) = \{F \in \mathcal{C} \mid E \cup F \in \mathcal{C}\}.$
 - $\mathcal{D}(E) \subset \mathcal{C}$ by definition.
 - $\mathcal{D}(E)$ is a monotone class (easy). $E \cup (\bigcup_{1}^{\infty} F_n) = \bigcap_{1}^{\infty} (E \cup F_n)$.
 - If $E \in \mathcal{A}_0$, then $\mathcal{A}_0 \subset \mathcal{D}(E)$. $(F \in \mathcal{A}_0 \implies E \cup F \in \mathcal{A}_0 \subset \mathcal{C}$.)

These show that C = D(E) if $E \in A_0$.

- (4) Let $\mathcal{D} = \{E \in \mathcal{C} \mid \mathcal{D}(E) = \mathcal{C}\} = \{E \in \mathcal{C} \mid E \cup F \in \mathcal{C}, \forall F \in \mathcal{C}\}.$
 - $\mathcal{A}_0 \subset \mathcal{D}$ by (3).
 - \mathcal{D} is a monotone class (easy).
 - $\mathcal{D} \subset \mathcal{C}$ by definition.

So we conclude that $\mathcal{D} = \mathcal{C}$. Now we have \mathcal{C} is closed under finite unions.

(5) C is closed under finite unions and countable increasing unions $\implies C$ is closed under countable unions. (check)

<u>**RECALL</u>** $E \in \mathcal{A} \otimes \mathcal{B} \implies E_x \in \mathcal{B}, E^y \in \mathcal{A}, \forall x \in X, y \in Y$. However, the inverse is not necessarily true.</u>

Now comes the main thing:

3.4 Fubini-Tonelli Theorem

Theorem 3.14 (Tonelli for characteristic functions). Suppose (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) are σ -finite measure spaces. Suppose $E \in \mathcal{A} \otimes \mathcal{B}$. Then

- (a) $\alpha(x) := \nu(E_x) : X \to [0, \infty]$ is a A-measurable function.
- (b) $\beta(y) := \mu(E^y) : Y \to [0, \infty]$ is a *B*-measurable function.
- (c) $(\mu \times \nu)(E) = \int_X \nu(E_x) d\mu(x) = \int_Y \mu(E^y) d\nu(y).$

Proof. (a) Assume μ , ν are finite measures. Let

$$\mathcal{C} = \{E \in \mathcal{A} \otimes \mathcal{B} \mid (a), (b), (c) \text{ hold}\}.$$

Enough to prove that $\langle \mathcal{R} \rangle = \mathcal{A} \otimes \mathcal{B} \subset \mathcal{C}$.

Because of monotone class lemma and that \mathcal{R} is a σ -algebra, it is enough to show that $\mathcal{R} \subset \mathcal{C}$ and \mathcal{C} is a monotone class.

• Show that $\mathcal{R} \subset \mathcal{C}$.

$$\alpha(x) = \nu((A \times B)_x) = \begin{cases} \nu(B) & x \in A \\ 0 & x \notin A \end{cases} = \nu(B) \mathbf{1}_A(x).$$

$$(\mu \times \nu)(A \times B) = \mu(A)\nu(B)$$
$$\iff \int_X \nu((A \times B)_x) \, \mathrm{d}\mu(x) = \nu(B)\mu(A)$$

• Show that *C* is a monotone class.

(1) Let $E_n \in \mathcal{C}, E_1 \subset E_2 \subset \dots$ Need to show that $E = \bigcup_1^{\infty} E_n \in \mathcal{C}$.

$$E_n \in \mathcal{C}, E_1 \subset E_2 \subset \dots$$
$$\Longrightarrow E_x = \bigcup_{1}^{\infty} (E_n)_x, (E_1)_x \subset (E_2)_x \subset \dots$$
$$\Longrightarrow \alpha(x) = \nu(E_x) = \lim_{n \to \infty} \nu((E_n)_x), \forall x \in X, \quad \alpha_n(x) \text{ \mathcal{A}-measurable}$$

This satisfies (a), (b). For (c), we have

$$(\mu \times \nu)(E) = \lim_{n \to \infty} (\mu \times \nu)(E_n)$$
$$= \lim_{n \to \infty} \int_X \nu \left((E_n)_x \right) \, \mathrm{d}\mu(x) \stackrel{MCT}{=} \int_X \nu(E_x) \, \mathrm{d}\mu(X).$$

So we have shown countable increasing unions.

- (2) Let $F_n \in C$, $F_1 \supset F_2 \supset \ldots$ Need to show that $F \bigcup_1^{\infty} F_n \in C$. Using continuity of measure from above instead of below, DCT instead of MCT, we obtained a similar result.
- (b) Now assume that μ, ν are σ -finite. Since $X \times Y = \bigcup_{1}^{\infty} (X_n \times Y_n)$, where $X_1 \subset X_2 \dots, Y_1 \subset Y_2 \subset \dots$ with $\mu(X_k), \nu(Y_k)$ finite. Apply results from then finite case. (DIY)

Theorem 3.15 (Fubini-Tonelli). Suppose (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are σ -finite measure spaces.

- (a) (Tonelli) If $f: X \times Y \to [0, \infty]$ is $\mathcal{A} \otimes \mathcal{B}$ -measurable then
 - (1) $g(x) := \int_Y f(x, y) d\nu(y) : X \to [0, \infty]$ is a \mathcal{A} -measurable function. (2) $h(y) := \int_X f(x, y) d\mu(x) : Y \to [0, \infty]$ is a \mathcal{B} -measurable function.
 - (3) We have the iterated integral formula

$$\int_{X \times Y} f \, \mathrm{d}(\mu \times \nu) = \int_X \left[\int_Y f(x, y) \, \mathrm{d}\nu(y) \right] \, \mathrm{d}\mu(x)$$
$$= \int_X \left[\int_X f(x, y) \, \mathrm{d}\mu(x) \right] \, \mathrm{d}\nu(y).$$

(b) (Fubini) If $f \in L^1(X \times Y, \mu \times \nu)$, then

(1) f_x ∈ L¹(Y, ν) for μ-a.e x and g(x) (which is defined μ-a.e) ∈ L¹(X, μ).
(2) f^y ∈ L¹(X, μ) for ν-a.e y and h(y) (which is defined ν-a.e) ∈ L¹(Y, ν).

(3) The iterated integral formula from (a).(3) hold.

Usually we apply Tonelli to |f| to show $f \in L^1(X \times Y, \mu \times \nu)$ and then apply Fubini to evaluate.

Proof. See [Fol99].

3.5 Lebesgue Measure on \mathbb{R}^d

Example 3.16 $((\mathbb{R}^2, \mathcal{L} \otimes \mathcal{L}, m \times m)$ is not complete). Let $A \in \mathcal{L}, A \neq \emptyset, m(A) = 0$. Let $B \subset [0,1], B \notin \mathcal{L}$ (e.g. Vitali set). Then let $E = A \times B, F = A \times [0,1]$. We can see that $E \subset F$ and $F \in \mathcal{L} \otimes \mathcal{L}, (m \times m)(F) = m(A)m([0,1]) = 0$.

So *E* is a subnull set but not $\mathcal{L} \otimes \mathcal{L}$ -measurable. (otherwise each section of *E* is measurable, a contradiction.)

Definition 3.17. Let $(\mathbb{R}^d, \mathcal{L}^d, m^d)$ be the *completion* of $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), m \times \ldots \times m)$, which is same(check!) as the *completion* of $(\mathbb{R}^d, \mathcal{L} \otimes \ldots \otimes \mathcal{L}, m \times \ldots \times m)$.

So how do we compute m^d ?

A rectangle in
$$\mathbb{R}^d$$
 is $R = \prod_{i=1}^d E_i$, $E_i \in \mathcal{B}(\mathbb{R})$. Then
$$m^d(E) = \inf \left\{ \sum_{1}^\infty m^d R_k \ \Big| \ E \subset \bigcup_{1}^\infty R_k, R_k \text{ rectangle} \right\}.$$

Theorem 3.18. Let $E \in \mathcal{L}^d$.

- (a) $m^d(E) = \inf \{ m^d(O) \mid open \ O \supset E \} = \sup \{ m^d(K) \mid compact \ K \subset E \}.$
- (b) $E = \underbrace{A_1}_{F\sigma} \cup \underbrace{N_1}_{null} = \underbrace{A_2}_{G\sigma} \setminus \underbrace{N_2}_{null}$ (c) If $m^d(E) < \infty, \forall \varepsilon > 0, \exists R_1, \dots, R_m$ rectangles whose sides are intervals such that $m^d \left(E \bigtriangleup \left(\bigcup_{i=1}^m R_i \right) \right) < \varepsilon.$

Proof. Similar to d = 1 case.

Theorem 3.19. Integrable "step functions" and $C_c(\mathbb{R}^d)$ are dense in $L^1(\mathbb{R}^d, \mathcal{L}^d, m^d)$.

Theorem 3.20. Lebesgue measure in \mathbb{R}^d is translation-invariant.

Theorem 3.21. "Effect of linear transformations on Lebesgue measure"

Skip p. 71-81 of [Fol99] except 3.21.

Chapter 4

Differentiation on Euclidean Space

Suppose $f : [a, b] \rightarrow \mathbb{R}$. There are two versions of fundamental theorem of Calculus:

•
$$\int_{a}^{b} f'(x) dx = f(b) - f(a).$$

•
$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x).$$

We focus on the second statement, which implies that

$$\lim_{r \to 0^+} \frac{1}{r} \int_x^{x+r} f(t) \, \mathrm{d}t = \lim_{r \to 0^+} \frac{1}{r} \int_{x-r}^x f(t) \, \mathrm{d}t$$

Write $f(x) = \frac{1}{r} \int_{x}^{x+r} f(x) dt$, then

$$\lim_{r \to 0^+} \frac{1}{r} \int_x^{x+r} (f(t) - f(x)) \, \mathrm{d}t = \lim_{r \to 0^+} \frac{1}{r} \int_{x-r}^x (f(t) - f(x)) \, \mathrm{d}t.$$

This generalizes well in \mathbb{R}^d :

$$f : \mathbb{R}^d \to \mathbb{R}, \quad \lim_{r \to 0^+} \frac{1}{v(B(x,r))} \int_{B(x,r)} f(t) - f(x) \, \mathrm{d}t = 0.$$

QUESTION to what extent does this hold?

Start from [Fol99, 3.4].

4.1 Hardy-Littlewood Maximal Function

Suppose an open ball in \mathbb{R}^d , B = B(a, r). Denote cB = B(a, cr), c > 0.

Lemma 4.1 (Vitali-type covering lemma). Let B_1, \ldots, B_k be a finite collection of open balls in \mathbb{R}^d . Then \exists a sub-collection B'_1, \ldots, B'_m of disjoint open balls such that

$$\bigcup_{1}^{m} (3B'_j) \supset \bigcup_{1}^{k} B_i.$$

Proof. Greedy algorithm.

<u>NOTATION</u>: $\int_E f \, \mathrm{d}m = \int_E f(x) \, \mathrm{d}x.$

Definition 4.2. $f : \mathbb{R}^d \to \mathbb{C}$ is Lebesgue measurable. *f* is *locally integrable* if

$$\int_{K} |f| \, \mathrm{d}m < \infty, \forall \text{ compact } K \subset \mathbb{R}^{d}.$$

We write $f \in L^1_{\text{loc}}(\mathbb{R}^d)$.

Example 4.3. $f(x) = x^2 \in L^1_{loc}(\mathbb{R}^d)$. (in fact all continuous functions $\in L^1_{loc}(\mathbb{R}^d)$). **Definition 4.4.** For $f \in L^1_{loc}(\mathbb{R}^d)$, define Hardy-Littlewood maximal function for f

$$Hf(x) = \sup\{A_r(x) \mid r > 0\}, \quad A_r(x) = \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y)| \, \mathrm{d}y.$$

Lemma 4.5. Let $f \in L^1_{loc}(\mathbb{R}^d)$. Then,

- (a) $A_r(x)$ is jointly continuous for $(x, r) \in \mathbb{R}^d \times (0, \infty)$.
- (b) Hf(x) is Borel measurable.

Proof.

(a) $(x,r) \to (x^*,r^*) \implies A_r(x) \to A_{r^*}(x^*).$ Let (x_n,r_n) be any sequence $\to (x^*,r^*).$

$$A_{r_n}(x_n) \le \int |f(y)| \mathbf{1}_{B(x_n,r_n)}(y).$$

Apply DCT.

(b)
$$(Hf)^{-1}((a,\infty)) = \bigcup_{r>0} A_r^{-1}((a,\infty))$$
 is open

RECALL Markov inequality

$$m(\{x \mid |f(x)| \ge c\}) \le \frac{1}{c} \int |f(x)| \, \mathrm{d}x$$

Theorem 4.6 (Hardy-Littlewood maximal inequality). $\exists C_d > 0 \ s.t. \ \forall f \in L^1_{loc}(\mathbb{R}^d), \forall \alpha > 0,$

$$m\left(\{x \mid Hf(x) > \alpha\}\right) \le \frac{C_d}{\alpha} \int |f(x)| \, \mathrm{d}x.$$

Proof. Fix $f \in L^1$ and $\alpha > 0$. Let $E = \{x \mid (Hf)(x) > \alpha\}$. *E* is a Borel measurable set. Then

$$x \in E \implies \exists r_x > 0, \ s.t. \ A_{r_x}(x) > \alpha \implies m(B(x, r_x)) < \frac{1}{\alpha} \int_{B(x, r_x)} |f(y)| \, \mathrm{d}y.$$

By inner regularity, we have $m(E) = \sup\{m(K) \mid \text{ compact } K \subset E\}$. Let $K \subset E$ be compact. Then

$$\begin{split} K &\subset \bigcup_{x \in K} B(x, r_x) \\ \Longrightarrow K &\subset \bigcup_{j=1}^n i = 1^N B_i \\ \Longrightarrow K &\subset \bigcup_{j=1}^m (3B'_j), B'_1, \dots, B'_m \text{ disjoint} \\ \Longrightarrow m(K) &\leq \sum_{j=1}^n m(3B'_j) = 3^d \sum_{j=1}^n m(B'_j) \\ \Longrightarrow m(K) &\leq \frac{3^d}{\alpha} \sum_{j=1}^N \int_{B'_j} |f(y)| \, \mathrm{d}y \\ \Longrightarrow m(K) &\leq \frac{3^d}{\alpha} \int_{\mathbb{R}^d} |f(y)| \, \mathrm{d}y. \end{split}$$

4.2 Lebesgue Differentiation Theorem

Theorem 4.7. Let $f \in L^1(\mathbb{R}^d)$. Then

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| \, \mathrm{d} y = 0 \text{ for a.e } x.$$

Proof. (a) The result holds for $f \in C_c(\mathbb{R}^d)$ (check!)

(b) Let $f \in L^1(\mathbb{R}^d)$. Fix $\varepsilon > 0$. $\exists g \in C_c(\mathbb{R}^d) \ s.t. \ \|f - g\|_1 < \varepsilon$. Then

$$\begin{split} &\int_{B(x,r)} |f(y) - f(x)| \, \mathrm{d}y \\ &\leq \int_{B(x,r)} |f(y) - g(y)| \, \mathrm{d}y + \int_{B(x,r)} |g(y) - g(x)| \, \mathrm{d}y + \int_{B(x,r)} |g(x) - f(x)| \, \mathrm{d}y \end{split}$$

Let $Q(x) = \limsup_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| \, dy$. We want to show that

$$m(\{x \mid Q(x) > 0\}) = m\left(\bigcup_{n=1}^{\infty} \left\{x \mid Q(x) > \frac{1}{n}\right\}\right) = 0.$$

Enough to show that $m(E_{\alpha}) = 0, \forall \alpha > 0, E_{\alpha} = \{x \mid Q(x) > \alpha\}.$ But $Q(x) < (H(f-q))(x) + 0 + |q(x) - f(x)| \Longrightarrow$

$$(a \in (w) \supseteq (a \in (j = g))(w) + 0 + |g(w) = j(w)| + 0$$

$$\{x \mid Q(x) > \alpha\} \subset \left\{x \mid H(f-g)(x) > \frac{\alpha}{2}\right\} \bigcup \left\{x \mid |g(x) - f(x)| > \frac{\alpha}{2}\right\}.$$

So we have

$$m\left(\{x\mid Q(x)>\alpha\}\right) \leq \frac{2C_d}{\alpha} \left\|f-g\right\|_1 + \frac{2}{\alpha} \left\|f-g\right\|_1 \leq \frac{2(C_d+1)}{\alpha}\varepsilon.$$

Corollary 4.8. This also holds for $f \in L^1_{loc}(\mathbb{R}^d)$.

Proof. DIY.

Corollary 4.9. For $f \in L^1_{\text{loc}}(\mathbb{R}^d)$,

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) \, \mathrm{d}y = 0 \text{ for a.e } x.$$

Proof. DIY.

Definition 4.10. Let $f \in L^1_{loc}(\mathbb{R}^d)$. The point $x \in \mathbb{R}^d$ is called a *Lebesgue point* of f if

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| = 0.$$

 $f \in L^1_{\text{loc}}(\mathbb{R}^d) \implies$ a.e point is a Lebesgue point of f.

Definition 4.11. $\{E_r\}_{r>0}$ shrinks nicely to x as $r \to 0$ means $E_r \subset B(x,r)$ and $\exists c > 0$

 $0 \text{ s.t. } cm(B(x, n)) \leq m(E_r).$

Corollary 4.12 (Lebesgue differentiation theorem).

$$\left. \begin{array}{c} E_r \text{ shrinks nicely to } 0\\ f \in L^1_{\text{loc}}(\mathbb{R}^d)\\ x \text{ a Lebesgue point of } f \end{array} \right\} \implies \lim_{r \to 0} \frac{1}{m(E_r)} \int_{E_r + x} |f(y) - f(x)| \, \mathrm{d}y = 0.$$

Proof. DIY.

Corollary 4.13. $f \in L^1_{loc}(\mathbb{R}^d) \implies F(x) = \int_0^x f(y) \, dy$ is differentiable and F'(x) = f(x) a.e.

Rest of [Fol99, Ch.3] will be covered later.

Chapter 5

Normed Vector Spaces

Topological spaces \supset metric spaces \supset normed spaces \supset inner product spaces. Let's start with metric spaces. [Fol99, 5.1, 6.1, 6.2]

5.1 Metric Spaces and Normed Spaces

Definition 5.1. Suppose *Y* is a set. A *metric* of *Y* is $\rho : Y \times Y \rightarrow [0, \infty)$ *s.t.*

- (a) $\rho(x, y) = \rho(y, x)$
- (b) $\rho(x,y) \le \rho(x,z) + \rho(z,y)$
- (c) $\rho(x,y) = 0 \iff x = y$.

Example 5.2.

- (a) $\mathbb{Q}, \rho(x, y) = |x y|.$
- (b) $\mathbb{R}, \rho(x, y) = |x y|.$
- (c) $\mathbb{R}_+, \rho(x, y) = \left| \ln \left(\frac{y}{x} \right) \right|.$

(d)
$$\mathbb{R}^{d}, \rho_{1}(x, y) = \sum_{i=1}^{d} |x_{i} - y_{i}|, \rho_{p}(x, y) = \left(\sum_{i=1}^{d} |x_{i} - y_{i}|^{p}\right)^{1/p}, \rho_{\infty}(x, y) = \max_{1 \le i \le d} |x_{i} - y_{i}|.$$

(e) $C([0, 1]), \rho_{p}(f, g) = \left(\int^{1} |f - g|^{p}\right)^{1/p}, \rho_{\infty} = \max_{1 \le i \le 1} |f(x) - g(x)|.$

(e)
$$C([0,1]), \rho_p(f,g) = \left(\int_0^{\infty} |f-g|^p\right), \quad \rho_{\infty} = \max_{x \in [0,1]} |f(x)|$$

They are all metric spaces.

Definition 5.3 (Recall 2.32). Suppose V is a vector space over field \mathbb{R} or \mathbb{C} . A *seminorm*

on V is $\|\cdot\|: V \to [0,\infty) \ s.t.$

- $||cv|| = |c|||v||, \forall v \in V, \forall c \text{ scalar}$
- $||v + w|| \le ||v|| + ||w||$, triangle inequality

A *norm* is a seminorm such that $||v|| \iff v = 0$.

Norm gives rise to a metric where $\rho(v, w) = ||v - w||$.

 $v_n \to v \iff \lim_{n \to \infty} \|v_n - v\| = 0.$

Example 5.4. (a) $L^1(X, A, \mu)$

(b) $C([0,1]), ||f||_1 = \int_0^1 |f(x)| \, dx, ||f||_\infty \max_{0 \le x \le 1} |f(x)|.$ (c) $\mathbb{R}^d, ||x||_2 = \sqrt{\sum_1^d |x_i|^2}, ||x||_1 = \sum_1^d |x_i, ||x||_\infty \max_{1 \le i \le d} |x_i|.$

5.2 L^p Spaces

Definition 5.5. Suppose (X, \mathcal{A}, μ) a measure space. f is measurable function. For $0 , define <math>||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p}$. Define $L^p(X, \mathcal{A}, \mu) = \left\{f \mid ||f||_p < \infty\right\}$. **Example 5.6.**

Definition 5.7. $\ell^p = \ell^p(N) = \{a = (a_1, a_2, ...) \mid ||a||_p = (\sum_{1}^{\infty} |a_i|^p)^{1/p} < \infty\}.$ Lemma 5.8. L^p is a vector space, $\forall p \in (0, \infty)$.

Proof.

$$\left(\int |cf|^p\right)^{1/p} = |c| \, ||f||_p \, .$$

Given the following inequality

$$(\alpha + \beta)^{p} \le (2\max(|\alpha|, |\beta|))^{p} = 2^{p}\max(|\alpha|^{p}, |\beta|^{p}) \le 2^{p}(|\alpha|^{p} + |\beta|^{p})$$

we have

$$\int |f+g|^p \le 2^p \left(\int (|f|^p + |g|^p) \right) \implies \|f+g\|_p \le 2 \left(\int (|f|^p + |g|^p) \right)^{1/p}.$$

But we want to know that whether

$$\|f + g\|_p \le \|f\|_p + \|g\|_p$$

holds.

Theorem 5.9 (Hölder's Inequality). Let $p < \infty, q = \frac{p}{p-1}$ so $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$\|fg\|_1 \leq \|f\|_p \, \|g\|_q$$

Proof.

$$t \leq \frac{t^p}{p} + 1 - \frac{1}{p}, \forall t \geq 0$$

(Take $F(t) = t - \frac{t^p}{p}$)

$$\alpha\beta \le \frac{\alpha^p}{p} + \frac{\beta^q}{q}, \forall \alpha, \beta \ge 0$$
 (Young's inequality) (5.1)

$$\begin{split} \text{WLOG assume } 0 &\leq \|f\|_{p}, \|g\|_{q} < \infty. \text{ Let } F(x) = \frac{f(x)}{\|f\|_{p}}, G(x) = \frac{g(x)}{\|g\|_{q}}. \\ \implies \|F\|_{p} = 1 = \|G\|_{q}. \\ \text{By (5.1),} \\ &\int |F(x)G(x)| \leq \int \frac{|F(x)|^{p}}{p} + \int \frac{|G(x)|^{q}}{q} \\ &\quad \frac{\int |f(x)g(x)|}{\|f\|_{p} \|g\|_{q}} \leq \frac{1}{p} + \frac{1}{q} = 1. \end{split}$$

Theorem 5.10 (Minkowski's inequality). Let $1 \le p < \infty$. For $f, g \in L^p$, $||f + g||_p \le ||f||_p + ||g||_p$.

Proof. p = 1 is easy.

Assume $1 . WLOG assume <math>\left\| f + g \right\|_p \neq 0$. We have

$$\begin{split} \int |f(x) + g(x)|^p &\leq \int |f(x) + g(x)|^{p-1} (|f(x)| + |g(x)|) \\ &\leq \left(\int (|f + g|^{p-1})^q \right)^{1/q} \left(\int |f|^p \right)^{1/p} + \left(\int (|f + g|^{p-1})^q \right)^{1/q} \left(\int |g|^p \right)^{1/p} \\ &\leq \left(\int (|f + g|^{p-1})^q \right)^{1/q} \left[\left(\int |f|^p \right)^{1/p} + \left(\int |g|^p \right)^{1/p} \right] \\ &\leq \left(\int (|f + g|^{p-1})^q \right)^{1/q} \left[||f||_p + ||g||_p \right] \end{split}$$

Since q(p-1) = p, divide by $\left(\int (|f+g|^{p-1})^q\right)^{1/q}$ on both sides we have

$$\left(\int |f(x) + g(x)|^p\right)^{1-1/q} \le \|f\|_p + \|g\|_p \,.$$

Hölder: $||fg||_1 \le ||f||_p ||g||_q, \frac{1}{p} + \frac{1}{q} = 1.$

Minkowski: $||f + g||_p \le ||f||_p + ||g||_p, 1 \le p < \infty.$

Definition 5.11. For a measurable function f on (X, \mathcal{A}, μ) , let

$$S=\{\alpha\geq 0\mid \mu(\{x\mid |f(x)|>\alpha\})=0\}=\{\alpha\geq 0\mid f(x)\leq \alpha \text{ a.e}\}$$

Define $||f||_{\infty} = \begin{cases} \inf S & S \neq \emptyset \\ \infty & S = \emptyset. \end{cases}$. Let $L^{\infty}(X, \mathcal{A}, \mu) = \{f \mid ||f||_{\infty} < \infty\}.$

Example 5.12.

- $(\mathbb{R}, \mathcal{L}, m), f(x) = \frac{1}{x} \mathbb{1}_{(0,\infty)}(x) \neq L^{\infty}, f(x) = x \mathbb{1}_{\mathbb{Q}}(x) + \frac{1}{1+x^2} \in L^{\infty}.$
- If f is continuous on $(\mathbb{R}, \mathcal{L}, m)$, $||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$. For $a \in \ell^{\infty}$, $||a||_{\infty} = \sup_{i \in \mathbb{N}} |a_i|$. $(\ell^{\infty} = \{a = (a_1, a_2, \ldots) \mid ||a||_{\infty} < \infty\} = \{a \mid \exists M \ge 0 \text{ s.t. } |a_i| \le M_i, \forall i\})$
- **Lemma 5.13.** (a) For $\alpha \geq ||f||_{\infty}, \mu(\{x \mid |f(x)| > \alpha\}) = 0$. For $\alpha < ||f||_{\infty}, \mu(\{x \mid |f(x)| > \alpha\}) > 0$.
 - (b) $|f(x)| \le ||f||_{\infty}$ a.e.
 - (c) $f \in L^{\infty} \iff \exists$ bounded measurable function g such that f = g a.e.

Proof. DIY.

Theorem 5.14.

- (a) $||fg||_1 \le ||f||_1 ||g||_{\infty}$.
- (b) $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.
- (c) $f_n \to f$ in $L^{\infty} \iff f_n \to f$ uniformly a.e.

Proof. DIY For (c): \implies Let $A_n = \{x \mid |f_n(x) - f(x)| > ||f_n - f||_{\infty}\}$. Then $\mu(A_n) = 0$. Let $A = \bigcup_{1}^{\infty} A_n, \mu(A_n) = 0$. $\forall x \in A^c = \bigcap_{1}^{\infty} A_n^c, \forall n, |f_n(x) - f(x)| \le ||f_n - f||_{\infty}$. The latter converges to 0 by assumption.

Given $\varepsilon > 0, \exists N \ s.t. \ \|f_n - f\|_{\infty} < \varepsilon, \forall n \ge N$. So $\forall x \in A^c, \forall n \ge N, |f_n(x) - f(x)| \le \|f_n - f\|_{\infty} < \varepsilon$.

Proposition 5.15.

- (a) For $1 \le p < \infty$, the collection of simple functions with finite measure support is dense in $L^p(X, \mathcal{A}, \mu)$.
- (b) For $1 \le p < \infty$, the collection of step functions (by definition they have finite measure support) is dense in $L^p(\mathbb{R}, \mathcal{L}, m)$. So is $C_c(\mathbb{R})$.
- (c) For $p = \infty$, the collection of simple functions is dense in $L^{\infty}(X, \mathcal{A}, \mu)$.

Proof. DIY

<u>NOTE</u>: $C_c(\mathbb{R})$ is not dense in $L^{\infty}(\mathbb{R}, \mathcal{L}, m)$.

5.3 Embedding Properties of L^p spaces

Definition 5.16. Two norms $\|\cdot\|$, $\|\cdot\|'$ on the same spaces *V* are said to be *equivalent* if

 $\exists c_1, c_2 > 0 \ s.t. \ c_1 \|v\| \le \|v\|' \le c_2 \|v\|, \forall v \in V.$

So on equivalent norms we have same open sets, same convergence.

Example 5.17.

- For \mathbb{R}^d , $\|\cdot\|_p$, $1 \le p \le \infty$ are equivalent.
- For $1 \leq p, q \leq \infty, p \neq q$, $L^p(\mathbb{R}, m)$ -norm and $L^q(\mathbb{R}, m)$ -norm are not equivalent. $L^p(\mathbb{R}, m) \not\subset L^q(\mathbb{R}, m), L^p(\mathbb{R}, m) \not\supseteq L^q(\mathbb{R}, m).$

Proposition 5.18. Suppose $\mu(X) < \infty$, then for any $0 , <math>L^q \subseteq L^p$.

Proof. • $p = \infty$ is easy.

• Suppose $p < \infty$.

Proposition 5.19. If $0 then <math>\ell^p \subseteq \ell^q$.

Proposition 5.20. $\forall 0$

Proof. • $p = \infty$ is easy.

• Suppose $p < \infty$. Hölder on $p/\lambda q, r/(1-\lambda)q, \lambda = \frac{q^{-1}-r^{-1}}{p^{-1}-r^{-1}}$.

Theorem 5.21. Suppose $(V, \|\cdot\|)$ a normed space. Then it is complete \iff Every absolutely convergent series is convergent (i.e. if $\sum_{1}^{\infty} \|v_n\| < \infty$ then $\exists s \in V \text{ s.t. } \sum_{1}^{N} v_n \rightarrow s \text{ as } N \rightarrow \infty$)

Proof. \implies : DIY. (partial sums form a Cauchy Sequence)

 $: \text{Suppose } v_n, n \in \mathbb{N} \text{ is a Cauchy sequence. } \forall j \in \mathbb{N}, \exists N_j \in \mathbb{N} \text{ s.t. } \|v_n - v_m\| < \frac{1}{2j}, \forall n, m \geq N_j.$

WLOG we may assume $N_1 < N_2 < \dots$ Let $w_1 = v_{N_1}, w_j = v_{N_j} - v_{N_{j-1}}, \forall j \ge 2 \implies \sum_{1}^{\infty} \|w_j\| \le \|v_{N_1}\| + \sum_{j=2}^{\infty} \frac{1}{2^{j-1}} < \infty \implies \sum_{1}^{k} w_j \to \exists s \in V.$

Thus $V_{N_k} \to s$ as $k \to \infty$. v_n is Cauchy $\implies v_n \to s$ as $n \to \infty$.

5.5 Bounded Linear Transformation

Definition 5.22. Suppose $(V, \|\cdot\|), (W, \|\cdot\|')$ two normed spaces. A linear map $T : V \to W$ is said to be a *bounded map* is $\exists c \ge 0 \ s.t. \ \|T_v\|' \le C \|v\|, \forall v \in V.$

Proposition 5.23. Suppose $T : (V, \|\cdot\|) \to (W, \|\cdot\|')$ is a linear map. Then the followings are equivalent:

- (a) T is continuous
- (b) T is continuous at 0
- (c) T is a bounded map

Proof. (a) \implies (b) is clear.

(b) \implies (c): For $\varepsilon = 1$, $\exists \delta > 0$ s.t. $||Tu||' < \varepsilon = 1$ if $||u|| < \delta$. Suppose $v \in V, v \neq 0$. Let $u = \frac{\delta}{2||v||}v \implies ||u|| = \frac{\delta}{2} < \delta \implies ||Tu||' < 1 \implies \frac{\delta}{2||v||} ||Tv||' < 1 \implies ||Tu||' < \frac{2}{\delta} ||v||.$ (c) \implies (a): Fix $v_0 \in V$. $||Tv - Tv_0||' = ||T(v - v_0)||' \le C ||v - v_0||.$

Example 5.24. (a) $T: \ell^1 \to \ell^1, Ta = (a_2, a_3, \ldots), ||Ta||_1 \le ||a||_1, T$ is BLT.

- (b) $T: (C([-1,1]), \|\cdot\|_1) \to \mathbb{C}, Tf = f(0)$. This is not continuous.
- (c) $T: (C([-1,1]), \|\cdot\|_{\infty}) \to \mathbb{C}, Tf = f(0)$ is BLT.
- (d) Let A be a $n \times m$ matrix. $T : \mathbb{R}^n \to \mathbb{R}^m, v \mapsto Av$ is BLT.

(e) Let K(x, y) be a continuous function on $[0, 1] \times [0, 1]$.

$$T: (C_[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty}), Tf = \int_0^1 K(x,y) f(y) \; \mathrm{d} y$$

is a BLT.

(f)
$$T: L^1(\mathbb{R}) \to (C(\mathbb{R}), \|\cdot\|_{\infty}), (Tf)(t) = \int_{-\infty}^{\infty} e^{-itx} f(x) \, \mathrm{d}x$$
 (Fourier transform of f)

(g) $T: (C^{\infty}([0,1]), \|\cdot\|_{\infty}) \to (C^{\infty}([0,1]), \|\cdot\|_{\infty}), (Tf)(x) = f'(x)$ is not bounded.

Definition 5.25. Let $L(V, W) = \{T : V \to W \mid T \text{ is BLT}\}$. For $T \in L(V, W)$, the *operator norm* of *T* is

$$||T|| := \inf\{c \ge 0 \mid ||Tv||' \le c ||v||, \forall v \in V\}$$
$$= \sup\left\{\frac{||Tv||'}{||v||} \mid v \ne 0, v \in V\right\}$$
$$= \sup\left\{||Tv||' \mid ||v|| = 1\right\}.$$

Lemma 5.26. (a) Above three definitions are equivalent.

(b) It is indeed a normed space.

Proof. DIY.

5.6 Dual of L^p Spaces

Chapter 6

Signed and Complex Measures

[Fol99, Ch.3].

<u>RECALL</u> Suppose (X, \mathcal{A}, μ) a measure space. $f : X \to [0, \infty]$ measurable. Let $\nu(E) = \int_E f \, \mathrm{d}\mu, E \in \mathcal{A} \implies \nu$ is a measure on (X, \mathcal{A}) .

6.1 Signed Measures

Definition 6.1. Suppose (X, \mathcal{A}) a measurable space. A signed measure is $\nu : \mathcal{A} \rightarrow [-\infty, \infty)$ or $\nu : \mathcal{A} \rightarrow (-\infty, \infty]$ such that

- $\nu(\emptyset) = 0.$
- $A_1, A_2, \ldots \in \mathcal{A}, A_i \text{ disjoint } \implies \nu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \nu(A_i) \text{ where the series converges}$ absolutely if $\nu\left(\bigcup_{i=1}^{\infty} A_i\right) \in (-\infty, \infty).$

Example 6.2.

- ν positive measure $\implies \nu$ is a signed measure.
- μ_1, μ_2 positive measures such that either $\nu_1(X) < \infty$ or $\nu_2(X) < \infty \implies \nu = \mu_1 \mu_2$ a signed measure.

•
$$f: X \to \overline{\mathbb{R}} \ s.t. \ \int_X f^+ \, \mathrm{d}\mu < \infty \ \mathrm{or} \ \int_X f^- \, \mathrm{d}\mu < \infty \implies \nu(E) = \int_E f \, \mathrm{d}\mu.$$

<u>Note</u>:

(a)
$$A \subset B \Rightarrow \nu(A) \leq \nu(B)$$
 since $\nu(B) = \nu(A) + \nu(B \setminus A)$.

(b) $A \subset B, \nu(A) = \infty \implies \nu(B) = \infty.$

Lemma 6.3. ν is a signed measure on (X, A). Then

•
$$E_n \in \mathcal{A}, E_1 \subset E_2 \subset \ldots \implies \nu\left(\bigcup_{1}^{\infty} E_n\right) = \lim_{n \to \infty} \nu(E_n).$$

•
$$E_n \in \mathcal{A}, E_1 \supset E_2 \supset \ldots, -\infty < \nu(E_1) < \infty \implies \nu\left(\bigcap_{1}^{\infty} E_n\right) = \lim_{N \to \infty} \nu(E_n).$$

Definition 6.4. ν is a signed measure on (X, \mathcal{A}) . Let $E \in \mathcal{A}$. We say

- (a) *E* is *positive* for ν (a positive set for ν) if $\forall F \subset E, F \in \mathcal{A}, \nu(F) \ge 0$.
- (b) *E* is *negative* for ν (a negative set for ν) if $\forall F \subset E, F \in A, \nu(F) \leq 0$.
- (c) *E* is *null* for ν (a null set for ν) if $\forall F \subset E, F \in \mathcal{A}, \nu(F) = 0$.

<u>NOTE</u> *E* positive set, $F \subset E \implies \nu(F) \leq \nu(E)$. *E* negative set, $F \subset E \implies \nu(F) \geq \nu(E)$.

Definition 6.5. Suppose μ, ν are signed measure on (X, \mathcal{A}) . $\nu \perp \nu$ (singular to each other) means $\exists E, F \in \mathcal{A} \ s.t. \ E \cap F = \emptyset, E \cup F = X, F$ is null for μ, E is null for ν .

Example 6.6. For $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,

- (a) Lebesgue measure m
- (b) Cantor measure $\mu_C((a, b])$.
- (c) Discrete measure $\mu_D = \delta_1 + 2\delta_{-1}$.

For (a), (c), take $E = \mathbb{R} \setminus \{-1, 1\}$, $F = \{-1, 1\}$. For (a), (b), take the cantor set *K*, $E = \mathbb{R} \setminus K$, F = K.

Lemma 6.7. ν is a signed measure on (X, A).

(a) E is positive (for ν) and $G \subset E$ measurable \implies G is positive (for ν).

(b)
$$E_1, E_2, \ldots$$
 positive sets $\Longrightarrow \bigcup_{1}^{\infty} E_n$ is positive.

Proof. DIY.

Lemma 6.8. ν is a signed measure on (X, A). Suppose $E \in A$ and $0 < \nu(E) < \infty \implies \exists$ measurable set $A \subset E$ s.t. A is a positive set (for ν) and $\nu(A) > 0$.

Proof in [RF10]. If *E* is a positive set, we are done.

Otherwise, E contains sets of negative measure. Let $n_1 \in \mathbb{N}$ be the smallest such that $\exists E_1 \subset E$ with $\nu(E_1) < -\frac{1}{n_1}$. If $E \setminus E_1$ is a positive set then we are done. Otherwise,

 $E \setminus E_1$ contain sets of measure.

Inductively if $E \setminus \bigcup_{1}^{k_{1}} E_{i}$ is not a positive set. Let $n_{k} \in \mathbb{N}$ be the *smallest* such that $\exists E_{k} \subset E \setminus \bigcup_{1}^{k_{1}} E_{i}$ with $\nu(E_{k}) < -\frac{1}{n_{k}}$. Note: if $n_{k} \geq 2, \forall B \subset E \setminus \bigcup_{1}^{k-1} E_{i}, \nu(B) \geq -\frac{1}{n_{k-1}}$. Let $A = E \setminus \bigcup_{1}^{\infty} E_{k}$. Since $E = A \cup \bigcup_{1}^{\infty} E_{k}, \nu(E) = \nu(A) + \sum_{1}^{\infty} \nu(E_{k}) \implies \nu(A) > 0$. Since $\nu(E), \nu(A)$ are finite, then $\sum_{1}^{\infty} \frac{1}{n_{k}}$ need to be convergent $\implies \lim_{k \to \infty} n_{k} = \infty$. Now, if $B \subset A$ then $B \subset E \setminus \bigcup_{1}^{k-1} E_{i}$. If $\nu(B) \geq -\frac{1}{n_{k-1}} \implies \nu(B) \geq 0$. Thus A is positive.

Theorem 6.9 (The Hahn decomposition theorem). Suppose ν is a signed measure of (X, \mathcal{A}) . Then $\exists P, N \in \mathcal{A} \text{ s.t. } P \cap N = \emptyset, P \cup N = X, P$ is positive for ν , and N is negative for ν . If P', N' are another such pair, then $P \triangle P' (= N \triangle N')$ is null for ν .

Proof. Uniqueness: $P \setminus P' \subset P \cap n' \implies P \setminus P'$ is positive and negative, thus a null set. Same for $P \setminus P'$.

Existence: WLOG assume $\nu : \mathcal{A} \to [-\infty, \infty)$. Let $s = \sup\{\nu(E) \mid E \text{ positive for } \nu\}$. $\exists P_1, P_2, \dots$ positive sets such that $\lim_{n\to\infty} \nu(P_n) = s$.

Let
$$P = \bigcup_{1}^{\infty} E_n \implies P$$
 is positive $\implies \begin{cases} s \ge \nu(P) \\ \nu(P) \ge \nu(P_n) \end{cases} \implies \nu(P) = s$. Note that $0 \le s = \nu(P) < \infty$.

Let $N = X \setminus P$. Is N a negative set?

Suppose not. Then $\exists E \subset N \ s.t. \ \nu(E) > 0$. Note that $\nu(E) < \infty \implies \exists$ positive set $A \subset EA$ with $\nu(A) > 0$. The P, A are disjoint, $P \cup A$ is a positive set, and $\nu(P \cup A) = \nu(P) + \nu(A) > s$, a contradiction.

So *N* is a negative set.

Theorem 6.10 (Jordan decomposition theorem). ν signed measure on (X, \mathcal{A}) . $\exists!$ positive measures ν^+, ν^- on (X, \mathcal{A}) s.t. $\nu(E) = \nu^+(E) - \nu^-(E), \forall E \in \mathcal{A} \text{ and } \nu^+ \perp \nu^-$.

Proof.
$$\nu^+(E) = \nu(E \cap P), \nu^-(E) = -\nu(E \cap N).$$
 DIY.

Example 6.11. $(X, \mathcal{A}, \mu), f : X \to \overline{\mathbb{R}}$. Let $\nu(E) = \int_E f \, d\mu$. $\nu^+ = \int_E f^+ \, d\mu, \nu^- = \int_E f^- \, d\mu$. **Definition 6.12.** Suppose ν a signed measure on (X, \mathcal{A}) . *Total variation measure* of ν is $|\nu| = \nu^+ + \nu^-$ (a positive measure on (X, \mathcal{A})).

Definition 6.13. $|\nu|(E) = \int_E |f| d\nu$

Lemma 6.14. (a) $|\nu(E)| \le |\nu|(E)$,

- (b) *E* is a null set for $\nu \iff E$ is a null set for $|\nu|$,
- (c) Suppose κ is another signed measure. $\kappa \perp \nu \iff \kappa \perp |\nu| \iff \kappa \perp \nu^+$ and $\kappa \perp \nu^-$.

Proof. DIY.

Definition 6.15. ν is finite (σ -finite) if $|\nu|$ is a finite (σ -finite) measure. ($\iff \nu^+, \nu^-$ are finite (σ -finite) measures.)

6.2 Absolutely Measurable Spaces

Definition 6.16. μ a positive measure, ν a signed measure on (X, \mathcal{A}) . $\nu \ll \mu$ (ν is absolutely continuous with respect to μ) $\iff (E \in \mathcal{A}, \mu(E) = 0 \implies \nu(E) = 0) \iff$ all μ -null sets and ν -null sets. (check)

Example 6.17. $(X, \mathcal{A}, \mu), f : X \to \overline{\mathbb{R}}. \ \nu(E) = \int Ef \, d\mu \implies \nu \ll \mu.$

<u>NOTATION</u>: $d\nu = f d\mu$ means ν is the measure defined by $\nu(E) = \int_E f d\mu$.

Lemma 6.18. μ positive measure, ν signed measure.

(a)
$$\nu \ll \mu \iff |\nu| \ll \mu \iff \nu^+ \ll \mu$$
 and $\nu^- \ll \mu$.

(b) $\nu \ll \mu$ and $\nu \perp \mu \implies \nu = 0$.

Proof.

Theorem 6.19 (Radon-Nikodym). Suppose μ a σ -finite positive measure, ν a σ -finite signed measure on (X, \mathcal{A}) . Suppose $\nu \ll \mu$. Then $\exists f : X \to \mathbb{R}$ measurable function such that $\nu(E) = \int_E f \, d\mu$. If g is another such function then f = g a.e.

Proof. Will follow by proof of Lebesgue-Radon-Nikodym on Monday.

Definition 6.20. Suppose $\nu \ll \mu$. A *Radon-Nikodym derivative* of ν with respect to μ is a function $\frac{d\nu}{d\mu} : X \to \overline{\mathbb{R}}$ satisfying $\nu(E) = \int_E \frac{d\nu}{d\mu} d\mu, \forall E \in \mathcal{A}$.

<u>NOTE</u>: 6.19 shows the existence of such functions. If there is another such function g, then $\frac{d\nu}{d\mu} = g \mu$ -a.e.

NOTATION:

$$\mathrm{d}\nu = \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \,\mathrm{d}\mu.$$

Example 6.21. $F(x) = e^{2x} : \mathbb{R} \to \mathbb{R}$ is continuous and increasing.

The Lebesgue-Stieltjes measure μ_F on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is the unique locally finite Borel measure satisfying $\mu((a, b]) = e^{2b} - e^{2a}, \forall a < b$.

$$\mu_F(E) \stackrel{\text{why?}}{=} \int_E 2e^{2x} \, \mathrm{d}x.$$

So $\mu_F \ll m$ and $\frac{\mathrm{d}\mu_F}{\mathrm{d}m} = 2e^{2x}$.

Example 6.22. $F(x) = C(x) : \mathbb{R} \to \mathbb{R}$ the Cantor function. C'(x) = 0 Lebesgue a.e.

$$\mu_C(E) \neq \int_E 0 \, \mathrm{d}x.$$

In particular, $c(b) - c(a) \neq \int_a^b c'(x) \, dx$ even if c is continuous and has derivative a.e. So $\mu_c \ll m$. But $\mu_c \perp m$.

Lemma 6.23. Let μ, ν be finite positive measures on (X, \mathcal{A}) . Then either

- (a) $\mu \perp \nu$, or
- (b) $\exists \varepsilon > 0, \exists F \in \mathcal{A} \text{ s.t. } \nu(F) > 0 \text{ and } F \text{ is a positive set for } \nu \varepsilon \mu. \text{ (i.e. } \forall G \subset F, \nu(G) \ge \varepsilon \mu(G))$

Proof. Let $\kappa_n = \nu - \frac{1}{n}\mu$. By Hahn decomposition, write $X = P_n \cup N_n$ where P_n is positive and N_n is negative for κ_n .

Let $P = \bigcup_{1}^{\infty} P_n$ and $N = \bigcap_{1}^{\infty} N_n = X \setminus P$. We have $\kappa_n(N) \leq 0$ since $N \subset N_n, \forall n \implies 0 \leq \nu(N) \leq \frac{1}{n} \mu(N), \forall n \implies \nu(N) = 0.$

Now if $\mu(P) = 0$ then $\mu \perp \nu$. Otherwise $\exists n \ s.t. \ \mu(P_n) > 0$. Take $F = P_n, \varepsilon = \frac{1}{n}$ we have that *F* is a positive set for $\nu - \varepsilon \mu$ and $\nu(F) > 0$.

Theorem 6.24 (Lebesgue-Radon-Nikodym). Suppose μ a σ -finite positive measure, ν a σ -finite signed measure on (X, \mathcal{A}) . Then $\exists!\lambda, \rho \sigma$ -finite signed measures on (X, \mathcal{A}) such that $\lambda \perp \mu, \rho \ll \mu, \nu = \lambda + \rho$.

Furthermore, $\exists f : X \to \mathbb{R}$ *measurable function that* $d\rho = f d\mu$ *. And if there exists another g then* $f = g \mu$ *-a.e.*

Proof. (a) Assume μ , ν finite positive measure. Let

$$\mathcal{F} = \left\{ g : X \to [0,\infty] \middle| \int_E g \, \mathrm{d}\mu \le \nu(E), \forall E \in \mathcal{A} \right\}$$
$$= \left\{ g : X \to [0,\infty] \middle| \mathrm{d}\nu - g \mathrm{d}\nu \text{ is a positive measure} \right\}.$$

Note that $\mathcal{F} \neq \emptyset$ since $g = 0 \in \mathcal{F}$. Let $s = \sup \{ \int_X g \, d\mu \mid g \in \mathcal{F} \}$.

- (1) $\exists f \in \mathcal{F} \ s.t. \ s = \int_X f \, \mathrm{d}\mu.$
 - i. $g, h \in \mathcal{F} \implies u(x) = \max\{g(x), h(x)\} \in \mathcal{F}$. Since setting $A = \{x \mid g(x) \ge h(x)\}$, we have

$$\int_E u \, \mathrm{d}\mu = \int_{E \cap A} g \, \mathrm{d}\mu + \int_{E \cap A^c} h \, \mathrm{d}\mu$$

ii. $\exists g_1, g_2, \dots s.t. \lim_{n \to \infty} \int_X g_n d\mu = S$. By i, WLOG we can assume $0 \le g_1(x) \le g_2(x) \le \dots$ and $s.t. \lim_{n \to \infty} \int_X g_n d\mu = S$.

Let $f(x) = \sup_n g_n(x) = \lim_{n \to \infty} g_n(x)$. By MCT,

$$\int_{E} f \, \mathrm{d}\mu = \lim_{n \to \infty} \int_{E} g_n \, \mathrm{d}\mu \le \nu(E) = S$$

when E = X.

- (2) Define $\rho(E) = \int_E f \, d\mu \implies \rho \ll \mu$ and $\rho(X) = \int_X f \, d\mu \le \nu(X) < \infty$.
- (3) Define $\lambda(E) = \nu(E) \rho(E) = \nu(E) \int_E f \, d\mu \ge 0$. Then λ is a positive measure and $\lambda(X) \le \nu(X) < \infty$.
- (4) λ ⊥ μ. Suppose it is not. Then by lemma, ∃ε > 0, F ∈ A s.t. μ(F) > 0 and F is a positive set for λ − εμ.

Let
$$g(x) = f(x) + \varepsilon 1_F(x)$$
. Then $\forall E \in \mathcal{A}$,

$$\int_{E} g \, \mathrm{d}\mu = \int_{E} f \, \mathrm{d}\mu + \varepsilon \mu(E \cup F) = \nu(E) - \lambda(E) + \varepsilon \mu(E \cup F)$$
$$\leq \nu(E) - \lambda(E \cap F) + \varepsilon \mu(E \cap F)$$
$$\leq \nu(E)$$

since $\lambda(E \cap F) - \varepsilon \mu(E \cap F) \ge 0$. But $s \ge \int_X g \, d\mu = \int_X f \, d\mu + \varepsilon \mu(F) = s + \varepsilon \mu(F) > s$, a contradiction.

6.3 Lebesgue Differentiation Theorem for Regular Borel Measures on \mathbb{R}^d

[Fol99, p. 99]

Definition 6.25. A Borel signed measure ν on \mathbb{R}^d is called *regular* if

- (a) $|\nu|(\kappa) < \infty, \forall \text{ compact } K.$
- (b) $|\nu|(E) = \inf\{m(O) \mid \text{ open } O \supset E\}, \forall \text{ Borel set } E.$

Example 6.26. LS measure on \mathbb{R} are regular. Lebesgue measure on \mathbb{R}^d is regular (so, the difference of two of them) Note: from (a), ν regular $\implies \nu$ is σ -finite,

If $d\nu = f dm$ regular, then $|\nu|(\kappa) = \int_{K} |f| dm < \infty$, so $f \in L^{1}_{loc}(\mathbb{R}^{d})$.

Lemma 6.27. If $f \in L^1_{loc}(\mathbb{R}^d) \iff d\nu = f dm$ is regular

Proof. Read the book.

<u>**RECALL</u>** Lebesgue differentiation theorem</u>

Corollary 6.28. Let ρ be a regular signed Borel measure on \mathbb{R}^d . Suppose $\rho \ll m \implies$ For Lebesgue a.e.-x, $\lim_{r\to 0} \frac{\rho(E_r)}{m(E_r)} = \frac{d\rho}{dm}(x)$ for every $E_r \to x$ nicely.

Proposition 6.29. Let λ be a regular positive Borel measure on \mathbb{R}^d . Suppose $\lambda \perp m$. For Lebesgue a.e.-x, $\lim_{r\to 0} \frac{\lambda(E_1)}{m(E_1)} = 0$ for every $E_r \to x$ nicely.

Proof. Enough to consider $E_1 = B(x, r)$

$$\left\{x \mid \limsup_{r \to 0} \frac{\lambda(E_1)}{m(E_1)} \neq 0\right\} = \bigcup_{n=1}^{\infty} G_n, G_n = \left\{x \mid \limsup_{r \to 0} \frac{\lambda(E_1)}{m(E_1)} > \frac{1}{n}\right\}$$

Enough to show that $m(G_n) = 0, \forall n$.

 $\lambda \perp m \implies \mathbb{R}^d = A \cup B$ disjoint. $\lambda(A) = 0, m(B) = 0$, Enough to show $m(G_n \cap A) = 0$.

$$\begin{split} & \text{Fix } \varepsilon > 0. \text{ Since } \lambda \text{ is regular, } \exists \text{ open } O \supset A \text{ } s.t. \ \lambda(O) \leq \lambda(A) + \varepsilon = \varepsilon. \ \forall x \in G_n \cap A, \exists r_x > 0 \text{ } s.t. \ \frac{\lambda(B(x,r_x))}{m(B(x,r_x))} > \frac{1}{n} \text{ and } B(x,r_x) \subset O. \end{split}$$

Let $K \subset G_n \cap A$, compact. $K \subset \bigcup_{x \in K} B(x, r_x) \implies \exists$ finite subcover $\implies \exists B_1, B_2, \dots, E_N$ disjoint, $K \subset \bigcup_{i=1}^N 3B_i$.

$$\implies m(K) \le 3^d \sum_1^N m(B_i) \le 3^d n \sum_1^N \lambda(B_i) = 3^d n \lambda \left(\bigcap_1^N B_i\right) \le 3^d n \lambda(O) \le 3^d n \varepsilon \implies m(G_n \cap A) \le 3^d n \varepsilon.$$

Theorem 6.30 (LDT for regular Borel measures). Suppose ν is a regular Borel signed measure

on \mathbb{R}^d and $d\nu = d\lambda + f dm$, $\lambda \perp m \implies$ for Leb a.e. x, $\lim_{r \to 0} \frac{\nu(E_r)}{m(E_r)} = f(x)$ for every $E_r \rightarrow x$ nicely.

Proof. ν regular $\implies \lambda, f \, \mathrm{d}m$ are regular.

6.4 Monotone Differentiation Theorem

[Fol99, 3.5]

Definition 6.31. For $F : \mathbb{R} \to \mathbb{R}$ that is increasing, denote $F(x+) = \lim_{y \downarrow x} F(y) = \inf_{y > x} F(y), F(x-) = \lim_{y \uparrow x} F(y) = \sup_{y < x} F(y).$

Lemma 6.32. *F* is increasing $\implies D = \{x \mid F \text{ is discontinuous at } x\}$ is countable.

Proof. $x \in D \implies F(x+) > F(x-)$ since $F \nearrow$. For $x, y \in D, x \neq y \implies I_x, I_y$ disjoint. For each $x \in D$, let $I_x = (F(x-), F(x+)) \implies \exists f : D \to \mathbb{Q}$ is 1-1. I_x is open interval, not empty $\implies D$ is countable.

Theorem 6.33 (Monotone differentiation theorem). Suppose $F \nearrow \Longrightarrow$

- F is differentiable Lebesgue a.e.
- G(x) = F(x+) is differentiable Lebesgue a.e.
- G' = F' a.e.

Proof. G is increasing, right-continuous on $\mathbb{R} \implies \exists$ Lebesgue-Stieltjes measure μ_G on \mathbb{R} (so, regular).

$$\frac{G(x+h) - G(x)}{h} = \begin{cases} \frac{\mu_G((x,x+h])}{m((x,x+h])} & h > 0, \\ \frac{\mu_G((x+h,x])}{m((x+h,x])} & h < 0 \end{cases}$$

converges for Lebesgue a.e x by LDT. So G' exists a.e.

Let $H(x) = G(x) - F(x) \ge 0$. We have

 ${x \mid H(x) > 0} \subset {x \mid x \text{ is discontinuous at } x}.$

So $\{x \mid H(x) > 0\}$ it is countable. Denote the set as $\{x_n\}$.

Let $\mu = \sum_{n} H(x_n) \delta_{x_n}$. Then

$$\mu((-N,N)) = \sum_{x_n \in (-N,N)} H(x_n) \stackrel{check}{\leq} G(N) - F(-N) < \infty.$$

Yiwei Fu

So μ is a locally finite Borel measure on $\mathbb{R} \implies \mu$ is regular. Hence

$$\left|\frac{H(x+h)-H(x)}{h}\right| \leq \frac{H(x+h)+H(x)}{|h|} \leq 4 \frac{\mu((x-2h,x+2h))}{4|h|} \xrightarrow{\operatorname{LDT},\mu\perp m} 0$$

for Lebesgue a.e. x.

So *H* is differentiable a.e and H' = 0 a.e.

Proposition 6.34. $F \nearrow \Longrightarrow \int_{a}^{b} F'(x) \, \mathrm{d}x \le F(b) - F(a).$

Example 6.35.

•
$$F(x) = \begin{cases} 0 & x \le 0 \\ 1 & x > 0 \end{cases}$$
. $F'(x) = 0$ a.e and $\int_{-1}^{1} F'(x) \, \mathrm{d}x = 0 < F(1) - F(-1) = 1$.

• F(x) Cantor function. F'(x) = 0 a.e. and $\int_0^1 F'(x) \, dx = 0 \le F(1) - F(0) = 1$.

6.5 Functions of Bounded Variation

Definition 6.36. For $F : \mathbb{R} \to \mathbb{R}$, the total variation function of F is $T_F : \mathbb{R} \to [0, \infty]$,

$$T_F(x) = \sup\left\{\sum_{i=1}^n |F(x_i) - F(x_{i-1})| \mid n \in \mathbb{N}, -\infty < x_0 < x_1 < \ldots < x_n = x\right\}.$$

Lemma 6.37. *For a* < *b,*

$$T_F(b) = T_F(a) + \sup\left\{\sum_{i=1}^n |F(x_i) - F(x_{i-1})| \mid n \in \mathbb{N}, a = x_0 < x_1 < \dots < x_n = b\right\}$$

Note that T_F is increasing.

Definition 6.38. $F \in BV$ (F is of bounded variation) means $T_F(\infty) = \lim_{x\to\infty} T_F(x) < \infty$.

 $F \in BV([a, b])$ means $\sup \left\{ \sum_{1}^{N} |F(x_i) - F(x_{i-1})| \mid a = x_0 < x_1 < \ldots < x_n = b \right\} < \infty$. Note that $F \in BV \implies F$ is bounded.

Example 6.39.

(a) $F(x) = \sin x \notin BV, \in BV([a, b]).$

(b)
$$F(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0\\ 1 & x = 0 \end{cases} \notin BV([a, b]) \text{ for } a < 0 < b.$$

(c)
$$F, G \in BV \implies \alpha F + \beta G \in BV.$$

- (d) $F \nearrow$ and bounded $\implies F \in BV$.
- (e) F Lipschitz on $[a, b] \implies F \in BV([a, b])$. (Lipschitz $\implies \exists M \ge 0 \ s.t. \ |F(x) F(y)| \le M|x y|, \forall x, y.$)
- (f) *F* differentiable, *F'* bounded on $[a, b] \implies F \in BV([a, b])$.

(g)
$$F(x) = \int_{-\infty}^{x} f(t) \in L^{1}(\mathbb{R}) \implies F \in \text{BV since}$$

$$\sum_{1}^{N} |F(x_{i}) - F(x_{i-1})| \le \sum_{1}^{N} \int_{x_{i-1}}^{x_{i}} |f(t)| \, \mathrm{d}t = \int_{x_{0}}^{x} |f(t)| \, \mathrm{d}t \le \int_{-\infty}^{\infty} |f(t)| \, \mathrm{d}t < \infty.$$

Definition 6.40. NBV = { $G \in BV | G$ right-continuous, $G(-\infty) = 0$ }.

Example 6.41.

- (a) $F \nearrow$, bounded, right-continuous, $F(-\infty) = 0$.
- (b) $F(x) = \int_{-\infty}^{x} f(t) dt, f \in L^{1}(\mathbb{R})$. (Midterm $\implies F$ is uniformly continuous.)

Lemma 6.42. $F \in BV$ and right-continuous $\implies T_F \in NBV$.

Proof.
$$T_F \nearrow$$
, bounded $\implies T_F \in BV, T_F(-\infty) = 0$. Is T_F right-continuous?
Suppose it is not. $\exists a \in \mathbb{R} \ s.t. \ c := T_F(a+) - T_F(a) > 0$. Fix $\varepsilon > 0$. Since $F(x)$ and $g(x) := T_F(x+)$ are right continuous, $\exists \delta > 0 \ s.t.$

$$|F(y) - F(a)| < \varepsilon, \quad |g(y) - g(a)| < \varepsilon \quad \forall y \in (a, a + \delta].$$

So $T_F(y) - T_F(a+) \le T_F(y+) - T_F(a+) < \varepsilon$. $\exists a = x_0 < x_1 < x_2 < \dots < x_n = a + \delta \ s.t.$

$$\sum_{i=1}^{n} |F(x_i) - F(x_{i-1})| \ge T_F(a+\delta) - T_F(a) - \frac{c}{4}$$
$$\ge T_F(a+) - T_F(a) - \frac{c}{4} = \frac{3}{4}c$$

This shows that $\sum_{i=2}^{n} |F(x_i) - F(x_{i-1})| \geq \frac{3}{4}c - \varepsilon$ since

Consider $[a, x_1]$. $\exists a = t_0 < t_1 < \ldots < t_k = x_1 \ s.t.$

$$\sum_{i=1}^{k} |F(t_i) - F(t_{i-1})| \ge T_F(x_1) - T_F(a) - \frac{c}{4} \ge \frac{3}{4}c.$$

So we can write $[a, a + \delta] = [a, x_1] \cup [x_1, a + \delta]$. So

$$\varepsilon + c \ge T_F(a+\delta) - T_F(a+) + T_F(a+) - T_F(a)$$

$$= T_F(a+\delta) - T_F(a)$$

$$\ge \sum_{j=1}^k |F(t_j) - F(t_{j-1})| + \sum_{i=2}^n |F(x_i) - F(x_{i-1})| \ge \frac{3}{4}c - \varepsilon + \frac{3}{4}c = \frac{3}{2} - \varepsilon$$

$$\implies c \le 4\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we conclude that c = 0, a contradiction.

Corollary 6.43. $F \in \text{NBV} \iff F = F_1 - F_2, F_1, F_2 \in \text{NBV} and \nearrow$.

Proof. Write $F = \frac{T_F + F}{2} - \frac{T_F - F}{2}$. $T_F(x_1) - T_F(x_2) \ge$ total variation of F on $(x_1, x_2) \ge |F(x_1) - F(x_2)|$ so both functions are increasing.

Theorem 6.44.

- (a) μ is a finite signed Borel measure on $\mathbb{R} \implies F(x) := \mu((-\infty, x]) \in \text{NBV}$.
- (b) $F \in \text{NBV} \implies \exists!$ finite signed Borel measure μ_F on \mathbb{R} satisfying $\mu((-\infty, x]) = F(x)$.
- *Proof.* (a) $\mu = \mu^+ \mu^- \implies F = F^+ F^-, F^{\pm}(x) = \mu^{\pm}((-\infty, x])$ is increasing, bounded, right-continuous, and $F^{\pm}(-\infty) = 0$.
 - (b) $F \in \text{NBV} \implies F = F_1 F_2, F_1, F_2 \in \text{NBV}$ and are increasing. So $\exists \mu_{F_1}, \mu_{F_2}$ Lebesgue-Stieltjes measure. $\mu_F := \mu_{F_1} - \mu_{F_2}$. Uniqueness is left for homework.

Proposition 6.45. *Let* $F \in NBV$ *. Then*

- (a) F is differentiable a.e, $F \in L^1(\mathbb{R}, m)$.
- (b) $d\mu_F = d\lambda + F' dm, \lambda \perp m.$
- (c) $\mu_F \perp m \iff F' = 0$ Lebesgue a.e.
- (d) $\mu_F \ll m \iff \int_{-\infty}^x F'(t) \, \mathrm{d}t = F(x).$

(d) $\mu_F \ll m \iff \lambda = 0 \iff d\mu_F = F' dm \iff \mu_F = \int_E F' dm, \forall E \text{ Borel} \iff F(x) = \int_{-\infty}^x F'(t) dt, \forall x \in \mathbb{R}.$ (by uniqueness)

6.6 Absolutely Continuous Functions

Definition 6.46. $F : \mathbb{R} \to \mathbb{R}$ is absolutely continuous ($F \in AC$) means $\forall \varepsilon > 0, \exists \delta > 0 \ s.t.$ if $(a_1, b_1), \ldots, (a_N, b_N)$ are *disjoint* open intervals satisfying $\sum_{n=1}^{N} (b_n - a_n) < \delta$, then $\sum_{n=1}^{N} |F(b_n) - F(a_n)| < \varepsilon.$

Lemma 6.47. (a) $F \in AC \implies F$ is uniformly continuous.

(b) F is Lipschitz $\implies F \in AC$. (c) $F(x) = \int_{\infty}^{x} f(t) dt, f \in L^{1} \implies F \in AC$.

Proof.

$$\sum_{n=1}^{N} |F(b_n) - F(a_n)| = \sum_{1}^{N} \left| \int_{a_n}^{b_n} f(t) \, \mathrm{d}t \right| \le \sum_{1}^{N} \int_{a_n}^{b_n} |f(t)| \, \mathrm{d}t = \int_{E} |f| \, \mathrm{d}m$$

where $E = \bigcup_{1}^{N} (a_n, b_n)$. By midterm Q1, If $f \in L^1(X, \mu)$ then $\forall \varepsilon > 0, \exists \delta > 0 \ s.t. \ \mu(E) < \delta \implies \int_E |f| < \varepsilon$.

The inverse of (a) is not always true. The Cantor function C(x) is uniformly continuous but $C \notin AC$.

Proposition 6.48. Suppose $F \in \text{NBV}$. Then $F \in \text{AC} \iff \mu_F \ll m$.

Corollary 6.49. $F \in \text{NBV} \cap \text{AC} \iff F(x) = \int_{\infty}^{x} f(t) \, dt$ for some $f \in L^{1}(\mathbb{R}, m)$. If this holds, f = F' Lebesgue a.e.

Lemma 6.50. $F \in AC([a, b]) \implies F \in NBV([a, b]).$

Proof. Check. (read the textbook)

Theorem 6.51 (Fundamental theorem of Calculus). *For* $F : [a, b] \rightarrow \mathbb{R}$ *, TFAE:*

(a) $F \in AC([a, b]),$ (b) $F(x) - F(a) = \int_{a}^{x} f(t) dt$ for some $f \in L^{1}([a, b], m),$

Proof of Prop. \Leftarrow : Suppose $\mu_F \ll m$. Then $F(x) = \int_{-\infty}^x F'(t) dt, F' \in L^1 \implies F \in AC.$ \implies : Suppose $F \in AC$.

Note: since F is continuous, $\mu_F((a, b]) = \lim_{n \to \infty} \mu_F\left(\left(a, b - \frac{1}{n}\right)\right) = \lim_{h \to \infty} F\left(b - \frac{1}{n}\right) - F(a) = F(b) - F(a).$

Let *E* be a Borel set with m(E) = 0. Fix $\varepsilon > 0$. Let $\delta > 0$ be the constant from $F \in AC$. Since *m* and μ_F are *regular*,

$$\exists \text{ open } U_1 \supset U_2 \supset \ldots \supset E \text{ s.t. } \lim_{n \to \infty} m(U_n) = m(E) = 0,$$

$$\exists \text{ open } V_1 \supset V_2 \supset \ldots \supset E \text{ s.t. } \lim_{n \to \infty} \mu_F(V_n) = \mu_F(E).$$

Let $O_n = U_n \cap V_n$. O_n is open and $O_1 \supset O_2 \supset \ldots \supset E$. Then

$$\lim_{n \to \infty} m(O_n) = m(E) = 0, \quad \lim_{n \to \infty} \mu_F(O_n) = \mu_F(E) \text{ (think about it)}.$$

WLOG, we may assume $m(O_1) < \delta$. Each $O_n = \bigcup_{k=1}^{\infty} (a_k^n, b_K^n)$ disjoint, $\sum_{k=1}^{N} (b_k^n, a_k^n) \le m(O_n) \le m(O_1) \le \delta \implies$

$$\mu_F\left(\bigcup_{k=1}^N (a_k^n, b_K^n)\right) = \sum_{k=1}^N \mu_F(a_k^n, b_K^n) = \sum_{k=1}^N F(b_k^n) - F(a_k^n).$$

Take the absolute value we have

$$\left|\mu_F\left(\bigcup_{k=1}^N (a_k^n, b_K^n)\right)\right| \le \sum_{k=1}^N |F(b_k^n) - F(a_k^n)| < \varepsilon.$$

Hence

$$|\mu_F(O_n)| = \lim_{n \to \infty} \left| \mu_F\left(\bigcup_{k=1}^N (a_k^n, b_K^n)\right) \right| \le \varepsilon \implies |\mu_F(E)| = \lim_{n \to \infty} |\mu_F(O_n)| \le \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary we conclude that $\mu_F(E) = 0$.

Definition 6.52. Suppose μ a finite signed Borel measure on \mathbb{R} .

- μ is a *discrete* measure means \exists countable set $\{x_n\}$ and $c_n \neq 0$ *s.t.* $\sum_{1}^{\infty} c_n < \infty$ and $\mu = \sum_n c_n \delta_{x_n}$.
- μ is a *continuous* measure means $\mu(\{a\}) = 0, \forall a \in \mathbb{R}$.

- (b) μ discrete $\implies \mu \perp m$.
- (c) $\mu \ll m \implies \mu$ is continuous.

Corollary 6.54. *Suppose* μ *is finite signed Borel measure on* \mathbb{R} *. Then* μ *can be uniquely written as*

$$\mu = \mu_d + \mu_{ac} + \mu_{sc}$$

where $\mu_{ac} \in AC$ and μ_{sc} is singularly continuous (continuous and $\perp m$).

Chapter 7

Hilbert Spaces

[Fol99, 5.5]

7.1 Inner Product Spaces

Definition 7.1. Suppose *V* a (complex) vector space. An *inner product* is $\langle, \rangle, V \times V \to \mathbb{C}$ such that

- (a) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$,
- (b) $\langle x, y \rangle = \overline{\langle y, x \rangle}$,
- (c) $\langle x,x\rangle\in [0,\infty)$,
- (d) $\langle x, x \rangle = 0 \iff x = 0.$

Note that $\langle x, \alpha y + \beta z \rangle = \bar{\alpha} \langle x, y \rangle + \bar{\beta} \langle x, z \rangle$.

Example 7.2. • \mathbb{R}^d , $\langle x, y \rangle = x \cdot y = \sum_{i=1}^d x_i y_i$

- $\mathbb{C}^d, \langle x, y \rangle = x \cdot y = \sum_1^d x_i \bar{y}_i.$
- $L^2(X,\mu), \langle f,g \rangle = \int_X f\bar{g} \,\mathrm{d}\mu.$ (Note: by Hölder, $\left|\int f\bar{g}\right| \le \|f\bar{g}\|_1 \le \|f\|_2 \,\|g\|_2$)
- $\ell^2, \langle x, y \rangle = \sum_{1}^{\infty} x_i y_i.$

Definition 7.3. $||x|| = \sqrt{\langle x, x \rangle}$. Does it satisfy triangle inequality?

 $\left\|x+y\right\|^{2} = \langle x,x\rangle + \langle x,y\rangle + \langle y,x\rangle + \langle y,y\rangle = \left\|x\right\|^{2} + 2\operatorname{Re}\left\langle x,y\right\rangle + \left\|y\right\|^{2}.$

Theorem 7.4 (Cauchy-Schwarz Inequality). $|\langle x, y \rangle| \leq ||x|| ||y||$.

Proof. Clearly if $\langle x, y \rangle = 0$. Assume that $\langle x, y \rangle \neq 0$.

$$\forall \alpha \in \mathbb{C}, 0 \le \|\alpha x - y\|^2 = |\alpha|^2 \|x\|^2 - 2\operatorname{Re} \alpha \langle x, y \rangle + \|y\|^2. \text{ Write } \langle x, y \rangle = |\langle x, y \rangle |e^{i\theta}.$$

$$\text{Let } \alpha = e^{-i\theta}t, t \in \mathbb{R}. \text{ Then } 0 \le \|x\|^2 t^2 - 2|\langle x, y \rangle |t + \|y\|^2, \forall t \in \mathbb{R}. \text{ Hence } 4|\langle x, y \rangle |^2 - 4\|x\|^2 \|y\|^2 \le 0.$$

Corollary 7.5. $||x + y|| \le ||x|| + ||y||$. As a consequence, $||x|| = \sqrt{\langle x, x \rangle}$ is a norm.

Proof.
$$||x + y||^2 = ||x||^2 + 2 \operatorname{Re} \langle x, y \rangle + ||y||^2 \le ||x||^2 + 2 ||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

Theorem 7.6 (Parallelogram law). Let V be a normed space. Then, $\|\cdot\|$ is induced by an inner product $\iff \|x+y\|^2 + \|x-y\|^2 = 2 \|x\|^2 + 2 \|y\|^2, \forall x, y \in V.$

Proof. \implies : Follows from $||x \pm y|| = ||x||^2 \pm 2 \operatorname{Re} \langle x, y \rangle + ||y||^2$.

 \Leftarrow : Let

$$\langle x, y \rangle = \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 + i \|x+iy\|^2 - i \|x-iy\|^2 \right)$$

and check that it is a inner product.

Example 7.7. $L^p(\mathbb{R}, m), f = 1_{(0,1)}, g = 1_{(1,2)}$. For $p \neq 2$, the parallelogram law fails.

Lemma 7.8. Let V be an inner product space. If $X_n \to X$ strongly (i.e. $\lim_{n\to\infty} ||x_n - x|| = 0$.) Then $X_n \to X$ weakly (i.e. $\forall y \in V, \lim_{n\to\infty} \langle x_n - x, y \rangle = 0$.)

Proof. $|\langle x_n - x, y \rangle| \le ||x_n - x|| ||y||.$

Example 7.9. ℓ^2 , $x_n = (0, \ldots, 0, 1(n-\text{th}), 0, \ldots)$. Fix $y = \ell^2$. Then $\langle x_n, y \rangle = \overline{y_n} \to 0$ as $n \to \infty$ since $\sum_{1}^{\infty} |y_n|^2 < \infty$.

Thus, $x_n \to 0$ weakly. But $||x_n - 0|| = ||x_n|| = 0$ so $x_n \not\to 0$ strongly.

7.2 Orthonormal Basis

Definition 7.10. *x*, *y* are called orthogonal $(x \perp y)$ if $\langle x, y \rangle = 0$.

Lemma 7.11 (Pythagorean theorem).

$$x_1, \dots, x_n \in V, \langle x_i, x_j \rangle = 0, \forall i \neq j \implies ||x_1 + \dots + x_n||^2 = ||x_1||^2 + \dots + ||x_n||^2.$$

Definition 7.12. $\{e_k\}$ is an orthonormal set is $\langle e_m, e_n \rangle = \begin{cases} 0 & m \neq n \\ 1 & m = n \end{cases}$.

.

Lemma 7.13 (Best approximation). Let e_1, \ldots, e_n orthonormal vectors. For $x \in V$, let $\alpha_i = \langle x, e_i \rangle$, $i = 1, \ldots, N$. Then

$$\left\|x - \sum_{i=1}^{N} \alpha_i e_i\right\| \le \left\|x - \sum_{i=1}^{N} \beta_i e_i\right\|, \quad \forall \beta_1, \dots, \beta_N \in \mathbb{C}.$$

Proof. Let $z = x - \sum_{1}^{N} \alpha_{i} e_{i}, w = \sum_{1}^{N} (\alpha_{i} - \beta_{i}) e_{i}$. $\forall n = 1, \dots, N, \langle z, e_{n} \rangle = \langle x, e_{n} \rangle - \alpha_{n} = 0 \implies \langle z, w \rangle = 0 \implies ||z + w||^{2} = ||z||^{2} + ||w||^{2} \ge ||z||^{2}$.

Lemma 7.14. Suppose $\{e_i\}_{1}^{\infty}$ orthonormal set. For $x \in V$, let $\alpha_i = \langle x, e_i \rangle$. Then

- (a) $||x||^2 = \left||x \sum_{i=1}^{N} \alpha_i e_i\right||^2 + \sum_{i=1}^{N} |\alpha_i|^2, \forall N \in \mathbb{N}.$
- (b) $\sum_{1}^{\infty} |\alpha_i|^2 \le ||x||^2$. (Bassel's inequality)

Proof. (a) We have

$$\begin{aligned} \left\| x - \sum_{i=1}^{N} \alpha_{i} e_{i} \right\| &= \left\| x \right\|^{2} - 2 \operatorname{Re} \left\langle x, \sum_{i=1}^{N} \alpha_{i} e_{i} \right\rangle + \left\| \sum_{i=1}^{N} \alpha_{i} e_{i} \right\|^{2} \\ &= \left\| x \right\|^{2} - 2 \sum_{i=1}^{N} \operatorname{Re} \overline{\alpha_{i}} \left\langle x, e_{i} \right\rangle + \left\| \sum_{i=1}^{N} \alpha_{i} e_{i} \right\|^{2} \\ &= \left\| x \right\|^{2} - \sum_{i=1}^{N} |\alpha_{i}|^{2}. \end{aligned}$$

(b) follows from (a).

Definition 7.15. An orthonormal set $\{e_i\}$ is said to be an orthonormal basis of V if $\overline{W} = V$ where $W = \{\sum_{i=1}^{n} \beta_i e_i \mid N \in \mathbb{N}, \beta_1, \dots, \beta_N \in \mathbb{C}\} = \{$ finite linear combinations of $\{e_i\}\}$ i.e. $\forall x \in V, \forall \varepsilon > 0, \exists w \in W \ s.t. \ ||x - w|| < \varepsilon.$

Example 7.16. \mathbb{C}^d , $e_i = (0, \dots, 0, 1, 0, \dots, 0)$, $i = 1, \dots, d$ and ℓ^2 , $e_i = (0, \dots, 0, 1, 0, \dots)$, $i = 1, 2, \dots$

Definition 7.17. A Hilbert space is an inner product space that is complete.

Example 7.18. \mathbb{R}^d , \mathbb{C}^d , $L^2(X, \mathcal{A}, \mu)$, ℓ^2 .

 $C([0,1]) \subset L^2([0,1],m)$ is not closed, so it is not a Hilbert space.

Theorem 7.19. Let \mathcal{H} be a Hilbert space. Let $\{e_i\}_{i=1}^{\infty}$ be an orthonormal set. TAFE:

- (a) $\{e_i\}_{i=1}^{\infty}$ is an orthonormal basis.
- (b) $x \in \mathcal{H}$ and $\langle x, e_i \rangle = 0, \forall i \implies x = 0.$

(c) $x \in \mathcal{H} \implies S_N := \sum_{i=1}^N \alpha_i e_i \to x \text{ strongly where } \alpha_i = \langle x, e_i \rangle.$ (d) $x \in \mathcal{H} \implies ||x||^2 = \sum_{i=1}^\infty |\alpha_i|^2.$ (Plancherel identity)

Proof. (c) \implies (d): $\|x\| = \|x - s_N\|^2 + \sum_1^N \|\alpha_i\|^2$. Since $S_N \to x$ strongly we have $\|x\| = \lim_{N \to \infty} \sum_1^N \|\alpha_1\|^2$. (d) \implies (a): $\|x\| = \|x - s_N\|^2 + \sum_1^N \|\alpha_i\|^2$ taking limit of both sides we have $0 = \lim_{N \to \infty} \|x - s_N\|^2$.

(a) \implies (b): Fix $x \in \mathcal{H}$. Fix $\varepsilon > 0$. Then, by (a), $\exists y \in \left\{\sum_{1}^{N} \beta_{i} e_{i}\right\} s.t. ||x - y|| < \varepsilon$. By the best approximation lemma, $||x - s_{k}|| \le ||x - y|| < \varepsilon$. If $\langle x, e_{i} \rangle = 0, \forall i$, then $s_{k} = 0$. Thus, $||x|| = ||x - S_{k}|| < \varepsilon$. Since $\varepsilon > 0$ arbitrary, ||x|| = 0.

(b) \implies (c): Bessel $\implies \sum_{1}^{\infty} |\alpha_i| \le ||x|| < \infty.$

$$||S_N - S_M||^2 = \left\|\sum_{i=M+1}^N \alpha_i e_i\right\|^2 \sum_{i=M+1}^N \alpha_i|^2 \to 0 \text{ as } N > M \to \infty.$$

So $\{S_N\}_{N=1}^{\infty}$ is a Cauchy sequence in \mathcal{H} . Since \mathcal{H} is complete, $\exists y \in \mathcal{H}$ such that $\lim_{N\to\infty} ||S_n - y|| = 0$ i.e. $S_n \to y$ strongly. Is y = x?

Fix $i \in \mathbb{N}$, $\langle y - x, e_i \rangle = \langle y - S_n, e_i \rangle + \langle S_n - x, e_i \rangle = \alpha_i - \langle x, e_i \rangle = 0$ (if N > i). So for N > i, $\langle y - x, e_i \rangle = \langle y - S_n, e_i \rangle \implies \langle y - x, e_i \rangle$ as $N \to 0$. (Since $S_n \to y$ strongly $\implies S_n \to y$ weakly)

By (b) we have $y - x = 0 \iff y = x$.

Corollary 7.20 (Parseval). $\langle x, y \rangle = \sum_{1}^{\infty} \alpha_n \overline{\beta_n}$.

Definition 7.21. A metric space is called *separable* if \exists countable dense subset.

Definition 7.22. $\mathbb{Q}^d \subset \mathbb{R}^d$. $\ell^p, 1 \leq p < \infty$ not $p = \infty$. $L^p(\mathbb{R}, m), 1 \leq p < \infty$ not $p = \infty$.

Proposition 7.23. Every separable Hilbert space has a countable orthonormal basis.

Proof. Gram-Schmidt process.

Every vector space has a basis, but need to use Zorn's lemma.

Chapter 8

Intro to Fourier Analysis

8.1 Fourier Series

Lemma 8.1. $e_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx} = \frac{1}{\sqrt{2\pi}}(\cos(nx) + i\sin(nx))_{n \in \mathbb{Z}}$ is an orthonormal set in $\mathcal{H} = L^2([-\pi,\pi]).$

Proof. Direct check.

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(m-n)x} \, \mathrm{d}x = \begin{cases} 1 & m=n\\ 0 & m \neq n \end{cases}.$$

Question: is $\{e_n\}$ an orthonormal basis?

In $L([-\pi,\pi])$, we have

$$\|f\|_{1} = \int_{-\pi}^{\pi} |1| |f(x)| \le \|1\|_{2} \|f\|_{2} = \frac{1}{\sqrt{2\pi}} \|f\|_{2} \le 2\pi \|f\|_{\infty}$$

Definition 8.2. For $F \in L^1([-\pi,\pi])$, its Fourier coefficients are

$$\hat{f}_n = \langle f, e_n \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(y) e^{-iny} \, \mathrm{d}y$$

We want to have

$$\sum_{n=-M}^{N} \hat{f}_{n} e_{n}(x) = \frac{1}{2\pi} \sum_{n=-M}^{N} \left[\int_{-\pi}^{\pi} f(y) e^{-iny} \, \mathrm{d}y \right]$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \left(\sum_{n=-M}^{N} e^{-in(x-y)} \right) \, \mathrm{d}y \xrightarrow{M, N \to \infty}_{\text{in } L^{2}??} f(x).$$

Definition 8.3 (Poisson Kernel). For $0 \le r < 1$,

$$P_r(t) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} e^{int} r^{|n|} = \frac{1-r^2}{2\pi (1-2r\cos t + r^2)}$$

Lemma 8.4. For $f \in L^1([-\pi, \pi])$ and $0 \le r < 1$, $\sum_{-\infty}^{\infty} \hat{f}_n e_n(x) r^{|n|}$ converges absolutely and uniformly for $x \in [-\pi, \pi]$, and is equal to

$$\int_{-\pi}^{\pi} P_r(x-y) f(y) \, \mathrm{d}y.$$

Proof.

$$\sum_{-\infty}^{\infty} \left[\int_{-\pi}^{\pi} \left| f(y) e^{-int} \right| \, \mathrm{d}y \right] |e_n(x)| \, r^{|n|} = \frac{\|f\|_1}{2\pi} \sum_{-\infty}^{\infty} r^{|n|} < \infty.$$

Thus, Fubini's theorem applies. Now

$$\sum_{-\infty}^{\infty} \left[\int_{-\pi}^{\pi} |f(y)e^{-int}| \, \mathrm{d}y \right] |e_n(x)|r^{|n|} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \left(\sum_{n=-M}^{N} e^{-in(x-y)} r^{|n|} \right) \, \mathrm{d}y$$
$$= \int_{-\pi}^{\pi} P_r(x-y) f(y) \, \mathrm{d}y.$$

Need to check a bit more about uniform convergence.

NOTE
$$P_r(0) = \frac{1 - r^2}{2\pi (1 - r)^2} = \frac{1 + r}{2\pi (1 - r)} \to \infty \text{ as } r \nearrow 1.$$

Lemma 8.5. $P_r(t)$ form a "family of good kernels" i.e.

(a)
$$P_r(t) \ge 0$$

(b) $\int_{-\pi}^{\pi} P_r(t) dt = 1$
(c) $\forall \delta > 0, \lim_{r \ge 1} \int_{[-\pi,\pi] \setminus [-\delta,\delta]} P_r(t) dt = 0.$

Proof. (b) 1st formula; (a), (c) 2nd formula.

$$\int_{[-\pi,\pi]\setminus[-\delta,\delta]} P_r(t) \, \mathrm{d}t \le \frac{1-r^2}{2\pi(1-2r\cos\delta+r^2)} 2\pi \xrightarrow{r\nearrow 1} 0.$$

Lemma 8.6. For $f \in C([-\pi, \pi])$ satisfying $f(-\pi) = f(\pi)$, then

$$\lim_{r \nearrow 1} \int_{-\pi}^{\pi} P_r(x-y) f(y) \, \mathrm{d}y = f(x)$$

uniformly for $x \in [-\pi, \pi]$ *.*

Proof. Extend f to $f : \mathbb{R} \to \mathbb{R}$ where $f(x + 2\pi) = f(x)$. So f is uniformly continuous and bounded.

$$\int_{-\pi}^{\pi} P_r(x-y)f(y) \, \mathrm{d}y - f(x) = \int_{-\pi}^{\pi} P_r(y)f(x-y) \, \mathrm{d}y - f(x) \int_{-\pi}^{\pi} P_r(y) \, \mathrm{d}y$$
$$= \int_{-\delta}^{\delta} P_r(y)(f(x-y) - f(x)) \, \mathrm{d}y$$
$$+ \int_{[-\pi,\pi] \setminus [-\delta,\delta]} P_r(y)(f(x-y) - f(x)) \, \mathrm{d}y.$$

Theorem 8.7. $\left\{e_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}\right\}$ is an orthonormal basis of $L^2([-\pi, -\pi])$.

Proof. Let $f \in L^2([-\pi, \pi])$. Fix $\varepsilon > 0$. $\exists g \in C([-\pi, \pi])$ with $g(\pi) = g(-\pi) \ s.t. \ \|f - g\|_2 < \frac{\varepsilon}{3}$ (why?) Let $g_r(x) = \int_{-\pi}^{\pi} P_r(x - y)g(y) \ dy$. By 8.6, $\exists r \in [0, 1) \ s.t. \ \|g_r - g\|_{\infty} < \frac{\varepsilon}{3\sqrt{2\pi}}$. So $\|g_r - g\| < \frac{\varepsilon}{3}$. Let $g_r(x) = \sum_{n=1}^{N} \hat{g}_n \ e_n(x) r^{|n|}$ By 8.4, $\exists N \in \mathbb{N} \ s.t. \ \|g_n - g\|_{\infty} < \frac{\varepsilon}{3\sqrt{2\pi}}$. Thus

Let $g_{r,N}(x) = \sum_{-N}^{N} \hat{g_n} e_n(x) r^{|n|}$. By 8.4, $\exists N \in \mathbb{N} \ s.t. \ \|g_{r,N} - g_r\|_{\infty} < \frac{\varepsilon}{3\sqrt{2\pi}}$. Thus $\|g_{r,N} - g_r\|_2 < \frac{\varepsilon}{3}$.

Hence, $\|f - g_{r,N}\|_2 1 < \varepsilon$.

Example 8.8 (Plancherel identity). $||f||^2 = \sum_{-\infty}^{\infty} |\hat{f}_n|^2$.

$$f(x) = x, \hat{f}_n = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} x e^{-inx} \, \mathrm{d}x \begin{cases} 0 & n = 0\\ \frac{(-1)^n i \sqrt{2\pi}}{n} & n \neq 0 \end{cases}$$

So the identity becomes

$$\sum_{1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Example 8.9 (Isoperimetric inequality). Suppose $(x(t), y(t)), t \in [-\pi, \pi]$ is a parametric curve in \mathbb{R}^2 that is

- (a) closed: $(x(-\pi), y(-\pi)) = (x(\pi), y(\pi)),$
- (b) smooth: x, y are C^1 functions,
- (c) simple.

Suppose

$$L = \int_{-\pi}^{\pi} \sqrt{x'(t)^2 + y'(t)^2} \, \mathrm{d}t = 2\pi.$$

What is the largest area A encloses?

By Green's theorem ($\oint_C P \, dx - Q \, dy = \iint_D (Q_x - P_y) \, dA$),

$$A = \frac{1}{2} \oint (x \, \mathrm{d}y - y \, \mathrm{d}x) = \frac{1}{2} \oint (x(t)y'(t) - x(t)y'(t)) \, \mathrm{d}t.$$

Arc length parametrization so that $x'(t)^2 + y'(t)^2 = 1$ for all t. Then the condition $L = 2\pi$ can be written as

$$L = \int_{-\pi}^{\pi} \left(x'(t)^2 + y'(t)^2 \right) \, \mathrm{d}t = 2\pi$$

Rewrite using $z(t) = x(t) + iy(t), t \in [-\pi, \pi]$ subject to

$$\int_{-\pi}^{\pi} \|z'(t)\|^2 \, \mathrm{d}t = 2\pi,$$

find the max of

$$A = \frac{1}{4i} \int_{-\pi}^{\pi} \left(\overline{z(t)} z'(t) - z(t) \overline{z'(t)} \right) \, \mathrm{d}t$$

Note that $z \in C^1$ and $z(-\pi) = z(\pi)$. Denote $\hat{z}_n = \alpha_n$. Now, $\widehat{(z')}_n = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} z'(t) e^{-int} dt = in\alpha_n$ (integrate by parts). By Plancherel, the *L* constraint becomes

$$\sum_{-\infty}^{\infty} |in\alpha_n|^2 = 2\pi.$$

By Parseval, the A object becomes

$$A = \frac{1}{4i} \sum_{-\infty}^{\infty} \overline{\alpha_n}(in\alpha_n) - \alpha_n \overline{(in\alpha_n)} = \frac{1}{2} \sum_{-\infty}^{\infty} n|\alpha_n|^2.$$

The question now becomes the max of $\frac{1}{2}\sum_{-\infty}^{\infty}n|\alpha_n|^2$ subject to $\sum_{-\infty}^{\infty}n^2|\alpha_n|^2=2\pi$.

Show that $2\pi - \sum_{-\infty}^{\infty} n |\alpha_n|^2$ is nonnegative $\iff \sum_{-\infty}^{\infty} (n^2 - n) |\alpha_n|^2$ is nonnegative, which is obvious.

 $A = \pi \iff \text{the equality holds} \iff \alpha_n = 0 \text{ for } n \neq 0, 1 \iff z(t) = \alpha_0 + \alpha_1 e_1(t) \iff z(t) = \alpha_0 + \alpha_1 e^{-it} \iff |z(t) - \alpha_0| = |\alpha_1|, \text{ which is a circle.}$

This beautiful proof is by Hurwitz.

Books: Fourier Series & Integrals, Dym & McKean.

Bibliography

- [Fol99] G. B. Folland. *Real Analysis: Modern Techniques and Their Applications*. Pure and Applied Mathematics. Wiley, New York, 2nd ed edition, 1999. "A Wiley-Interscience publication.".
- [RF10] H. L Royden and P. M Fitzpatrick. Real Analysis. Prentice Hall, Boston, 2010.
- [Tao11] Terence Tao. *An Introduction to Measure Theory*. Number v. 126 in Graduate Studies in Mathematics. American Mathematical Society, Providence, R.I, 2011.