Notes for Math 597 – Real Analysis

Yiwei Fu

WN 2022

Contents

Office hour is Mon 12:30 - 1:30, Tue 12:30 - 1:30 in person EH 5838, Th 1 - 2 online.

Chapter 1

Abstract Measure

1.1 σ**-Algebra**

Definition 1.1. Let *X* be a set. A collection *M* of subsets of *X* is called a σ -algebra on *X* if

- $\emptyset \in \mathcal{M}$.
- *M* is closed under *complements*: $E \in \mathcal{M} \implies E^c \in \mathcal{M}$.
- *M* is closed under *countable unions*: $E_1, E_2, ... \in M \implies \bigcup_{i=1}^{\infty} E_i \in M$.

SIMPLE PROPERTIES:

- $X = \emptyset^c \in \mathcal{M}$.
- $\bigcap_{i=1}^{\infty} E_i = \left(\bigcup_{i=1}^n E_i^c\right)^c \in \mathcal{M}$. It is closed under countable intersections.
- $\bigcup_{i=1}^N E_i = E_i \cup \ldots \cup E_n \cup \emptyset \cup \ldots$. It is closed under finite unions (similarly, intersections). sigma
- $E \setminus F = E \cap F^c \in \mathcal{M}, E \triangle F = (E \cap F^c) \cup (F \cap E^c) \in \mathcal{M}.$

Example 1.2. (a) $A = \mathcal{P}(X)$ power algebra.

- (b) $A = \{ \emptyset, X \}$ trivial algebra.
- (c) Let $B \subset X, B \neq \emptyset, B \neq X.A = \{\emptyset, B, B^c, X\}.$

Lemma 1.3. *(An intersection of* σ *-algebras is a* σ *-algebra) Let* $A_{\alpha}, \alpha \in I$ *, be a family a* σ algebras of X. Then $\bigcap_{\alpha \in I} A_\alpha$ is a σ -algebra. (I can be uncountable.)

Proof. DIY

Definition 1.4. For $\mathcal{E} \subset \mathcal{P}(X)$ (not necessarily a σ -algebra), let $\langle \mathcal{E} \rangle$ be the intersection of all σ -algebras on X that contains $\mathcal E$. Call it the σ -algebra generated by $\mathcal E$.

- $\langle \mathcal{E} \rangle$ is the *smallest* σ -algebra containing \mathcal{E} and is *unique*.
- $\{\emptyset, B, B^c, X\} = \langle \{B\}\rangle = \langle \{B^c\}\rangle = \langle \{\emptyset, B\}\rangle.$

The above definition gives us (potentially) lots of examples of σ -algebra on a set X

Lemma 1.5. *(a) Suppose* $\mathcal{E} \subset \mathcal{P}(X)$ *, A is a σ*-algebra on X *.* $\mathcal{E} \in \mathcal{A} \implies \langle \mathcal{E} \rangle \in \mathcal{A}$ *. (b)* $E \subset F \subset \mathcal{P}(X) \implies \langle \mathcal{E} \rangle \subset \langle \mathcal{F} \rangle$.

Proof.

Definition 1.6. For a topological space X, *the Borel* σ*-algebra* B(X) is the σ-algebra generated by the collection of open sets.

Example 1.7. $(X = \mathbb{R})$ $\mathcal{B}(\mathbb{R})$ contains the following collections:

$$
\mathcal{E}_1 = \{(a, b) \mid a < b\}, \quad \mathcal{E}_2 = \{[a, b] \mid a < b\}, \n\mathcal{E}_3 = \{(a, b) \mid a < b\}, \quad \mathcal{E}_4 = \{(a, b) \mid a < b\}, \n\mathcal{E}_5 = \{(a, \infty) \mid a \in \mathbb{R}\}, \quad \mathcal{E}_6 = \{(a, \infty) \mid a \in \mathbb{R}\}, \n\mathcal{E}_7 = \{(-\infty, a) \mid a \in \mathbb{R}\}, \quad \mathcal{E}_8 = \{(-\infty, a) \mid a < b\}.
$$

Proposition 1.8. $\mathcal{B}(\mathbb{R}) = \langle \mathcal{E}_i \rangle$ for each $i = 1, ..., 8$.

Proof. Use [1.5.](#page-4-1)

Definition 1.9. (X, \mathcal{A}) is called a measurable space.

1.2 Measures

Definition 1.10. A measure on (X, \mathcal{A}) is a function $\mu : \mathcal{A} \to [0, \infty]$ *s.t.*

- (a) $\mu(\emptyset) = 0$
- (b) (countable additive) For $A_1, A_2, \ldots \in A$ disjoint we have

$$
\mu\left(\bigcup_{1}^{\infty} A_{i}\right) = \sum_{i=1}^{\infty} \mu(A_{i}).
$$

 (X, \mathcal{A}, μ) is then called a measure space.

Example 1.11. (a) For any $(X, \mathcal{A}), \mu(A) = \#A$ counting measure.

(b) For any (X, \mathcal{A}) , let $x_0 \in X$. The Dirac measure at x_0 is

$$
\mu(A) = \begin{cases} 1 & x_0 \in A, \\ 0 & x_0 \notin A. \end{cases}
$$

(c) For $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, let $a_1, a_2, \ldots \in [0, \infty)$. $\mu(A) = \sum_{i \in A} a_i$ is a measure.

 (X, \mathcal{A}) measurable space

 (X, \mathcal{A}, μ) measure space

 $\mu: \mathcal{A} \rightarrow [0,\infty]$ *s.t.* $\mu(\emptyset) = 0$, countable additivity.

NOTE: $A, B \in \mathcal{A}, A \subset B$, then $\mu(B \setminus A) + \mu(A) = \mu(B) \implies \mu(B \setminus A) = \mu(B) - \mu(A)$ if $\mu(A) < \infty$.

Theorem 1.13. *Suppose* (X, \mathcal{A}, μ) *a measure space. Then*

(a) (monotonicity)

$$
A, B \in \mathcal{A}, A \subset B \implies \mu(A) \le \mu(B).
$$

(b) (countable subadditivity)

$$
A_1, A_2, \ldots, \in \mathcal{A}, \implies \mu\left(\bigcup_i^{\infty} A_i\right) \le \sum_i^{\infty} \mu(A_i).
$$

(c) (continuity from below/(MCT) from sets)

$$
A_1, A_2, \ldots \in \mathcal{A}, A_1 \subset A_2 \subset A_3 \subset \ldots \implies \mu\left(\bigcup_{i}^{\infty} A_i\right) = \lim_{n \to \infty} \mu(A_n).
$$

(d) (continuity from above)

$$
A_1, A_2, \ldots \in \mathcal{A}, A_1 \supset A_2 \supset A_3 \supset \ldots, \mu(A_1) < \infty \implies \mu\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mu(A_n).
$$

Proof. (a), (b), DIY.

For (c), let $B_1 = A_1, B_i = A_i \setminus A_{i-1}, i \geq 2.B_i \in \mathcal{A}$ and are disjoint.

$$
\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i
$$
\n
$$
\implies \mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mu(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(B_i) = \lim_{n \to \infty} \mu(A_n).
$$

For (d), let $E_i=A_1\setminus A_i.$ Hence $E_i\in \mathcal{A}, E_1\subset E_2\subset \dots$ We have

$$
\bigcup_{i}^{\infty} E_{i} = \bigcup_{i}^{\infty} (A_{1} \setminus A_{i}) = A_{1} \setminus \left(\bigcap_{1}^{\infty} A_{i} \right) \implies \bigcap_{1}^{\infty} A_{i} = A_{1} \setminus \left(\bigcup_{1}^{\infty} E_{i} \right).
$$

Hence

$$
\mu\left(\bigcap_{1}^{\infty}A_{i}\right)=\mu(A_{1})-\mu\left(\bigcup_{1}^{\infty}E_{i}\right)=\mu(A_{1})-\lim_{n\to\infty}\mu(E_{n})=\mu(A_{1})-\lim_{n\to\infty}\mu(A_{1})-\mu(A_{n}).
$$

NOTE: the condition that $\mu(A_1) < \infty$ cannot be dropped.

For example, in $(\mathbb{N}, \mathcal{P}(N))$, counting measure), let $A_n = \{n, n+1, n+2\}, A_1 \supset A_2 \supset A_3 \supset A_4$... We have $\bigcap_{1}^{\infty} = \emptyset \implies \mu(\bigcap_{1}^{\infty} A_i) = 0.$

Definition 1.14. For (X, \mathcal{A}, μ) measure space,

- $A \subset X$ is a μ -null set if $A \in \mathcal{A}$, $\mu(A) = 0$.
- $A \subset X$ is a μ -subnull set if $\exists B, \mu$ -null set $A \subset B$.
- (X, \mathcal{A}, μ) is a complete measure space if every μ -subnull set is \mathcal{A} -measurable.

Definition 1.15. (X, \mathcal{A}, μ) measure space. A statement $P(x), x \in X$ holds μ -almost everywhere (a.e.) if the set $\{x \in X \mid P(x)$ does not hold} is μ -null.

Definition 1.16. (X, \mathcal{A}, μ) measure space.

- μ is a *finite measure* is $\mu(X) < \infty$.
- μ is a σ -finite measure if $X = \bigcup_{1}^{\infty} X_n, X_n \in \mathcal{A}, \mu(X_n) < \infty$.

HW: every measure space can be "completed."

1.3 Outer Measures

Definition 1.17. An *outer measure* on *X* is $\mu^* : \mathcal{P}(X) \to [0, \infty]$ *s.t.*

- $\mu^*(\emptyset) = 0$
- (monotonicity) $\mu^*(A) \leq \mu^*(B)$ if $A \subset B$.
- (countable subadditivity)

$$
\forall A_1, A_2, \ldots \in X, \mu^* \left(\bigcup_{i}^{\infty} A_i \right) \leq \sum_{i}^{\infty} \mu^*(A_i).
$$

Example 1.18. For $A \subset \mathbb{R}$,

$$
\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} (b_i - a_i) \middle| \bigcup_{1}^{\infty} (a_i, b_i) \supset A \right\}.
$$

is an outer measure due to the next proposition.

Proposition 1.19. *(1.19)* Let $\mathcal{E} \in \mathcal{P}(X)$ s.t. $\emptyset, X \in \mathcal{E}$. Let $\rho : \mathcal{E} \to [0, \infty]$ s.t. $\rho(\emptyset) = 0$. Then

$$
\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \rho(E_i) \middle| E_i \in \mathcal{E}, \forall i \in N, \bigcup_{1}^{\infty} E_i \supseteq A \right\}
$$

is an outer measure on X*.*

Proof. (a) μ^* is well-defined (inf is taken over non-empty set.)

- (b) $\mu^*(\emptyset) = 0$
- (c) $A \subset B \implies \mu^*(A) \leq \mu^*(B)$.

We check the countable subadditivity.

Let $A_1, A_2, \ldots \subset X$. If one of $\mu^*(A_i) = \infty$, then the result holds. Suppose $\mu^*(A_n) <$ $\infty, \forall n \in \mathbb{N}.$

"Give your self a room of epsilon":

Fix $\varepsilon > 0$. We will show

$$
\mu^* \left(\bigcup_{1}^{\infty} A_n \right) \leq \sum_{1}^{\infty} \mu^*(A_i) + \varepsilon.
$$

For each $n \in \mathbb{N}, \exists E_{n,1}, E_{n,2}, \ldots \in \mathcal{E}$ s.t.

$$
\bigcup_{k=1}^{\infty} E_{n,k} \supset A_n \quad \text{and} \quad \mu^*(A_n) + \frac{\varepsilon}{2^n} \ge \sum_{k=1}^{\infty} \rho(E_{n,k}).
$$

Then,

$$
\bigcup_{1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} E_{n,k} = \bigcup_{(n,k)\in\mathbb{N}^2} E_{n,k}.
$$

<u>RECALL:</u> Tonelli's thm for series. If $a_{ij} \in [0, \infty]$, $\forall i, j \in \mathbb{N}$, then

$$
\sum_{(i,j)\in\mathbb{N}^2} a_{ij} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.
$$

Hence

$$
\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} \rho(E_{k,n}) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \rho(E_{k,n}) \le \sum_{n=1}^{\infty} \left(\mu^*(A_n) + \frac{\varepsilon}{2^n} \right) = \sum_{n=1}^{\infty} \mu^*(A_n) + \varepsilon.
$$

We have shown countable subadditivity.

Outer measure is very close to a measure. Here the textbooks diverge.

[\[Tao11\]](#page-81-0) introduces Lebesgue measure on $\mathbb R$ using topological qualities of subsets of $\mathbb R$. [\[Fol99\]](#page-81-1) introduces abstract method by Carathéodory and Kolmogorov.

Definition 1.20. Let μ^* be an outer measure on X. We say $A \subset X$ is Carathéodory measurable with respect to μ^* if $\forall E \subset X$, $\mu^*(E) = \mu^*(E \setminus A) + \mu^*(E \cap A)$.

Lemma 1.21. Let μ^* be an outer measure on X. Suppose B_1, B_2, \ldots, B_N are disjoint C*measurable sets. Then,*

$$
\forall E \subset X, \mu^* \left(E \cap \left(\bigcup_{1}^{N} B_i \right) \right) = \sum_{i=1}^{n} \mu^* (E \cap B_i)
$$

Proof.

$$
\mu^* \left(E \cap \left(\bigcup_{1}^{N} B_i \right) \right) = \mu^* (E \cap B_1) + \mu^* \left(E \cap \left(\bigcup_{2}^{N} B_i \right) \right)
$$

because B_1 is *C*-measurable. Then, iterate.

Improved version:

 B_1, B_2, \ldots C-measurable and *disjoint* $\implies \mu^* (E \cap \bigcup_{1}^{\infty} B_n) = \sum_{1}^{\infty} \mu^* (E \cap B_n)$, $\forall E \subset$ X.

Proof.

$$
\sum_{1}^{\infty} \mu^*(E \cap B_n) \ge \mu^* \left(E \cap \bigcup_{1}^{\infty} B_n \right)
$$

$$
\ge \mu^* \left(E \cap \bigcup_{1}^{N} B_n \right) = \sum_{1}^{N} \mu^*(E \cap B_n).
$$

Take $N \to \infty$ or note that $N \in \mathbb{N}$ is arbitrary we get the result.

First big theorem:

Theorem 1.22 (Carathéodory extension theorem)**.** *Let* µ ∗ *be an outer measure on* X. *Let* A be the collection of C -measurable sets with respect to μ^* . Then

- *(a)* A *us a* σ -algebra on X .
- *(b)* $\mu = \mu^*|_{\mathcal{A}}$ *is a measure on* (X, \mathcal{A}) *.*
- *(c)* (X, \mathcal{A}, μ) *is a complete measure space.*

Proof. (a) (1) $\emptyset \in \mathcal{A}$.

- (2) A is closed under complements.
- (3) To show A closed under countable unions.
	- (finite union)

CLAIM $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$.

Figure 1.1: Venn diagram of A, B, E

Fix arbitrary $E \subset X$. We need to show

$$
\mu^*(E) = \mu^*(E \cap (A \cup B)) + \mu^*(E \setminus (A \cup B)).
$$

i.e.

$$
\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2 \cup 3) + \mu^*(4)
$$

Since A is C-measurable, we have

$$
\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2) + \mu^*(3 \cup 4)
$$

 $\mu^*(1 \cup 2 \cup 3) = \mu^*(1 \cup 2) + \mu^*(3)$

Similarly since B is C -measurable, we have

$$
\mu^*(3 \cup 4) = \mu^*(3) + \mu^*(4)
$$

Hence

$$
\mu^*(1 \cup 2 \cup 3 \cup 4) = \mu^*(1 \cup 2) + \mu^*(3 \cup 4)
$$

=
$$
\mu^*(1 \cup 2 \cup 3) - \mu^*(3) + \mu^*(3) + \mu^*(4)
$$

=
$$
\mu^*(1 \cup 2 \cup 3) + \mu^*(4).
$$

• (countable disjoint unions)

Let $A_1, A_2, \ldots \in \mathcal{A}$ and *disjoint*.

Fix $E \subset X$ arbitrary. Since μ^* is countably subadditive,

$$
\mu^*(E) \le \mu^* \left(E \cap \bigcup_{1}^{\infty} \right) + \mu^* \left(E \setminus \bigcup_{1}^{\infty} A_n \right)
$$

Fix $n \in \mathbb{N}$.

$$
\Rightarrow \bigcup_{1}^{N} A_{n} \in \mathcal{A}
$$

\n
$$
\Rightarrow \mu^{*}(E) = \mu^{*} \left(E \cap \bigcup_{1}^{N} \right) + \mu^{*} \left(E \setminus \bigcup_{1}^{N} A_{n} \right)
$$

\n
$$
\geq \sum_{1}^{N} \mu^{*} (E \cap A_{n}) + \mu^{*} \left(E \setminus \bigcup_{1}^{\infty} A_{n} \right) \text{ by lemma.}
$$

Take $n \to \infty$.

• (countable unions)

Let $A_1, A_2, \ldots \in \mathcal{A}$. Take $E_1 = A_1, E_n = A_n \setminus \left(\bigcup_1^{n-1} A_i\right)$ for $n \geq 2$. Then $\bigcup A_n = \bigcup E_n$ and E_n 's are disjoint.

(b) Firstly we have $\mu(\emptyset) = \mu^*(\emptyset) = 0$.

Countable additvity of μ^* on A follows from the improved lemma with $E = X$.

(c) HW.

1.4 Hahn-Kolmogorov Theorem

RECALL [1.19](#page-7-0) Let $\mathcal{E} \subset \mathcal{P}(X)$ s.t. $\emptyset, X \in \mathcal{E}$. Let $\rho : \mathcal{E} \to [0, \infty]$ s.t. $\rho(\emptyset) = 0$

$$
(\mathcal{E}, \rho) \xrightarrow[1.19]{} (\mathcal{P}(X), \mu^*) \xrightarrow[\text{C-theorem}]{} (A, \mu)
$$

QUESTION $\mathcal{E} \subset \mathcal{A}$ and $\mu|_{\mathcal{E}} = \rho$? No!

Definition 1.23. Let \mathcal{A}_0 be an algebra on X. We say $\mu_0 : \mathcal{A}_0 \to [0, \infty]$ is a *pre-measure* if

- (a) $\mu_0(\emptyset) = 0$.
- (b) (finite additivity)

$$
\mu_0\left(\bigcup_{1}^{N} A_i 1\right) = \sum_{1}^{N} \mu_0(A_i) \text{ if } A_1,\ldots,A_N \in \mathcal{A}_0 \text{ are disjoint.}
$$

(c) (countable additivity within the algebra) If $A \in \mathcal{A}_0$ and

$$
A = \bigcup_{1}^{\infty} A_n, A_n \in \mathcal{A}_0
$$
 and are disjoint, then $\mu_0(A) = \sum_{1}^{\infty} \mu_0(A_n)$

NOTATION: Folland uses $\mathcal M$ for σ -algebra and $\mathcal A$ for algebra. (Jinho) uses $\mathcal A$ for σ -algebra and A_0 for alegbra.

Example 1.24. \mathcal{A}_0 finite disjoint unions of $(a, b]$.

$$
\mu_0\left(\bigcup_{1}^{\infty}(a_i,b_i]\right)=\sum_{1}^{\infty}(b_i-a_i)\text{ or }b_i^n-a_i^n,e^{b_i}-e^{a_i},\text{etc.}
$$

Lemma 1.25. • $(a) + (c) \implies (b)$.

• μ_0 *is monotone.*

Theorem 1.26 (Hahn-Kolmogorov Theorem). Let μ_0 be a pre-measure on algebra \mathcal{A}_0 on X. *Let* µ ∗ *be the outer measure induced by* (A0, µ0) *in [1.19.](#page-7-0) Let* A *and* µ *be the Carathéodory σ*-algebra and measure for μ^* \implies (A, μ) extends (A₀, μ₀) i.e. A ⊃ A₀, μ|_{A₀ = μ₀.}

Proof. (a) $(A \supset A_0)$ Let $A \in A_0$.

Question: $A \in \mathcal{A}$? i.e. is $A C$ -measurable? i.e. $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$, $\forall E \subset$

X.

Fix $E \subset X$.

- (countable) subadditivity of $\mu^* \implies \mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \cap A^c)$.
- If $\mu^*(E) = \infty$ then $\mu^*(E) = \infty \ge \mu^*(E \cap A) + \mu^*(E \cap A^c)$.
- If $\mu^*(E) < \infty$.

Fix $\varepsilon > 0$. By the definition of $\mu^*, \exists B_1, B_2, \ldots \in \mathcal{A}_0 \ s.t. \bigcup_1^\infty B_n \supset E$ and

$$
\mu^*(E) + \varepsilon \ge \sum_1^{\infty} \mu_0(B_n) = \sum_1^{\infty} (\mu_0(B_n \cap A) + \mu_0(B_n \cap A^c)))
$$

Note that

$$
\bigcup_{1}^{\infty} (B_n \cap A) \supset E \cap A, \quad \bigcup_{1}^{\infty} (B_n \cap A^c) \supset E \cap A^c \implies \geq
$$

(b) Let $A \in \mathcal{A}_0$. We want to show that $\mu(A) = \mu_0(A)$.

By definition, $\mu(A) = \mu^*(A)$.

• Let $B_i =$ $\sqrt{ }$ \int \mathcal{L} $A \quad i=1,$ \emptyset $i = 2$ $\in A_0$ and $\bigcup_{1}^{\infty} B_i \supset A$.

Hence
$$
\mu^*(A) \le \sum_1^{\infty} \mu_0(B_i) = \mu_0(A)
$$
.

• Let $B_i \in A_0$, $\bigcup_{1}^{\infty} B_i \supset A$ an arbitrary collection of sets.

Let $C_1=A\cap B_1, C_i=A\cap B_i\backslash \left(\bigcup_{j=1}^{i-1} B_j\right)$. Then $A=\bigcup_{1}^{\infty}$ is a disjoint countable union. By countable additivitiy we have

$$
\mu_0(A) = \sum_{1}^{\infty} \mu_0(C_i) \implies \mu_0(A) \leq \sum_{1}^{\infty} \mu_0(B_i).
$$

Hence we have $\mu_0(A) = \mu^*(A) = \mu(A)$. We have completed our proof.

Definition 1.27. Such (A, μ) is called the *Hahn-Kolmogorov extension* of (A_0, μ_0) , and is also called the *Carathéodory* σ -algebra for (A_0, μ_0) .

Theorem 1.28 (uniqueness of HK extension). Let \mathcal{A}_0 be an algebra on X, μ_0 be a pre-measure on \mathcal{A}_0 , (\mathcal{A}, μ) be the Hahn-Kolmogorov extension of (\mathcal{A}_0, μ_0) . And let (\mathcal{A}', μ') be another exten*sion of* (\mathcal{A}_0, μ_0) *.*

If μ_0 *is* σ -finite, then $\mu \mid_{\mathcal{A} \cap \mathcal{A}'} = \mu' \mid_{\mathcal{A} \cap \mathcal{A}'}$.

NOTE $σ$ -finite means

$$
\forall X, X = \bigcup_{1}^{\infty} X_n, X_n \in \mathcal{A}_0, \mu_0(X_n) < \infty.
$$

Corollary 1.29. *Let* μ_0 *be a pre-measure on algebra* \mathcal{A}_0 *on* X*.* Suppose μ_0 *is* σ -finite, then $\exists!$ *measure* μ *on* $\langle A_0 \rangle$ *that extends* A_0 *. Furthermore,*

(a) *the completion of* $(X, \langle A_0 \rangle, \mu)$ *is the HK extension of* (A_0, μ_0) .

(b)

$$
\mu(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(B_i) \mid B_i \subset A_0, \forall i \in \mathbb{N}, \bigcup_{1}^{\infty} B_i \supset A \right\}, \forall A \in \overline{\langle A_0 \rangle}.
$$

Proof of [1.28.](#page-12-0) Let $A \in \mathcal{A} \cap \mathcal{A}'$. We need to show $\mu(A) = \mu^*(A) = \mu'(A)$.

- $\mu^*(A) \geq \mu'(A)$ (HW)
- $\mu(A) \leq \mu'(A)$:
	- (i) Assume $\mu(A) < \infty$. Fix $\varepsilon > 0$. Then $\exists B_i \in \mathcal{A}_0, \forall i \in \mathbb{N}, \bigcup_1^{\infty} B_i \supset A \text{ s.t.}$

$$
\mu(A) + \varepsilon = \mu^*(A) + \varepsilon \ge \sum_{1}^{\infty} \mu_0(B_i) = \sum_{1}^{\infty} \mu(B_i) \ge \mu\left(\bigcup_{1}^{\infty} B_i\right) = \mu(B)
$$

Hence $\mu(B \setminus A) = \mu(B) - \mu(A) \leq \varepsilon$.

On the other hand,

$$
\mu(B) = \lim_{N \to \infty} \mu\left(\bigcup_{1}^{N} B_i\right) = \lim_{N \to \infty} \mu'\left(\bigcup_{1}^{N} B_i\right) = \mu'(B)
$$

by continuity of measure from below.

$$
\mu(A) \le \mu(B) = \mu'(B) = \mu'(A) + \mu'(B \setminus A) \le \mu'(A) = \varepsilon.
$$

(ii) Assume $\mu(A) = \infty$.

Since μ_0 is σ -finite, $X = \bigcup_{1}^{\infty} X_n, X_n \in \mathcal{A}_0, \mu_0(X_0) < \infty$. Replacing X_n by $X_1 \cup \ldots \cup X_n$, we may assume $X_1 \subset X_2 \subset \ldots$.

$$
\forall n \in N, \mu(A \cap X_n) < \infty \implies \mu(A \cap X_n) \le \mu'(A \cap X_n).
$$

Hence

$$
\mu(A) = \lim_{N \to \infty} \mu(A \cap X_n) \le \lim_{N \to \infty} \mu'(A \cap X_n) = \mu'(A).
$$

1.5 Borel Measures on R

Definition 1.30. $F : \mathbb{R} \to \mathbb{R}$ is an *increasing* function if $F(x) \leq F(y)$ for $x < y$. $F : \mathbb{R} \to \mathbb{R}$ is increasing and right-continuous \implies F is distribution function.

Example 1.31.

\n- $$
F(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0. \end{cases}
$$
\n- $\mathbb{Q} = \{r_1, r_2, \ldots\}, F_n(x) = \begin{cases} 1 & x \ge r_n \\ 0 & x < r_n \end{cases}$
\n- $F(x) = \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n}$ is a distribution function.
\n

tion.

NOTE If F is increasing, $F(\infty) := \lim_{x\to\infty} F(x)$, $F(-\infty) := \lim_{x\to-\infty} F(x)$ exists in $[-\infty, \infty].$

In probability theory, cumulative distribution function (CDF) is a distribution function with $F(\infty) = 1$ and $F(-\infty) = 0$.

There are distributions [\[Fol99,](#page-81-1) Ch.9], but these are different from *distribution functions*.

Definition 1.32. Suppose X a topological space. μ on $(X, \mathcal{B}(X))$ is called *locally finite* is $\mu(K) < \infty$ for any compact set $K \subset X$.

Lemma 1.33. *Let* μ *be a locally finite Borel measure on* \mathbb{R} \implies

$$
F_{\mu}(x) = \begin{cases} \mu((0, x]), & x > 0 \\ 0, & x = 0 \text{ is a distribution function.} \\ -\mu((x, 0]), & x < 0 \end{cases}
$$

Proof. DIY. Use continuity of measure.

Definition 1.34. *h*-intervals are \emptyset , $(a, b]$, (a, ∞) , $(-\infty, b]$, (∞, ∞) .

Lemma 1.35. *Let* H *be the collections of finite disjoint unions of* h*-intervals. Then* H *is an algebra on* R*.*

Proof. DIY.

Proposition 1.36 (Distribution function defines a pre-measure). Let $F : \mathbb{R} \to \mathbb{R}$ be a *distribution function. For an* h*-interval* I*, define*

$$
\ell(I) = \ell_F(I) = \begin{cases}\n0, & I = \emptyset \\
F(b) - F(a), & I = (a, b] \\
F(\infty) - F(a), & I = (a, \infty) \\
F(b) - F(\infty), & I = (-\infty, b] \\
F(\infty) - F(-\infty), & I = (-\infty, \infty).\n\end{cases}
$$

Define $\mu_0 = \mu_{0,F} : \mathcal{H} \to [0,\infty]$ *by*

$$
\mu_0(A) := \sum_{k=1}^N \ell(I_k) \quad \text{if } A = \bigcup_{k=1}^N I_k \text{, finite disjoint union of } h\text{-intervals.}
$$

Then μ_0 *is a pre-measure.*

Proof. (a) μ_0 is well-defined.

- (b) μ_0 is finite additive.
- (c) μ_0 is countable additive within \mathcal{H} .

Suppose $A \in \mathcal{H}$ and $A = \bigcup_{1}^{\infty} A_i$ a disjoint union, $A_i \in \mathcal{H}$. It is enough to consider the case $A = I$, $A_k = I_k$ all *h*-intervals. (Why?)

Focus on the case $I = (a, b]$: (HW: check other cases) We have

$$
(a, b] = \bigcup_{1}^{\infty} (a_n, b_n],
$$
 a disjoint union.

Check

$$
F(b) - F(a) \stackrel{?}{=} \sum_{1}^{\infty} (F(b_n) - F(a_n))
$$

 $(a, b] \supset \bigcup_1^N (a_n, b_n] \implies F(b) - F(a) \ge \sum_1^N F(b_n) - F(a_n), \forall N \in \mathbb{N}$. (Arranging them in decreasing order) Take $N \to \infty$ we have

$$
F(b) - F(a) \ge \sum_{1}^{\infty} (F(b_n) - F(a_n)).
$$

Since F is right-continuous, $\exists a' > a \ s.t. \ F(a') - F(a) < \varepsilon$. For each $n \in \mathbb{N}$, $\exists b'_n > b$

$$
b_n s.t. F(b'_n) - F(b_n) < \frac{\varepsilon}{2^n}.
$$
\n
$$
\implies [a', b] \subset \bigcup_{1}^{\infty} (a_n, b'_n)
$$
\n
$$
\implies \exists N \in \mathbb{N} \ s.t. [a', b] \subset \bigcup_{1}^n (a_n, b'_n)
$$
\n
$$
\implies F(b) - F(a') \le \sum_{1}^N F(b'_n) - F(a_n)
$$
\n
$$
\implies F(b) - F(a) \le F(b) - F(a') + \varepsilon \le \sum_{1}^{\infty} (F(b'_n) - F(a_n)) + \varepsilon
$$
\n
$$
\le \sum_{1}^{\infty} \left(F(b_n) - F(a_n) + \frac{\varepsilon}{2^n} \right) + \varepsilon
$$

Once we have this pre-measure, HK theorem allows us to extended it to a measure.

Theorem 1.37 (Locally finite Borel measures on R)**.**

- *(a)* $F : \mathbb{R} \to \mathbb{R}$ *is a distribution function* \implies ∃! *locally finite Borel measure* μ_F *on* \mathbb{R} *satisfying* $\mu_F((a, b]) = F(b) - F(a), \forall a, b, a < b.$
- *(b) Suppose* $F, G : \mathbb{R} \to \mathbb{R}$ *are distribution functions. Then,* $\mu_F = \mu_G$ *on* $\mathcal{B}(\mathbb{R})$ *if and only if* F − G *is a constant function.*

Proof. HW

1.6 Lebesgue-Stieltjes Measures on R

 F distribution function $\implies \mu_F$ on Carathéodory σ -algebra $\mathcal{A}_{\mu_F}.$ Actually $(\mathcal{A}_{\mu_F}, \mu_F) = (\mathcal{B}(\mathbb{R}), \mu_F)$ (HW3).

- **Definition 1.38.** μ_F on \mathcal{A}_{μ_F} is called the Lebesgue-Stieltjes measure corresponding to F.
	- Special case: $F(x) = x \implies$ Lebesgue measure (\mathcal{B}, m) .

Example 1.39.

(a) $\mu_F((a, b]) = F(b) - F(a)$. F is right-continuous and increasing $\implies F(x_-) \leq$ $F(x) = F(x_{+}).$ (HW) $\mu_F(\{a\}) = F(a) - F(a_-), \mu_F([a, b]) = F(b) - F(a_-), \mu_F((a, b)) = F(b_-) F(a).$

(b)

$$
F(x) = \begin{cases} 1 & x \le 0 \\ 0 & x < 0 \end{cases} \implies \mu_F(\{0\}) = 1, \mu_F(\mathbb{R}) = 1, \mu_F(\mathbb{R} \setminus \{0\}) = 0.
$$

 μ_F is the Dirac measure at 0.

(c)

$$
\mathbb{Q} = \{r_1, r_2, \ldots\}, F(x) = \sum_{n=1}^{\infty} \frac{F_n(x)}{2^n}, F_n(x) = \begin{cases} 1 & x \le r_n \\ 0 & x < r_n \end{cases}
$$
\n
$$
\implies \mu_F(\{v\}) > 0, \forall v \in \mathbb{Q}, \ \mu_F(\mathbb{R} \setminus \mathbb{Q}) = 0.
$$

(d) If *F* is continuous at $a, \mu_F({a}) = 0$.

(e)
$$
F(x) = x \implies m((a, b])) = m((a, b)) = m([a, b]) = b - a.
$$

(f) $F(x) = e^x, \implies \mu_F((a, b)) = \mu_F((a, b)) = e^b - e^a$

(a), (b) are examples of discrete measure.

Example 1.40 (Middle thirds Cantor set $C = \bigcup_{n=1}^{\infty} K_n$). C is uncountable set with $m(C) = 0$.

$$
x \in \mathcal{C} \implies x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}, a_n \in \{0, 2\}.
$$

We are interested in the Cantor function F.

Example 1.41. Cantor function F is continuous and increasing. This defines the Cantor measure $\mu_F(\mathbb{R} \setminus \mathcal{C}) = 0, \mu_F(\mathcal{C}) = 1, \mu_F(\lbrace a \rbrace) = 0$. Compare with Lebesgue measure $m(\mathbb{R} \setminus \mathcal{C}) = \infty > 0, \mu(\mathcal{C}) = 0, m(\lbrace a \rbrace) = 0.$

1.7 Regularity Properties of Lebesgue-Stieltjes Measures

Lemma 1.42. μ *is Lebesgue-Stieltjes measure on* \mathbb{R} \implies

$$
\mu(A) = \inf \left\{ \sum_{1}^{\infty} \mu((a_i, b_i]) \middle| \bigcup_{1}^{\infty} (a_i, b_i] \supset A \right\}
$$

$$
= \inf \left\{ \sum_{1}^{\infty} \mu((a_i, b_i)) \middle| \bigcup_{1}^{\infty} (a_i, b_i) \supset A \right\}
$$

Proof. Using the continuity of measure.

Theorem 1.43. μ *is a Lebesgue-Stieltjes measure. Then* $\forall A \in A_{\mu}$,

(a) (outer regularity)

$$
\mu(A) = \inf \{ \mu(O) \mid \text{open } O \supset A \}.
$$

(b) (inner regularity)

$$
\mu(A) = \sup \{ \mu(K) \mid \text{compact } K \subset A \}.
$$

Proof. (a) Followed from [1.42.](#page-17-1)

- (b) Let $s = \sup\{\ldots\}$. Monotonicity $\implies \mu(A) \geq s$. • (A bounded) $\overline{A} \in \mathcal{B}(\mathbb{R}) \subset \mathcal{A}_{\mu}$, \overline{A} bounded $\implies \mu(\overline{A}) < \infty$. Fix $\varepsilon > 0$. By 1, \exists open $O \supset \overline{A} \setminus A$, $\mu(O) - \mu(\overline{A} \setminus A) = \mu(O \setminus (\overline{A} \setminus A)) \le \varepsilon$. Let $K = A \setminus O$ $K\subset A$ $=\overline{A}\setminus O$ compact . Show that $\mu(K) \geq \mu(A) - \varepsilon$.
	- (*A* unbounded but $\mu(A) < \infty$) We have

$$
A = \bigcup_{1}^{\infty} A_n, \ A_n = A \cap [-n, n], \ A_1 \subset A_2 \subset \dots
$$

Hence

$$
\lim_{n \to \infty} \mu(A_n) = \mu(A) < \infty.
$$

• $(\mu(A) = \infty)$ $\lim_{n\to\infty}\mu(A_n)=\mu(A)=\infty.$ Fix $L > 0$. ∃N s.t. $\mu(A_N) \geq L$.

Definition 1.44. Suppose X a topological space.

A
$$
G_{\sigma}
$$
-set is $G = \bigcap_{1}^{\infty} O_i$, O_i open. An F_{σ} -set is $F = \bigcup_{1}^{\infty} F_i$, F_i closed.

Theorem 1.45. *Suppose* µ *a LS measure. Then the following statements are equivalent:*

- (*a*) $A \in \mathcal{A}_{\mu}$.
- *(b)* $A = G \setminus M$, *G is a* G_{σ} -set, and *M is* μ -null.
- *(c)* $A = F \cup N$, *F is an* F_{σ} -set, and *N is* μ -null.

Proof. (b) \implies (a) and (c) \implies (a) are clear.

• (a) \implies (c)

(i) Assume $\mu(A) < \infty$. By inner regularity,

$$
\forall n \in \mathbb{N}, \exists \text{ compact } K_n \subset A \text{ s.t. } \mu(K_n) + \frac{1}{n} \ge \mu(A).
$$

Let $F = \bigcup_{1}^{\infty} K_n$. Then $N = A \setminus F$ is μ -null.

(ii) Assume $\mu(A) = \infty$. We construct

$$
A = \bigcup_{k \in \mathbb{Z}} A_k, A_k = A \cap (k, k+1].
$$

By (i), $\forall k \in \mathbb{Z}, A_k = F_k \cup N_k$. Hence

$$
A = \underbrace{\left(\bigcup_{k} F_{k}\right)}_{F\sigma} \cup \underbrace{\left(\bigcup_{k} N_{k}\right)}_{\mu\text{-null}}.
$$

• (a) \implies (b)

$$
A^c = F \cup N, A = F^c \cup N^c = F^c \setminus N.
$$

Proposition 1.46. *Suppose* μ *a LS measure,* $A \in \mathcal{A}_{\mu}$, $\mu(A) < \infty$ *. Then*

$$
\forall \varepsilon > 0, \exists I = \bigcup_{1}^{N=N(\varepsilon)} I_i, \text{ disjoint open intervals } s.t. \mu(A \triangle I) \le \varepsilon.
$$

Proof. DIY - use outer regularity. ■

Properties of Lebesgue measure

Theorem 1.47.

$$
A \in \mathcal{L} \implies A + s \in \mathcal{L}, rA \in \mathcal{L}, \forall r, s \in \mathbb{R}.
$$

In addition, $m(A + r) = m(A)$ *and* $m(rA) = rm(A)$ *.*

Proof. DIY.

Example 1.48.

(a) $\mathbb{Q} = \{r_1\}_{i=1}^{\infty}$, which is dense in \mathbb{R} . Let $\varepsilon > 0$ and

$$
O = \bigcup_{i=1}^{\infty} \left(r_i - \frac{\varepsilon}{2^i}, r_i + \frac{\varepsilon}{2^i} \right).
$$

 O is open and dense in $\mathbb R.$ We have

$$
m(O) \leq \sum_{i=1}^{\infty} \frac{2\varepsilon}{2^i} = 2\varepsilon, \partial O = \overline{O} \setminus O, m(O) = \infty.
$$

- (b) \exists uncountable set *A* with $m(A) = 0$.
- (c) $\exists A$ with $m(A) > 0$, but A contains no non-empty open interval.
- (d) $\exists A \notin \mathcal{L}$ that is Vitali set.
- (e) $\exists A \in \mathcal{L} \setminus \mathcal{B}(\mathbb{R})$. We will deal with that later.

Chapter 2

Integration

2.1 Measurable Functions

Definition 2.1. Suppose (X, \mathcal{A}) , (Y, \mathcal{B}) two measurable spaces. $f : X \to Y$ is $(\mathcal{A}, \mathcal{B})$ measurable if

$$
\forall B \in \mathcal{B}, f^{-1}(B) \in \mathcal{A}.
$$

Lemma 2.2. *Suppose* $\mathcal{B} = \langle \mathcal{E} \rangle$ *. Then*

$$
f: X \to Y
$$
 is (A, B) -measurable $\iff \forall E \in \mathcal{E}, f^{-1}(E) \in \mathcal{A}$.

Proof. ⇒ clear

 \leftarrow Let $\mathcal{D} = \{ E \subset Y \mid f^{-1}(E) \in \mathcal{A} \}$. We have $\mathcal{E} \subset \mathcal{D}$ by assumption. In addition \mathcal{D} is a σ -algebra $\implies \langle \mathcal{E} \rangle \subset \mathcal{D}$.

Definition 2.3. Suppose (X, \mathcal{A}) a measurable space.

 $f: X \to \mathbb{R}$ $f: X \to \overline{\mathbb{R}} = [-\infty, \infty]$ $f: X \to \mathbb{C}$ \mathcal{L} $\overline{\mathcal{L}}$ \int is A-measurable if $\sqrt{ }$ \int \mathcal{L} f is $(\mathcal{A}, \mathcal{B}(\mathbb{R}))$ -measurable f is $(\mathcal{A}, \mathcal{B}(\overline{\mathbb{R}}))$ -measurable $\text{Re } f$, Im $f: X \to \mathbb{R}$ are \mathcal{A} -measurable.

Here $\mathcal{B}(\overline{\mathbb{R}}) = \{ E \subset \overline{\mathbb{R}} \mid E \cap R \in \mathcal{B}(\mathbb{R}) \}.$

Lemma 2.4. *Suppose* $f: X \to \mathbb{R}$ *. Then the followings are equivalent:*

(a) f *is* A*-measurable*

- (*b*) $\forall a \in \mathbb{R}, f^{-1}((a, \infty)) \in \mathcal{A}$.
- $(c) \ \forall a \in \mathbb{R}, f^{-1}([a, \infty)) \in \mathcal{A}.$
- *(d)* ∀ $a \in \mathbb{R}, f^{-1}((-\infty, a)) \in \mathcal{A}$ *.*
- $(e) \ \forall a \in \mathbb{R}, f^{-1}((-\infty, a]) \in \mathcal{A}.$

For $f: X \to \overline{\mathbb{R}}$ *, change the interval to include* $-\infty$ *and* ∞ *.*

Proof. By [2.2.](#page-21-2) ■

Example 2.5. $A = \mathcal{P}(X) \implies$ every function is A measurable.

 $\mathcal{A} = \{\emptyset, X\} \implies \text{only } \mathcal{A}$ functions are constant functions.

PROPERTIES Suppose $f, g: X \to \mathbb{R}$, A-measurable functions.

- (a) $\phi : \mathbb{R} \to \mathbb{R}$, $\mathcal{B}(\mathbb{R})$ measurable (i.e. Borel measurable) $\implies \phi \circ f : X \to \mathbb{R}$ is A-measurable.
- (b) $-f$, 3 f , f^2 , | f | are A-measurable, $\frac{1}{f}$ is A-measurable if $f(x) = 0, \forall x \in X$.
- (c) $f + g$ is A-measurable

$$
(f+g)^{-1}((a,\infty)) = \bigcup_{r \in \mathbb{Q}} (f^{-1}((r,\infty)) \cap g^{-1}((a-r,\infty))).
$$

(d) fg is A -measurable

$$
f(x)g(x) = \frac{1}{2} ((f(x) + g(x))^{2} - f(x)^{2} - g(x)^{2}).
$$

- (e) $(f \wedge g)(x) = \min\{f(x), g(x)\}, (f \vee g)(x) = \max\{f(x), g(x)\}\$ are A-measurable.
- (f) $f_n: X \to \overline{\mathbb{R}}$ are a sequence of A-measurable functions \implies

$$
\sup f_n
$$
, $\inf f_n$, $\limsup_{n \to \infty} f_n$, $\liminf_{n \to \infty} f_n$ are A-measurable.

(g) If $f(x) = \lim_{n \to \infty} f_n(x)$ converges for every $x \in X$, then f is measurable.

Example 2.6. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous. Then f is Borel measurable $\implies f$ is Lebesgue measurable. (Preimage of an open set of a continuous function is open.)

Definition 2.7. For $f: X \to \overline{\mathbb{R}}$, let $f^+ = f \vee 0$, $f^- = (-f) \vee 0$.

NOTE supp $f^+ \cap \text{supp} f^- = \emptyset$. $f(x) = f^+(x) - f^-(x)$. f is A-measurable $\iff f^+, f^$ measurable.

Definition 2.8. For $E \subset X$, characteristic (indicator) funtion of E

$$
\chi_E(x) = 1_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \in E^c. \end{cases}
$$

 1_E is A-measurable $\iff E \in \mathcal{A}$.

Definition 2.9. Suppose (X, \mathcal{A}) a measurable space. A *simple function* $\phi : X \to \mathbb{C}$ that is A-measurable and takes only finitely many values.

$$
\phi(X) = \{c_1, \ldots, c_N\}, c_i \neq \pm \infty, E_i = \phi^{-1}(c_i) \in \mathcal{A} \implies \phi = \sum_{i=1}^N c_i 1_{E_i}.
$$

Theorem 2.10. *Suppose* (X, \mathcal{A}) *a measurable space and* $f : X \to [0, \infty]$ *. Then the followings are equivalent:*

- *(a)* f *is* A*-measurable.*
- *(b)* ∃ *simple functions* $0 \le \phi_1(x) \le \phi_2(x) \le \ldots \le f(x)$ *such that*

$$
\lim_{n \to \infty} \phi_n(x) = f(x), \ \forall x \in X.
$$

*(*f *is the pointwise upward limit of simple functions.)*

Proof. • (b) \implies (a) is easy: $f(x) = \sup_{n \in \mathbb{N}} \phi_n(x)$.

• (a) \implies (b): suppose *f* is *A*-measurable.

Fix $n \in \mathbb{N}$. Let $F_n = f^{-1}([2^n, \infty]) \in \mathcal{A}$. For

$$
0 \le k \le 2^{2n} - 1
$$
, $E_{n,k} = f^{-1}\left(\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]\right) \in \mathcal{A}$.

Let $\phi_n(x) =$ \sum^{2^n-1} $k=0$ $1_{E_{n,k}} + 2^n 1_{F_n}.$

This shows that

$$
- 0 \le \phi_1(x) \le \phi_2(x) \le \dots \le f(x), \ \forall x \in X.
$$

$$
- \forall x \in X \setminus F_n, 0 \le f(x) - \phi_n(x) \le \frac{1}{2^n}.
$$

Since $F_1 \supset F_2 \supset \ldots$ and \bigcap^{∞} 1 $F_n = f^{-1}(\{\infty\})$, we have

$$
- x \in f^{-1}([0, \infty)) = X \setminus \left(\bigcap_{n=1}^{\infty} F_n\right) \implies \lim_{n \to \infty} \phi_n(x) = f(x).
$$

$$
- x \in f^{-1}(\{\infty\}) = \bigcap_{n=1}^{\infty} X_n \implies \phi_n(x) \ge 2^n \implies \lim_{n \to \infty} \phi_n(x) = \infty = f(x).
$$

Corollary 2.11. *If f is bounded on a set* $A ⊂ ℝ$ *(i.e.* ∃ $L > 0$ *s.t.* $|f(x)| ≤ L$, ∀ $x ∈ A$) *then* $\phi_n \to f$ *uniformly on A.*

Proof. DIY.

Corollary 2.12. $f : X \to \mathbb{C}$, measurable function $\iff \exists$ *simple functions* $\phi_n : X \to \mathbb{C}$ \mathbb{C} s.t. $0 \leq |\phi_1| \leq |\phi_2| \leq \ldots \leq |f|$ and ϕ_n converges to f pointwise. (Again, if f is bounded the *convergence can be uniform.)*

2.2 Integration of Nonnegative Functions

Definition 2.13. Suppose (X, \mathcal{A}, μ) a measure space and $\phi = \sum_{i=1}^{N} c_i 1_{E_i} : X \to [0, \infty]$ a simple function. Let

$$
\int \phi = \int \phi \, d\mu = \int_X \phi \, d\mu = \sum_1^N c_i \mu(E_i).
$$

Proposition 2.14. *Suppose* $\phi, \psi \geq 0$ *are simple functions. Then,*

• *[2.13](#page-24-1) is well-defined.*

•
$$
\int c\phi = c \int \phi, c \in [0, \infty).
$$

\n• $\int (\phi + \psi) = \int \phi + \int \psi.$

•
$$
\phi(x) \ge \psi(x), \forall x \implies \int \phi \ge \int \psi.
$$

• $\nu(A) = \int_A \phi \, d\mu$ is a measure on (X, \mathcal{A}) .

Proof. DIY.

Definition 2.15. Suppose (X, \mathcal{A}, μ) , $f : X \to [0, \infty]$ is \mathcal{A} -measurable.

Define

$$
\int f = \int f \, d\mu = \sup \left\{ \int \phi \mid 0 \le \phi \le f, \phi \text{ simple} \right\}.
$$

Proposition 2.16.

• *If* f *is a simple function then two definitions are the same.*

\n- $$
\int cf = c \int f
$$
.
\n- $f \geq g \geq 0 \implies \int f \geq \int g$.
\n- $\int f + g = \int f + \int g$. (A bit harder to check)
\n

Theorem 2.17 (Monotone convergence theorem). *Suppose* (X, \mathcal{A}, μ) *a measure space and*

- $f: X \to [0, \infty]$ *is A-measurable*, $\forall n \in \mathbb{N}$.
- $0 \le f_1(x) \le ...$
- $\lim_{n \to \infty} f_n(x) = f(x)$.

Then

$$
\int f = \lim_{n \to \infty} \int f_n.
$$

Proof. Note that $\lim_{n\to\infty} f_n(x)$ converges $\forall x \in X$ and $\lim_{n\to\infty} f_n(x)$ converges.

- $f_n \leq f \implies \int f_n \leq \int f \implies \lim_{n \to \infty} \int f_n \leq \int f.$
- Fix simple function $0 \leq \phi \leq f$. Enough to show that $\lim_{n \to \infty} \int f_n \geq \int \phi$.

Now fix $\alpha \in (0,1)$. Enough to prove that $\lim\limits_{n\to\infty}\int f_n\geq \alpha\int\phi.$ Let $A_n = \{x \mid f_n(x) > \alpha \phi(x)\}.$

Let
$$
A_n = \{x \mid f_n(x) \ge \alpha \varphi(x)
$$

\n $- A_n \in \mathcal{A}.$
\n $- A_1 \subset A_2 \subset \dots$

$$
-\bigcup_{n=1}^{\infty} A_n = X.
$$
 (check!)

So we have

$$
\int f_n \ge \int f_n 1_{A_n} \ge \int \alpha \phi 1_{A_n} = \alpha \nu(A_n)
$$

where $\nu(A) = \int_A \phi$ is a measure.

$$
\implies \lim_{n \to \infty} \int f_n \ge \lim_{n \to \infty} \nu(A_n) = \alpha \nu(x) = \alpha \int \phi.
$$

Corollary 2.18. $f, g \ge 0$ measurable \implies $\int f + g = \int f + \int g$.

Proof. \exists simple functions $0 \le \phi_1 \le \phi_2 \le \dots, \phi_n \to f$ pointwise and $0 \le \psi_1 \le \psi_2 \le$ $\ldots, \psi_n \rightarrow g$ pointwise.

By MCT, we have

$$
\int (f+g) = \lim_{n \to \infty} \int (\phi_n + \psi_n) = \lim_{n \to \infty} \int \phi_n + \int \psi_n = \int f + \int g.
$$

Corollary 2.19 (Tonelli's theorem for series and integrals). *Given* $s_n \geq 0, \forall n \in \mathbb{N}$ *measurable functions. Then*

$$
\int \sum_{n=1}^{\infty} s_n = \sum_{n=1}^{\infty} \int s_n.
$$

Proof. Let $f_N = \sum_{n=1}^N s_n, 0 \le f_1 \le f_2 \le \ldots$

$$
\lim_{N \to \infty} f_N(x) = \sum_{n=1}^{\infty} s_n(x)
$$

By MCT, we have

$$
\lim_{N \to \infty} \sum_{1}^{N} s_n = \sum_{1}^{\infty} s_n
$$

$$
\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n.
$$

Recall that

$$
\liminf_{n \to \infty} f_n := \lim_{k \to \infty} \inf_{n \ge k} f_n = \sup_{k \in \mathbb{N}} \inf_{n \ge k} f_n,
$$

and

$$
\lim_{n \to \infty} a_n \text{ exists} \iff \limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n.
$$

Proof. Let $g_k = \inf_{n \geq k} f_n \implies s_k$ measurable and $0 \leq g_1 \leq g_2 \leq \dots$ By MCT, we have

$$
\int \liminf_{n \to \infty} \int \lim_{k \to \infty} s_k = \lim_{k \to \infty} \int s_k = \lim_{k \to \infty} \int \inf_{n \ge k} f_n
$$

$$
\inf_{n\geq k} f_n \leq f_m, \forall m \geq k
$$

$$
\implies \int \inf_{n\geq k} f_n \leq \int f_m, \forall m \geq k
$$

$$
\implies \int \inf_{n\geq k} f_n \leq \inf_{m\geq k} \int f_m
$$

 \blacksquare

Example 2.21. Suppose $(\mathbb{R}, \mathcal{L}, m)$

- (a) (escape to horizontal infinity) $f_n = 1_{(n,n+1)}$. We see that $f_n \to 0 = f$ pointwise and $\int f_n = 1, \forall n, \int f = 0$.
- (b) (escape to width infinity) $f_n = \frac{1}{n} 1_{(0,n)}$.
- (c) (escape to vertical infinity) $f_n = n \mathbb{1}_{(0,1/n)}$.

Lemma 2.22 (Markov's inequality). $f \ge 0$ *is measurable* \implies

$$
\forall c \in (0, \infty), \ \mu\left(\{x \mid f(x) \ge c\}\right) \le \frac{1}{c} \int f.
$$

Proof. Let $E = \{x \mid f(x) \ge c\}$. Then

$$
f(x) \ge c1_E(x) \implies \int f \ge c \int 1_E = c\mu(E).
$$

Proposition 2.23. Suppose $f \ge 0$ measurable. Then $\int f = 0 \iff f = 0$ almost everywhere *(a.e.)*

$$
\int f d\mu = \mu(A) = 0, A = \{x \mid f(x) > 0\} = f^{-1}((0, \infty])
$$

Proof. (a) Assume $f = \phi$ a simple function. We may assume

$$
\phi = \sum_{i=1}^{N} c_i 1_{E_i}, \ c_i \in (0, \infty), \ E_i \text{'s are disjoint.}
$$

$$
\int \phi = \sum_{i=1}^{N} c_i \mu(E_i) = 0
$$

$$
\iff \mu(E_1) = \dots = \mu(E_N) = 0
$$

$$
\iff \mu(A) = 0, A = \bigcup_{i=1}^{N} E_i.
$$

- (b) General $f \geq 0$.
	- (1) Assume $\mu(A) = 0$ (i.e. $f = 0$ a.e.)

Let $0\leq \phi\leq f, \phi$ is simple.

$$
\implies \phi(x) = 0, \forall x \in A^c
$$

$$
\implies \phi = 0 \text{ a.e.}
$$

$$
\implies \int \phi = 0
$$

Then $\int f = 0$ by the definition of $\int f$.

(2) Assume inf $f = 0$. Let $A_n = f^{-1}([\frac{1}{n}, \infty])$

$$
\implies A_1 \subset A_2 \subset \dots
$$

$$
\bigcup_{n=1}^{\infty} A_n = f^{-1} \left(\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, \infty \right] \right) = f^{-1}((0, \infty)) = A
$$

$$
\mu(A_n) = \mu \left(\left\{ x \mid f(x) \ge \frac{1}{n} \right\} \right) \le n \int f = 0
$$

$$
\implies \mu(A) = \lim_{n \to \infty} \mu(A_n) = 0
$$

by the continuity of measure from below. \blacksquare

Corollary 2.24. $f, g \ge 0$ are measurable, $f = g$ a.e. $\implies \int f = \int g$.

Proof. Let $A = \{x \mid f(x) \ge g(x)\}\$. A is measurable (why?). By assumption $\mu(A) = 0$. Hence $f1_A = 0$ a.e.

$$
\int f = \int f(1_A + 1_{A^c})
$$

=
$$
\int f1_A + \int f1_{A^c}
$$

=
$$
\int f1_{A^c}
$$

=
$$
\int g1_{A^c} = \int g1_A + \int g1_{A^c} = \int g.
$$

Corollary 2.25. $f_n \geq 0$ *measurable. Then*

(a)

$$
0 \le f_1 \le f_2 \le \dots \le f \text{ a.e. } \}
$$

$$
\lim_{n \to \infty} f_n = f \text{ a.e. } \}
$$

$$
\implies \lim_{n \to \infty} f_n = \int f.
$$

(b)

$$
\lim_{n \to \infty} f_n = f \ a.e \implies \int f \le \liminf_{n \to \infty} \int f_n.
$$

2.3 Integration of Complex Functions

I was afraid that you are bored.

— Jinho Baik on homework

Definition 2.26. (X, \mathcal{A}, μ) measure space.

• $f: X \to \overline{\mathbb{R}}$ or $f: X \to \mathbb{C}$ measurable functions is called *integrable* if $\int |f| < \infty$. Then

$$
\int f = \int f^+ - \int f^- \text{ or } \int f = \int u^+ - \int u^- + i \left(\int v^+ - \int v^- \right).
$$

• Suppose $f : X \to \overline{\mathbb{R}}$. Define

$$
\int f = \begin{cases} \infty & \int f^+ = \infty, \int f^- < \infty, \\ -\infty & \int f^+ < \infty, \int f^- = \infty. \end{cases}
$$

Lemma 2.27. *Suppose* $f, g : x \to \overline{\mathbb{R}} \to \mathbb{C}$ *integrable. Assume* $f(x) + g(x)$ *is well-defined* ∀x ∈ X*. (i.e.* ∞ + (−∞)*,* −∞ + ∞ *do not occur)*

- (a) $f + g$, cf , $c \in \mathbb{C}$ *are integrable.*
- *(b)* $\int f + g = \int f + \int g$. *(c)* $\int f$ $\leq \int |f|$. (This is essentially triangle inequality.)

Proof. Check [\[Fol99,](#page-81-1) p.53]. ■

Lemma 2.28. (X, \mathcal{A}, μ) *measure space and* f integrable *function on* X *.*

- *(a) f is finite a.e. (i.e.* $\{x \in X : |f(x)| = \infty\}$ *is a null set)*
- *(b) The set* $\{x \in X : f(x) \neq 0\}$ *is* σ -finite.

Proof. HW5Q8.

Proposition 2.29. *Suppose* (X, \mathcal{A}, μ) *a measure space.*

(a) If h *is integrable on* X*, then*

$$
\int_E h = 0, \forall E \in \mathcal{A} \iff \int |h| = 0 \iff h = 0 \text{ a.e.}
$$

(b) If f, g *are integrable on* X *then*

$$
\int_E f = \int_E g, \forall E \in \mathcal{A} \iff f = g \text{ a.e.}
$$

Proof. (a) $\int |h| = 0 \iff h = 0$ is shown in [2.23.](#page-27-0)

$$
\int |h| = 0 \implies \left| \int_E h \right| \le \int_E |h| \le \int |h| = 0.
$$

On the other hand, assume $\int_E h = 0, \forall E \in \mathcal{A}$. $h = u + iv = u^+ - u^- + i(v^+ - v^-)$. Let $B = \{x \mid u^+(x) > 0\}.$

$$
0 = \text{Re} \int_B h = \int_B u = \int_B u^+ = \int_B u^+ + \int_{B^c} u^+ = \int u^+ \implies u^+ = 0 \text{ a.e.}
$$

Similarly, we get $u^-, v^+, v^- = 0$ a.e..

(b) follows from (a).

Theorem 2.30 (Dominated convergence theorem). *Suppose* (X, \mathcal{A}, μ) *a measure space and*

- *(a)* f_n integrable *on* X *,* $\forall n \in \mathbb{N}$ *.*
- (b) $\lim_{n \to \infty} f_n(x) = f(x)$ *a.e.* (pointwise)
- $(c) \exists g: X → [0, ∞] s.t.$
	- g *is integrable.*
	- $|f_n(x)| \leq g(x)$ *a.e.*, $\forall n \in \mathbb{N}$.

Then

$$
\lim_{n \to \infty} \int f_n = \int f.
$$

Proof. Let F be the countable union of null sets on which (a)-(c) may fail. Modifying the def of f_n , f , g on F we may assume (a)-(c) hold everywhere. (b)+(c) \implies f is integrable.

We consider $\overline{\mathbb{R}}$ -valued case only. (C-valued case follows)

$$
g + f_n \ge 0, g - f_n \ge 0
$$

\n
$$
\xrightarrow{\text{Fatou}} \int g + f \le \liminf_{n \to \inf} \int g + f_n, \quad \int g - f \le \liminf_{n \to \inf} \int g - f_n
$$

\n
$$
\implies \int g + \int f \le \int g + \liminf_{n \to \infty} \int f_n, \quad \int g - \int f \le \int g - \limsup_{n \to \infty} \int f_n
$$

\n
$$
\xrightarrow{\int g < \infty} \int f \le \liminf_{n \to \infty} \int f_n, \quad - \int f \le - \limsup_{n \to \infty} \int f_n.
$$

\n
$$
\implies \int f \le \liminf_{n \to \infty} \int f_n \le \limsup_{n \to \infty} \int f_n \le \int f
$$

So we should have

$$
\int f = \liminf_{n \to \infty} \int f_n = \limsup_{n \to \infty} \int f_n.
$$

Next we investigate the question:

$$
\int \sum_{1}^{\infty} f_n \stackrel{?}{=} \sum_{1}^{\infty} \int f_n.
$$

Tonelli: yes if $f_n \geq 0$. Fubini:

Corollary 2.31 (Fubini's theorem for series and integrals)**.**

$$
\sum_{n=1}^{\infty} \int |f_n| < \infty \quad \Rightarrow \quad \int \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int f_n.
$$
\nProof. $G(x) = \sum_{n=1}^{\infty} |f_n(x)| \ge |F_N(x)|, F_N(x) = \sum_{n=1}^{N} f_n(x).$

1

2.4 L¹ **space**

Definition 2.32. Suppose V is a vector space over field \mathbb{R} or \mathbb{C} . A *seminorm* on V is $\|\cdot\| : V \to [0, \infty) \text{ s.t.}$

1

- $||cv|| = |c| ||v||$, $\forall v \in V$, $\forall c$ scalar
- $||v + w|| \le ||v|| + ||w||$, triangle inequality

A *norm* is a seminorm such that $||v|| \iff v = 0$.

Lemma 2.33. *A normed vector space is a metric space with metric* $\rho(v, w) = ||v - w||$ *.*

Proof. (DIY)

- $\rho(v, w) = 0 \iff ||v w|| = 0 \iff v w = 0 \iff v = w.$
- $\rho(v, w) = ||v w|| = ||-1(w v)|| = |-1| ||w v|| = \rho(w, v).$
- $\rho(v, w) + \rho(w, z) = ||v w|| + ||w z|| \ge ||v w + w z|| = ||v z|| = \rho(v, z).$

Example 2.34. \mathbb{R}^d with $||x||_p =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\left(\sum^{d}\right)$ 1 $|x_i|^p\bigg)^{1/p}$ $p \in [1,\infty)$ $\max_{1 \leq i \leq d} |x_i|$ $p = \infty$ is a normed vector space.

Unit ball $\{x : ||x||_p < 1\}.$

All $\|\cdot\|_p$ norm induce the same topology i.e. if U is open in p-norm then it is open in p' -norm. This implies that a sequence converging under p -norm also converges under p' -norm.

RECALL *f* is integrable \implies $\int |f| < \infty$. $f = g$ a.e. \implies $\int f = \int g$.

Definition 2.35. Suppose (X, \mathcal{A}, μ) a measure space.

 $f \in L^1(X, \mathcal{A}, \mu) = L^1(X, \mu) = L^1(X) = L^1(\mu)$ means f is an integrable function on X.

Lemma 2.36. $L^1(X, \mathcal{A}, \mu)$ is a vector space with seminorm $||f||_1 = \int |f|$.

Definition 2.37. Define $f \sim g$ if $f = g$ a.e. $L^1(X, \mathcal{A}, \mu)/\sim = L^1(X, \mathcal{A}, \mu)$. " = " is just a notation for convenience!

With new definition we have $L^1(X, \mathcal{A}, \mu)$ is a normed vector space. $\rho(f, g) = \int |f - g|.$

Something interesting to discuss is what are the dense subsets of L^1 .

Theorem 2.38.

- (a) $\{$ *integrable simple functions* $\}$ *is dense in* $L^1(X, \mathcal{A}, \mu)$ (with respect to L^1 metric)
- (b) $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{A}_{\mu}, \mu)$, μ *is Lebesgue-Stieltjes measure* \implies { *integrable step functions* } *is dense in* $L^1(X, \mathcal{A}, \mu)$
- (c) $C_c(\mathbb{R})$ *is dense in* $L^1(\mathbb{R}, \mathcal{L}, m)$ *.*

Definition 2.39.

- A step function on \mathbb{R} is $\psi + \sum_{1}^{N} c_i 1_{I_i}$, where I_i is an interval.
- $C_c(\mathbb{R})$ is the collection of continuous functions with compact support supp (f) = $\overline{\{x \in \mathbb{R} \mid f(x) \neq 0\}}$.

Proof. (a) \exists simple functions $0 \leq |\phi_1| \leq |\phi_2| \leq \ldots \leq |f|$, $\phi_n \to f$ pointwise \implies

- (b) 1_E approx by $\sum_1^N c_i 1_{I_i}$? Regularity theorem for Lebesgue-Stieltjes measure \implies $\forall \varepsilon' > 0, \exists I = \bigcup_{1}^{N} I_{i} \ s.t. \ \mu(E \triangle I) < \varepsilon'.$
- (c) Suppose $1_{(a,b)}$, $g \in C_c(\mathbb{R})$. $\int |1_{(a,b)} g| dm \leq 1 \cdot \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}+1\cdot\frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} = \varepsilon.$

2.5 Riemann Integrability

Suppose $P = \{a = t_0 < t_1 < \ldots < t_k = b\}$ a partition of $[a, b]$. Lower Riemann sum of f using P

$$
L_P = \sum_{i=1}^{k} \left(\inf_{[t_{i-1}, t_i]} f \right) (t_i - t_{i-1})
$$

and upper Riemann sum

$$
U_p = \sum_{i=1}^{k} \left(\sup_{[t_{i-1}, t_i]} f \right) (t_i - t_{i-1})
$$

Lower Riemann integral of $f = \underline{I} = \sup_{P} L_{P}$. Upper Riemann integral of $f = \overline{I}$ $\inf_{P} U_P$.

Definition 2.40. A *bounded* function $f : [a, b] \rightarrow \mathbb{R}$ is called Riemann (Darboux) integrable if $\underline{I} = \overline{I}$. (If so, $\underline{I} = \overline{I} = \int_a^b f(x) \, dx$.)

NOTE

- If $P \subset P'$, then $L_P \le L_{P'}$, $U_{P'} \le U_P$.
- Recall that continuous functions on $[a, b]$ are Riemann integrable on $[a, b]$.

Theorem 2.41. *Let* $f : [a, b] \rightarrow \mathbb{R}$ *be a bounded function.*

- *(a) If* f *is Riemann integrable, then* f *is Lebesgue measurable. (thus Lebesgue integrable) and* \int^b a $f(x) dx =$ $\int_{[a,b]} f dm.$
- *(b)* f *is Riemann integrable* ⇐⇒ f *is continuous Lebesgue a.e.*

Proof. ∃partitions $P_1 \subset P_2 \subset P_3 \subset \ldots \text{ s.t. } L_{P_n} \nearrow \underline{I}, U_{P_n} \searrow \overline{I}.$

Define simple (step) functions

$$
\phi_n = \sum_{i=1}^k \left(\inf_{[t_{i-1}, t_i]} \right) 1_{(t_{i-1}, t_i]}
$$

Define $\phi = \sup_n \phi_n$, $\psi = \inf_n \psi_n$. Then ϕ , ψ are Lebesgue measurable functions.

NOTE

- $\exists M > 0 \text{ s.t. } |\phi_n|, |\psi_n| \leq M1[a, b], \forall n \in \mathbb{N}.$
- $\int \phi_n \, dm = L_{P_n}, \int \psi_n \, dm = U_{P_n}.$

 $\text{By DCT, } \underline{I} = \lim_{n \to \infty} \int \phi_n \ \mathrm{d}m = \int \phi \ \mathrm{d}m, \overline{I} = \int \psi \ \mathrm{d}m.$

Thus, f is Riemann integrable $\iff \int \phi = \int \psi \iff \int (\phi - \psi) = 0 \iff \phi = \psi$ Lebesgue a.e.

Recall that $\phi \le f \le \psi, \forall x \in (a, b]$. So $f = \phi$ a.e. Since $(\mathbb{R}, \mathcal{L}, \mu)$ is complete, f is Lebesgue measurable (see HW). The second statement hence follows.

2.6 Modes of Convergence

Suppose $f_n, f: X \to \mathbb{C}, S \subset X$.

- $f_n \to f$ *pointwise* on $S: \forall x \in S, \forall \varepsilon > 0, \exists N \in \mathbb{N} \ s.t. \ \forall n \geq \mathbb{N}, |f_n(x) f(x)| < \varepsilon$.
- $f_n \to f$ *uniformly* on $S: \forall \varepsilon > 0, \exists N \in \mathbb{N} \ s.t. \ \forall x \in X, \forall n \geq \mathbb{N}, |f_n(x) f(x)| < \varepsilon$.

We can change $\forall \varepsilon > 0$ to $\forall k \in \mathbb{N}$ and bound the distance by $\frac{1}{k}$.

Lemma 2.42. *Let* $B_{n,k} = \{x \in X \mid |f_n(x) - f(x)| < \frac{1}{k}\}.$

(a) $f_n \to f$ pointwise on $S \iff S \subset \bigcap^{\infty}$ $k=1$ \int_{0}^{∞} $N=1$ $\sum_{i=1}^{\infty}$ $n = N$ $B_{n,k}$. (b) $f_n \to f$ uniformly on $S \iff \exists N_1, N_2, \ldots \in \mathbb{N} \ s.t. \ S \subset \bigcap^{\infty}$ \bigcap^{∞} $B_{n,k}$.

Definition 2.43. Suppose (X, \mathcal{A}, μ) a measure space.

- (a) $f_n \to f$ a.e means \exists null set E s.t. $f_n \to f$ pointwise on E^c .
- (b) $f_n \to f$ in L^1 means $\lim_{n \to \infty} ||f_n f|| = 0$.

Example 2.44. $(\mathbb{R}, \mathcal{L}, \mu)$. $f = 0$.

(a) $f_n = 1_{(n,n+1)}, f_n = \frac{1}{n} 1_{(0,n)}, f_n = n 1_{(0,\frac{1}{n})}.$ All of $f_n \to f$ pointwise but $\to f$ in L^1 .

 $k=1$

 $n=N_k$

(b) Typewriter functions: $f_n \to f$ in L^1 . $f_n \not\to f$ a.e.

Proposition 2.45 (Fast L^1 convergence \implies a.e. convergence). *Suppose* (x, \mathcal{A}, μ) *measure*

space. f_n , f *measurable function on* X *.*

$$
\sum_{1}^{\infty} \|f_n - f\|_1 < \infty \implies f_n \to f \text{ a.e.}
$$

Proof. RECALL Markov's inequality.

Let $E = \bigcup_{n=1}^{\infty}$ $k=1$ \bigcap^{∞} $N=1$ \int_{0}^{∞} $n = N$ $B_{n,k}^c = \{x \mid f_n(x) \nrightarrow f(x)\}.$ By Markov we have $\forall k, \forall N, \mu(B_{n,k}^c) \leq k \int |f_n - f|$ $\Longrightarrow \forall k, \mu \bigg(\bigwedge^{\infty}$ $n = N$ $B_{n,k}^c \bigg) \leq \sum^\infty$ $n = N$ $k \|f_n - f\|_1 \to 0$ as $n \to 0$ $\Longrightarrow \forall k, \mu \bigg(\bigcap^{\infty}$ $N=1$ \bigcap^{∞} $n = N$ $B_{n,k}^c$ = $\lim_{N\to\infty}\mu\left(\bigcap_{n=1}^\infty\right)$ $n = N$ $B_{n,k}^c$ = 0 $\Longrightarrow \mu(E) = 0.$

Corollary 2.46. $f_n \to f$ in $L^1 \implies \exists$ subsequence $f_{n_j} \to f$ a.e.

Proof. ∀*j* ∈ ℕ, ∃*n_j* ∈ ℕ *s.t.* $||f_{n_j} - f||_1 < \frac{1}{j^2}$. Then $\sum_{j=1}^{\infty} ||f_{n_j} - f||_1 < \infty$. ■

Definition 2.47. f_n , f measurable functions on (X, \mathcal{A}, μ) . $f_n \to f$ *in measure* means

$$
\forall \varepsilon > 0, \lim_{n \to \infty} \mu \left(\{ x \in X \mid |f_n(x) - f(x)| \ge \varepsilon \} \right) = 0.
$$

Example 2.48. • $f_n = n1_{(0,\frac{1}{n})}, f = 0.$

$$
\forall \varepsilon > 0, \{x \mid |f_n(x) - f(x)| > \varepsilon\} = \left(0, \frac{1}{n}\right).
$$

(Recall that $f_n \nrightarrow 0$ in L^1 .)

• Typewriter function. (Recall that $f_n \nrightarrow 0$ a.e.)

We can easily check that $f_n \to f$ in $L^1 \implies f_n \to f$ in measure. But the converse is not true.

 $f_n \to f$ in measure $\implies \exists f_{n_j} \to f$ a.e. (Check [\[Fol99\]](#page-81-1))
We have then the following diagram:

$$
f_n \to f \text{ fast } L^1 \implies f_n \to f \text{ in } L^1 \n\xrightarrow{\longrightarrow} f_n \to f \text{ in measure}
$$
\n
$$
f_n \to f \text{ a.e.} \qquad \exists f_{n_j} \to f \text{ a.e.}
$$

Definition 2.49. f_n , f measurable functions on (X, \mathcal{A}, μ) .

- (a) $f_n \to f$ *uniformly a.e* means \exists null set F *s.t.* $f_n \to f$ uniformly on F^c .
- (b) $f_n \to f$ *almost uniformly* means $\forall \varepsilon > 0, \exists F \in \mathcal{A}, s.t. \mu(F) < \varepsilon, f_n \to f$ uniformly on F^c .

Recall [2.42.](#page-34-0)

Theorem 2.50 (Egoroff). f_n , f measurable on (X, \mathcal{A}, μ) . Suppose $\mu(X) < \infty$. Then $f_n \to f$ $a.e \iff f_n \to f$ almost uniformly.

Proof. "
$$
\leftarrow
$$
 ": DIV

$$
\begin{aligned}\n\overrightarrow{f}_n \to \overrightarrow{f} &\text{ is } \varepsilon > 0. \\
f_n \to f &\text{ a.e.} \implies \mu \left(\bigcup_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} B_{n,k}^c \right) = 0 \implies \forall k, \mu \left(\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} B_{n,k}^c \right) = 0.\n\end{aligned}
$$

By the continuity of measure from above and since $\mu(X) < \infty$,

$$
\forall k, \lim_{N\to\infty}\mu\left(\bigcup_{n=N}^\infty B_{n,k}^c\right)=0\implies \forall k, \exists N_k\in\mathbb{N}, \mu\left(\bigcup_{n=N_k}^\infty B_{n,k}^c\right)<\frac{\varepsilon}{2^k}.
$$

Let $F = \bigcup_{r=1}^{\infty}$ $k=1$ \int_{0}^{∞} $n=N_k$ $B_{n,k}^c \implies \mu(F) < \varepsilon, f_n \to F$ uniformly on F^c .

Chapter 3

Product Measures

(p.22 - 36, section 1.2 and section 2.5, 2.6 of [\[Fol99\]](#page-81-0))

The ultimate goal is to prove Fubini's theorem. This is also related to probability in in the sense that a series of events is in product measure.

3.1 Product σ**-algebra**

- Product space $X = \prod_{\alpha \in I} X_{\alpha}, x = (x_{\alpha})_{\alpha \in I}$.
- Coordinate map $\pi_{\alpha}: X \to X_{\alpha}$.

Definition 3.1. $(X_\alpha, {\cal A}_\alpha)$ measurable space. $\forall \alpha \in I$, the *product* σ *-algebra* on $X = \prod X_\alpha$ $\alpha \in I$ is

$$
\bigotimes_{\alpha \in I} A_{\alpha} = \left\langle \bigcup_{\alpha \in I} \pi_{\alpha}^{-1} \left(A_{\alpha} \right) \right\rangle
$$

where

$$
\pi_{\alpha}^{-1}(A_{\alpha}) = \{\pi_{\alpha}^{-1}(E)|E \in \mathcal{A}_{\alpha}\}.
$$

NOTATION

$$
I = \{1, \ldots, d\} \implies X = \prod_{i=1}^d X_i, x = (x_1, \ldots, x_d), \bigotimes_{i=1}^d \mathcal{A}_i = \mathcal{A}_1 \otimes \ldots \otimes \mathcal{A}_d.
$$

Lemma 3.2. *If* I *is countable, then*

$$
\bigotimes_{\alpha \in I} A_{\alpha} = \left\langle \left\{ \prod_{i=1}^{\infty} E_i \mid E_i \in \mathcal{A}_i \right\} \right\rangle
$$

Lemma 3.3. *Suppose* $A_{\alpha} = \langle \mathcal{E}_{\alpha} \rangle$, $\forall \alpha \in I$ *.*

(a)
$$
\pi_{\alpha}^{-1}(A_{\alpha}) = \langle \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \rangle
$$
.
\n(b) $\bigotimes_{\alpha} A_{\alpha} = \left\langle \bigcup_{\alpha} \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \right\rangle$.
\n(c) If *I* is countable, then $\bigotimes_{\alpha \in I} A_{\alpha} = \left\langle \left\{ \prod_{i=1}^{\infty} E_i \mid E_i \in \mathcal{E}_i \right\} \right\rangle$.

Proof.

- (a) $f: Y \to Z$, β a σ -algebra on $Z \implies f^{-1}(\beta)$ is a σ -algebra since set union commutes with preimage. Hence $\pi_{\alpha}^{-1}(\mathcal{A}_{\alpha})$ is a σ -algebra on X. Since $\pi_\alpha^{-1}(\mathcal{E}_\alpha) \subset \pi_\alpha^{-1}(\mathcal{A}_\alpha) \implies \big\langle \pi_\alpha^{-1}(\mathcal{E}_\alpha) \big\rangle \subset \pi_\alpha^{-1}(\mathcal{A}_\alpha).$
	- Let $\mathcal{M} = \{B \subset X_\alpha \mid \pi_\alpha^{-1}(B) \in \left\langle \pi_\alpha^{-1}(\mathcal{E}_\alpha) \right\rangle\}$. We show that $\mathcal{A}_\alpha \subset \mathcal{M}$.
		- **–** M is a σ-algebra. (easy)
		- **–** $\mathcal{E}_{\alpha} \subset \mathcal{M}$. (by definition)

So
$$
A_{\alpha} = \langle \mathcal{E}_{\alpha} \rangle \subset \mathcal{M}
$$
. Hence, if $E \in A_{\alpha}, E \subset \mathcal{M} \implies \pi_{\alpha}^{-1}(E) \in \langle \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \rangle$ i.e. $A_{\alpha} \subset \langle \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \rangle$.

(b, c) DIY.

Theorem 3.4. *Suppose* X_1, \ldots, X_d *metric spaces. Let* $X = \prod^d$ 1 X_i with product metric $\rho(x,y) =$

$$
\sum_{i=1}^{d} \rho_i(x, y). \text{ Then}
$$
\n(a)
$$
\bigotimes_{i=1}^{d} \mathcal{B}(X_i) \subset \mathcal{B}(X).
$$

(b) If, in addition, each X_i has a countable dense subset, then \bigotimes^d $i=1$ $\mathcal{B}(X_i) = \mathcal{B}(X)$.

Proof. DIY.

As a consequence, we have $\mathcal{B}(\mathbb{R}^d)=\mathcal{B}(\mathbb{R})\otimes\ldots\otimes\mathcal{B}(\mathbb{R}).$

Suppose $f = u + iv : X \to \mathbb{C}$. f is measurable $\iff u^{-1}(E) \in \mathcal{A}, v^{-1}(E) \in \mathcal{A}, \forall E \in \mathcal{A}$ $\mathcal{B}(\mathbb{R}) \iff f^{-1}(F) \in \mathcal{A}, \forall F \in \mathcal{B}(\mathbb{C}) = \mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R}).$

p.65. Let's focus on finite product.

You like Minecraft right? It's all rectangles.

Definition 3.5. Suppose X, Y sets.

- (a) For a $E \subset X \times Y$, $E_x = \{y \in Y \mid (x, y) \in E\}$ and $E^y = \{x \in X \mid (x, y) \in E\}$.
- (b) For $f: X \times Y \to \mathbb{C}$, define $f_x: Y \to \mathbb{C}$, $f^y: X \to \mathbb{C}$ by $f_x(y) = f(x, y) = f^y(x)$.
- (c)

Example 3.6. $(1_E)_x = 1_{E_x}$. $(1_E)^y = 1_{E^y}$.

Proposition 3.7. $(X, \mathcal{A}), (Y, \mathcal{B})$ *measurable spaces.*

- (a) $E \in \mathcal{A} \otimes \mathcal{B} \implies E_x \in \mathcal{B}, E^y \in \mathcal{A}, \forall x \in X, y \in Y$.
- *(b)* $f: X \times Y \to \mathbb{C}$ *is* $A \otimes B$ *-measurable* $\implies f_x$ *is* B *-measurable,* f^y *is* A *-measurable*, $\forall x \in X, y \in Y.$

Proof. (a) Let $\mathcal{F} = \{E \subset X \times Y \mid (a) \text{ holds}\}.$

- $\mathcal F$ is a σ -algebra (easy)
- $\mathcal{R}_0 := \{ A \times B \mid A \in \mathcal{A}, B \in \mathcal{B} \} \subset \mathcal{F}$ (easy) $\implies A \otimes B = \langle \mathcal{R}_0 \rangle \subset \mathcal{F}$

(b) DIY.

MIDTERM is up till here.

3.2 Product Measures

Definition 3.8. Suppose $(X, \mathcal{A}), (Y, \mathcal{B})$. A (measurable) rectangle is $R = A \times B$, $A \in$ $A, b \in \mathcal{B}$.

Let $\mathcal{R}_0 := \{ R = A \times B \mid A \in \mathcal{A}, B \in \mathcal{B} \}.$

$$
\mathcal{R} := \left\{ \bigcup_{1}^{N} R_i \mid N \in \mathbb{N}, R_1, \ldots, R_N \text{ disjoint rectangles} \right\}.
$$

Lemma 3.9. R *is an algebra.* $\langle R_0 \rangle = \langle R \rangle = A \otimes B$ *.*

Theorem 3.10. *Suppose* (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) *measure spaces.*

- *(a)* ∃ *measure* $\mu \times \nu$ *on* $\mathcal{A} \otimes \mathcal{B}$ *satisfying* $(\mu \times \nu)(A \otimes B) = \mu(A)\nu(B)$, $\forall A \in \mathcal{A}, B \in \mathcal{B}$.
- *(b) If* μ , ν are σ -finite, then $\mu \times \nu$ is unique.

Proof. (a) Define $\pi : \mathcal{R} \to [0, \infty]$ by $\pi(A \times B) = \mu(A)\nu(B)$ and extend linearly.

 $CLAIM \pi$ is a pre-measure on \mathcal{R} .

Enough to check $\pi(A \times B) = \sum_{n=0}^{\infty}$ 1 $\pi(A_n \times B_n)$ if $A \times B = \bigcup_{n=1}^{\infty}$ 1 $(A_n\times B_n)$ disjoint union.

Since $A_n \times B_n$ are disjoint,

$$
1_{A\times B}(x,y)=\sum_{1}^{\infty}1_{A_{n}\times B_{n}}(x,y), 1_{A}(x)1_{B}(y)=\sum_{1}^{\infty}1_{A_{n}}(x)1_{B_{n}}(y).
$$

By Tonelli's theorem for series and integrals, we have

$$
\mu(A)1_B(y) = \int_x 1_A(x)1_B(y) d\mu(x)
$$

=
$$
\sum_{1}^{\infty} \int_x 1_{A_n}(x)1_{B_n}(y) d\mu(x) = \sum_{1}^{\infty} \mu(A_n)1_{B_n}(y).
$$

We then integrate with respect to y to complete the claim.

By HK theorem, $\exists \mu \otimes \nu$ on $\langle \mathcal{R} \rangle = \mathcal{A} \otimes \mathcal{B}$ extending π on \mathcal{R} .

(b) μ , ν σ -finite $\implies \pi$ is σ -finite on $\mathcal{R} \implies HK$ uniqueness them applies.

So we have a measure

$$
(\mu \times \nu)(E) = \inf \left\{ \sum_{1}^{\infty} \mu(A_u) \nu(B_i) \middle| E \subset \bigcup_{1}^{\infty} A_i \times B_i, A_i \in \mathcal{A}, B_i \in \mathcal{B} \right\}.
$$

Then one questions naturally arises: suppose $f : X \times Y \to \mathbb{C}$,

$$
\int_{X \times Y} f d(\mu \times v) \stackrel{?}{=} \int_{y} \left(\int_{x} f d\mu \right) d\nu.
$$

3.3 Monotone Class Lemma

Definition 3.11. Suppose X is a set, $C \subset \mathcal{P}(X)$. C is a *monotone class* on X if

• closed under *countable increasing unions* (i.e. $E_n \in \mathcal{C}, E_1 \subset E_2 \subset \ldots \implies \bigcup_1^{\infty} C_i \in \mathcal{C}.$)

38

• closed under *countable decreasing intersections* (i.e. $E_n \in \mathcal{C}, E_1 \supset E_2 \supset \ldots \implies \bigcap_1^{\infty} C_i \in \mathcal{C}.$)

Example 3.12. • σ -algebra is a monotone class.

• $\bigcap \mathcal{C}_\alpha$ is a monotone class \implies if $\mathcal{E} \in \mathcal{P}(X)$, there is unique smallest monotone $\overset{\alpha}{\text{class}}$ containing $\mathcal{E}.$

The importance of this definition shows up in the following theorem:

Theorem 3.13. *Suppose* A_0 *is an* algebra *on* X. *Then* $\langle A_0 \rangle$ *is the monotone class generated by* \mathcal{A}_0 .

- *Proof.* Let $A = \langle A_0 \rangle$, $C =$ monotone class generated by A_0 .
	- (a) A is a σ -algebra \implies A is a monotone class containing $A_0 \implies A \supset C$.
	- (b) To show that $C \supset A$, we show that C is a σ -algebra.
		- (1) $\emptyset \subset \mathcal{A}_0 \subset \mathcal{C}$.
		- (2) Let $\mathcal{C}' = \{ E \subset X \mid E^c \subset \mathcal{C} \}.$
			- \bullet C' is a monotone class (easy)
			- $A_0 \subset \mathcal{C}'$ since $(E \in \mathcal{A}_0 \implies E^c \in \mathcal{A}_0 \subset \mathcal{C})$.

These two show that $C \subset C'$. So $E \in C \implies E \in C' \implies E^c \in C$. So C is closed under complements.

- (3) For $E \subset X$, let $\mathcal{D}(E) = \{F \in \mathcal{C} \mid E \cup F \in \mathcal{C}\}.$
	- $\mathcal{D}(E) \subset \mathcal{C}$ by definition.
	- $\mathcal{D}(E)$ is a monotone class (easy). $E \cup (\bigcup_{1}^{\infty} F_n) = \bigcap_{1}^{\infty} (E \cup F_n)$.
	- If $E \in \mathcal{A}_0$, then $\mathcal{A}_0 \subset \mathcal{D}(E)$. $(F \in \mathcal{A}_0 \implies E \cup F \in \mathcal{A}_0 \subset \mathcal{C}$.)

These show that $C = \mathcal{D}(E)$ if $E \in \mathcal{A}_0$.

- (4) Let $\mathcal{D} = \{E \in \mathcal{C} \mid \mathcal{D}(E) = \mathcal{C}\} = \{E \in \mathcal{C} \mid E \cup F \in \mathcal{C}, \forall F \in \mathcal{C}\}.$
	- $A_0 \subset \mathcal{D}$ by (3).
	- D is a monotone class (easy).
	- $D \subset C$ by definition.

So we conclude that $D = C$. Now we have C is closed under finite unions.

(5) C is closed under finite unions and countable increasing unions \implies C is closed under countable unions. (check)

RECALL $E \in \mathcal{A} \otimes \mathcal{B} \implies E_x \in \mathcal{B}, E^y \in \mathcal{A}, \forall x \in X, y \in Y$. However, the inverse is not necessarily true.

Now comes the main thing:

3.4 Fubini-Tonelli Theorem

Theorem 3.14 (Tonelli for characteristic functions). *Suppose* (*X*, *A*, μ)*,* (*Y*, *B*, ν) *are* σ -finite *measure spaces. Suppose* $E \in A \otimes B$ *. Then*

- *(a)* $\alpha(x) := \nu(E_x) : X \to [0, \infty]$ *is a A-measurable function.*
- *(b)* $\beta(y) := \mu(E^y) : Y \to [0, \infty]$ *is a B-measurable function.*

(c)
$$
(\mu \times \nu)(E) = \int_X \nu(E_x) d\mu(x) = \int_Y \mu(E^y) d\nu(y).
$$

Proof. (a) Assume μ , ν are finite measures. Let

$$
\mathcal{C} = \{ E \in \mathcal{A} \otimes \mathcal{B} \mid (a), (b), (c) \text{ hold} \}.
$$

Enough to prove that $\langle \mathcal{R} \rangle = \mathcal{A} \otimes \mathcal{B} \subset \mathcal{C}$.

Because of monotone class lemma and that R is a σ -algebra, it is enough to show that $\mathcal{R} \subset \mathcal{C}$ and \mathcal{C} is a monotone class.

• Show that $\mathcal{R} \subset \mathcal{C}$.

$$
\alpha(x) = \nu((A \times B)_x) = \begin{cases} \nu(B) & x \in A \\ 0 & x \notin A \end{cases} = \nu(B)1_A(x).
$$

$$
(\mu \times \nu)(A \times B) = \mu(A)\nu(B)
$$

$$
\iff \int_X \nu((A \times B)_x) d\mu(x) = \nu(B)\mu(A)
$$

• Show that C is a monotone class.

(1) Let $E_n \in \mathcal{C}, E_1 \subset E_2 \subset \ldots$ Need to show that $E = \bigcup_{1}^{\infty} E_n \in \mathcal{C}$.

$$
E_n \in \mathcal{C}, E_1 \subset E_2 \subset \dots
$$

\n
$$
\implies E_x = \bigcup_{1}^{\infty} (E_n)_x, (E_1)_x \subset (E_2)_x \subset \dots
$$

\n
$$
\implies \alpha(x) = \nu(E_x) = \lim_{n \to \infty} \nu ((E_n)_x), \forall x \in X, \quad \alpha_n(x) \text{ } \mathcal{A}\text{-measurable}
$$

This satisfies (a), (b). For (c), we have

$$
(\mu \times \nu)(E) = \lim_{n \to \infty} (\mu \times \nu)(E_n)
$$

=
$$
\lim_{n \to \infty} \int_X \nu((E_n)_x) d\mu(x) \stackrel{MCT}{=} \int_X \nu(E_x) d\mu(X).
$$

So we have shown countable increasing unions.

- (2) Let $F_n \in \mathcal{C}$, $F_1 \supset F_2 \supset \ldots$ Need to show that $F \bigcup_{1}^{\infty} F_n \in \mathcal{C}$. Using continuity of measure from above instead of below, DCT instead of MCT, we obtained a similar result.
- (b) Now assume that μ, ν are σ -finite. Since $X \times Y = \bigcup_{1}^{\infty} (X_n \times Y_n)$, where $X_1 \subset$ $X_2 \ldots, Y_1 \subset Y_2 \subset \ldots$ with $\mu(X_k), \nu(Y_k)$ finite. Apply results from then finite case. (DIY)

Theorem 3.15 (Fubini-Tonelli). *Suppose* (X, \mathcal{A}, μ) *and* (Y, \mathcal{B}, ν) *are σ*-finite measure spaces.

- *(a) (Tonelli)* If $f : X \times Y \to [0, \infty]$ *is* $A \otimes B$ *-measurable then*
	- (1) $g(x) :=$ $\int_Y f(x,y) \, \mathrm{d} \nu(y) : X \to [0,\infty]$ is a A-measurable function. (2) $h(y) :=$ $\int_X f(x, y) \, \mathrm{d}\mu(x) : Y \to [0, \infty]$ *is a B-measurable function.*
	- *(3) We have the iterated integral formula*

$$
\int_{X \times Y} f d(\mu \times \nu) = \int_X \left[\int_Y f(x, y) d\nu(y) \right] d\mu(x)
$$

$$
= \int_X \left[\int_X f(x, y) d\mu(x) \right] d\nu(y).
$$

(b) (Fubini) If $f \in L^1(X \times Y, \mu \times \nu)$, then

(1) $f_x \in L^1(Y, \nu)$ *for* μ -a.e x and $g(x)$ (which is defined μ -a.e) $\in L^1(X, \mu)$ *.* (2) $f^y \in L^1(X, \mu)$ *for v*-a.e *y* and $h(y)$ *(which is defined v-a.e)* $\in L^1(Y, \nu)$ *.* *(3) The iterated integral formula from (a).(3) hold.*

Usually we apply Tonelli to $|f|$ to show $f \in L^1(X \times Y, \mu \times \nu)$ and then apply Fubini to evaluate.

Proof. See [\[Fol99\]](#page-81-0).

3.5 $\,$ Lebesgue Measure on \mathbb{R}^d

Example 3.16 ($(\mathbb{R}^2, \mathcal{L} \otimes \mathcal{L}, m \times m)$ is not complete). Let $A \in \mathcal{L}, A \neq \emptyset, m(A) = 0$. Let $B \subset [0,1], B \notin \mathcal{L}$ (e.g. Vitali set). Then let $E = A \times B, F = A \times [0,1].$ We can see that $E \subset F$ and $F \in \mathcal{L} \otimes \mathcal{L}, (m \times m)(F) = m(A)m([0, 1]) = 0.$

So E is a subnull set but not $\mathcal{L} \otimes \mathcal{L}$ -measurable. (otherwise each section of E is measurable, a contradiction.)

Definition 3.17. Let $(\mathbb{R}^d, \mathcal{L}^d, m^d)$ be the *completion* of $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), m \times \ldots \times m)$, which is same(check!) as the *completion* of $(\mathbb{R}^d, \mathcal{L} \otimes \ldots \otimes \mathcal{L}, m \times \ldots \times m)$.

So how do we compute m^d ?

A rectangle in
$$
\mathbb{R}^d
$$
 is $R = \prod_{i=1}^d E_i$, $E_i \in \mathcal{B}(\mathbb{R})$. Then

$$
m^d(E) = \inf \left\{ \sum_{1}^{\infty} m^d R_k \mid E \subset \bigcup_{1}^{\infty} R_k, R_k \text{ rectangle} \right\}.
$$

Theorem 3.18. Let $E \in \mathcal{L}^d$.

- (*a*) $m^d(E) = \inf \{ m^d(O) | \text{ open } O \supset E \} = \sup \{ m^d(K) | \text{ compact } K \subset E \}.$
- *(b)* $E = A_1$ $\sum_{F}\sigma$ \cup ₁ N_1 \sum_{null} $= A_2$ $\widetilde{G_{\sigma}}$ $\setminus N_2$ \sum_{null} *. (c)* If $m^d(E) < \infty, \forall \varepsilon > 0, \exists R_1, \ldots, R_m$ rectangles whose sides are intervals such that m^d $\sqrt{ }$ $E\triangle \left(\bigcup^m$ 1 $R_i\bigg)\bigg) < \varepsilon.$

Proof. Similar to $d = 1$ case.

Theorem 3.19. Integrable "step functions" and $C_c(\mathbb{R}^d)$ are dense in $L^1(\mathbb{R}^d, \mathcal{L}^d, m^d)$.

Theorem 3.20. *Lebesgue measure in* R d *is translation-invariant.*

Theorem 3.21. *"Effect of linear transformations on Lebesgue measure"*

Skip p. 71-81 of [\[Fol99\]](#page-81-0) except [3.21.](#page-44-0)

Chapter 4

Differentiation on Euclidean Space

Suppose $f:[a,b]\rightarrow\mathbb{R}.$ There are two versions of fundamental theorem of Calculus:

 \bullet \int^b a $f'(x) dx = f(b) - f(a).$ \bullet $\frac{d}{1}$ dx \int_0^x $\int_a f(t)dt = f(x).$

We focus on the second statement, which implies that

$$
\lim_{r \to 0^+} \frac{1}{r} \int_x^{x+r} f(t) dt = \lim_{r \to 0^+} \frac{1}{r} \int_{x-r}^x f(t) dt
$$

Write $f(x) = \frac{1}{r}$ \int_0^{x+r} $\int_{x} f(x) \, \mathrm{d}t$, then

$$
\lim_{r \to 0^+} \frac{1}{r} \int_x^{x+r} (f(t) - f(x)) dt = \lim_{r \to 0^+} \frac{1}{r} \int_{x-r}^x (f(t) - f(x)) dt.
$$

This generalizes well in \mathbb{R}^d :

$$
f: \mathbb{R}^d \to \mathbb{R}, \quad \lim_{r \to 0^+} \frac{1}{v(B(x,r))} \int_{B(x,r)} f(t) - f(x) dt = 0.
$$

QUESTION to what extent does this hold?

Start from [\[Fol99,](#page-81-0) 3.4].

4.1 Hardy-Littlewood Maximal Function

Suppose an open ball in \mathbb{R}^d , $B = B(a, r)$. Denote $cB = B(a, cr)$, $c > 0$.

Lemma 4.1 (Vitali-type covering lemma). Let B_1, \ldots, B_k be a finite collection of open balls i n R^d . Then \exists a sub-collection B'_1,\ldots,B'_m of $\operatorname{disjoint}$ open balls such that

$$
\bigcup_{1}^{m} (3B'_j) \supset \bigcup_{1}^{k} B_i.
$$

Proof. Greedy algorithm.

NOTATION: E $f dm =$ $\int_E f(x) dx.$ **Definition 4.2.** $f : \mathbb{R}^d \to \mathbb{C}$ is Lebesgue measurable. f is *locally integrable* if

$$
\int_K |f| \, \mathrm{d} m < \infty, \forall \text{ compact } K \subset \mathbb{R}^d.
$$

We write $f \in L^1_{loc}(\mathbb{R}^d)$.

Example 4.3. $f(x) = x^2 \in L^1_{loc}(\mathbb{R}^d)$. (in fact all continuous functions $\in L^1_{loc}(\mathbb{R}^d)$). **Definition 4.4.** For $f \in L^1_{loc}(\mathbb{R}^d)$, define Hardy-Littlewood maximal function for f

$$
Hf(x) = \sup\{A_r(x) \mid r > 0\}, \quad A_r(x) = \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y)| \, dy.
$$

Lemma 4.5. *Let* $f \in L^1_{loc}(\mathbb{R}^d)$ *. Then,*

- (a) $A_r(x)$ *is jointly continuous for* $(x, r) \in \mathbb{R}^d \times (0, \infty)$ *.*
- *(b)* Hf(x) *is Borel measurable.*

Proof.

(a) $(x,r) \to (x^*, r^*) \implies A_r(x) \to A_{r^*}(x^*).$ Let (x_n, r_n) be any sequence $\rightarrow (x^*, r^*)$.

$$
A_{r_n}(x_n) \leq \int |f(y)| 1_{B(x_n,r_n)}(y).
$$

Apply DCT.

(b)
$$
(Hf)^{-1}((a,\infty)) = \bigcup_{r>0} A_r^{-1}((a,\infty))
$$
 is open.

RECALL Markov inequality

$$
m(\lbrace x \mid |f(x)| \ge c \rbrace) \le \frac{1}{c} \int |f(x)| dx
$$

Theorem 4.6 (Hardy-Littlewood maximal inequality). $\exists C_d > 0 \text{ s.t. } \forall f \in L^1_{loc}(\mathbb{R}^d), \forall \alpha > 0$ 0*,*

$$
m(\lbrace x \mid Hf(x) > \alpha \rbrace) \leq \frac{C_d}{\alpha} \int |f(x)| dx.
$$

Proof. Fix $f \in L^1$ and $\alpha > 0$. Let $E = \{x \mid (Hf)(x) > \alpha\}$. *E* is a Borel measurable set. Then

$$
x \in E \implies \exists r_x > 0, \ s.t. \ A_{r_x}(x) > \alpha \implies m(B(x, r_x)) < \frac{1}{\alpha} \int_{B(x, r_x)} |f(y)| \, \mathrm{d}y.
$$

By inner regularity, we have $m(E) = \sup\{m(K) \mid \text{ compact } K \subset E\}$. Let $K \subset E$ be compact. Then

$$
K \subset \bigcup_{x \in K} B(x, r_x)
$$

\n
$$
\implies K \subset \bigcup_{j=1}^{m} i = 1^{N} B_{i}
$$

\n
$$
\implies K \subset \bigcup_{j=1}^{m} (3B'_{j}), B'_{1}, \dots, B'_{m} \text{ disjoint}
$$

\n
$$
\implies m(K) \le \sum_{j=1}^{n} m(3B'_{j}) = 3^{d} \sum_{j=1}^{n} m(B'_{j})
$$

\n
$$
\implies m(K) \le \frac{3^{d}}{\alpha} \sum_{j=1}^{N} \int_{B'_{j}} |f(y)| dy
$$

\n
$$
\implies m(K) \le \frac{3^{d}}{\alpha} \int_{\mathbb{R}^{d}} |f(y)| dy.
$$

4.2 Lebesgue Differentiation Theorem

Theorem 4.7. *Let* $f \in L^1(\mathbb{R}^d)$ *. Then*

$$
\lim_{r\to 0}\frac{1}{m(B(x,r))}\int_{B(x,r)}\left|f(y)-f(x)\right|\,\mathrm{d} y=0\,\text{for a.e x}.
$$

Proof. (a) The result holds for $f \in C_c(\mathbb{R}^d)$ (check!)

(b) Let $f \in L^1(\mathbb{R}^d)$. Fix $\varepsilon > 0$. $\exists g \in C_c(\mathbb{R}^d)$ s.t. $||f - g||_1 < \varepsilon$. Then

$$
\int_{B(x,r)} |f(y) - f(x)| dy
$$
\n
$$
\leq \int_{B(x,r)} |f(y) - g(y)| dy + \int_{B(x,r)} |g(y) - g(x)| dy + \int_{B(x,r)} |g(x) - f(x)| dy.
$$

Let $Q(x) = \limsup_{r \to 0}$ $\displaystyle{\frac{1}{m(B(x,r))}\int_{B(x,r)}|f(y)-f(x)|\,\mathrm{d}y}.$ We want to show that

$$
m(\{x \mid Q(x) > 0\}) = m\left(\bigcup_{n=1}^{\infty} \left\{x \mid Q(x) > \frac{1}{n}\right\}\right) = 0.
$$

Enough to show that $m(E_{\alpha}) = 0$, $\forall \alpha > 0$, $E_{\alpha} = \{x \mid Q(x) > \alpha\}.$ But $Q(x) \leq (H(f-g))(x) + 0 + |g(x) - f(x)| \implies$

$$
\{x \mid Q(x) > \alpha\} \subset \left\{x \mid H(f-g)(x) > \frac{\alpha}{2}\right\} \bigcup \left\{x \mid |g(x) - f(x)| > \frac{\alpha}{2}\right\}.
$$

So we have

$$
m(\lbrace x \mid Q(x) > \alpha \rbrace) \le \frac{2C_d}{\alpha} \left\|f - g\right\|_1 + \frac{2}{\alpha} \left\|f - g\right\|_1 \le \frac{2(C_d + 1)}{\alpha} \varepsilon.
$$

Corollary 4.8. *This also holds for* $f \in L^1_{loc}(\mathbb{R}^d)$ *.*

Proof. DIY.

Corollary 4.9. *For* $f \in L^1_{loc}(\mathbb{R}^d)$ *,*

$$
\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) dy = 0
$$
 for a.e x.

Proof. DIY.

Definition 4.10. Let $f \in L^1_{loc}(\mathbb{R}^d)$. The point $x \in \mathbb{R}^d$ is called a *Lebesgue point* of f if

$$
\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| = 0.
$$

 $f \in L^1_{loc}(\mathbb{R}^d) \implies$ a.e point is a Lebesgue point of f .

Definition 4.11. ${E_r}_{r>0}$ *shrinks nicely* to x as $r \to 0$ means $E_r \subset B(x,r)$ and $\exists c >$

0 s.t. $cm(B(x, n)) \le m(E_r)$.

Corollary 4.12 (Lebesgue differentiation theorem)**.**

$$
\left.\begin{array}{c} E_r \text{ shrinks nicely to 0} \\ f \in L^1_{\text{loc}}(\mathbb{R}^d) \\ x \text{ a Lebesgue point of } f \end{array}\right\} \implies \lim_{r \to 0} \frac{1}{m(E_r)} \int_{E_r+x} |f(y) - f(x)| \, \mathrm{d}y = 0.
$$

Proof. DIY.

Corollary 4.13. $f \in L^1_{loc}(\mathbb{R}^d) \implies F(x) = \int_0^x f(y) \, dy$ *is differentiable and* $F'(x) = f(x)$ *a.e.*

Rest of [\[Fol99,](#page-81-0) Ch.3] will be covered later.

Chapter 5

Normed Vector Spaces

Topological spaces ⊃ metric spaces ⊃ normed spaces ⊃ inner product spaces. Let's start with metric spaces. [\[Fol99,](#page-81-0) 5.1, 6.1, 6.2]

5.1 Metric Spaces and Normed Spaces

Definition 5.1. Suppose *Y* is a set. A *metric* of *Y* is $\rho: Y \times Y \to [0, \infty)$ *s.t.*

- (a) $\rho(x, y) = \rho(y, x)$
- (b) $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$
- (c) $\rho(x, y) = 0 \iff x = y$.

Example 5.2.

- (a) $\mathbb{Q}, \rho(x, y) = |x y|$.
- (b) $\mathbb{R}, \rho(x, y) = |x y|$.
- (c) \mathbb{R}_+ , $\rho(x, y) = \left| \ln \left(\frac{y}{x} \right) \right|$ $\Big) \Big|.$

(d)
$$
\mathbb{R}^d
$$
, $\rho_1(x, y) = \sum_{i=1}^d |x_i - y_i|$, $\rho_p(x, y) = \left(\sum_{i=1}^d |x_i - y_i|^p\right)^{1/p}$, $\rho_{\infty}(x, y) = \max_{1 \le i \le d} |x_i - y_i|$.
\n(e) $C(\begin{bmatrix} 0 & 1 \end{bmatrix})$, ρ $(f, g) = \left(\int_0^1 |f - g|^p\right)^{1/p}$, $\rho_{\infty} = \max |f(g) - g(g)|$.

(e)
$$
C([0,1]), \rho_p(f,g) = \left(\int_0^1 |f-g|^p\right)^{1/p}, \rho_{\infty} = \max_{x \in [0,1]} |f(x) - g(x)|.
$$

They are all metric spaces.

Definition 5.3 (Recall [2.32\)](#page-31-0)**.** Suppose V is a vector space over field R or C. A *seminorm*

on V is $\|\cdot\| : V \to [0, \infty)$ s.t.

- $||cv|| = |c| ||v||$, $\forall v \in V$, $\forall c$ scalar
- $||v + w|| \le ||v|| + ||w||$, triangle inequality

A *norm* is a seminorm such that $||v|| \iff v = 0$.

Norm gives rise to a metric where $\rho(v, w) = ||v - w||$.

 $v_n \to v \iff \lim_{n \to \infty} ||v_n - v|| = 0.$

Example 5.4. (a) $L^1(X, \mathcal{A}, \mu)$

(b) $C([0, 1]), ||f||_1 = \int_0^1 |f(x)| dx, ||f||_{\infty} \max_{0 \le x \le 1} |f(x)|.$ (c) \mathbb{R}^d , $||x||_2 = \sqrt{\sum_1^d |x_i|^2}$, $||x||_1 = \sum_1^d |x_i| ||x||_{\infty} \max_{1 \leq i \leq d} |x_i|$.

5.2 L^p Spaces

Definition 5.5. Suppose (X, \mathcal{A}, μ) a measure space. f is measurable function. For $0 <$ $p < \infty$, define $\left\|f\right\|_p = \Big(\begin{array}{c} 1 \end{array} \Big)$ X $|f|^p \, \mathrm{d}\mu \bigg)^{1/p}$. Define $L^p(X, \mathcal{A}, \mu) = \left\{ f \; \middle| \right.$ $||f||_p < \infty$. **Example 5.6.**

Definition 5.7. $\ell^p = \ell^p(N) = \{a = (a_1, a_2, \ldots) \mid ||a||_p = \left(\sum_1^{\infty} |a_i|^p\right)^{1/p} < \infty\}.$

Lemma 5.8. L^p is a vector space, $\forall p \in (0, \infty)$.

Proof.

$$
\left(\int |cf|^p\right)^{1/p} = |c| \, ||f||_p \, .
$$

Given the following inequality

$$
(\alpha + \beta)^p \le (2 \max(|\alpha|, |\beta|))^p = 2^p \max(|\alpha|^p, |\beta|^p) \le 2^p (|\alpha|^p + |\beta|^p)
$$

we have

$$
\int |f+g|^p \le 2^p \left(\int (|f|^p + |g|^p) \right) \implies ||f+g||_p \le 2 \left(\int (|f|^p + |g|^p) \right)^{1/p}.
$$

But we want to know that whether

$$
\left\|f+g\right\|_p \le \left\|f\right\|_p + \left\|g\right\|_p
$$

holds.

Theorem 5.9 (Hölder's Inequality). Let $p < \infty$, $q = \frac{p}{p-1}$ so $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$
\left\|fg\right\|_1 \leq \left\|f\right\|_p \left\|g\right\|_q
$$

Proof.

$$
t\leq \frac{t^p}{p}+1-\frac{1}{p}, \forall t\geq 0
$$

(Take $F(t) = t - \frac{t^p}{n}$ $\frac{p}{p}$

$$
\alpha \beta \le \frac{\alpha^p}{p} + \frac{\beta^q}{q}, \forall \alpha, \beta \ge 0 \text{ (Young's inequality)} \tag{5.1}
$$

WLOG assume $0 \leq ||f||_p$, $||g||_q < \infty$. Let $F(x) = \frac{f(x)}{||f||_p}$, $G(x) = \frac{g(x)}{||g||_q}$. \implies $\|F\|_p = 1 = \|G\|_q$. By (5.1), $\int |F(x)G(x)| \leq \int \frac{|F(x)|^p}{p}$ $\frac{(x)|^p}{p} + \int \frac{|G(x)|^q}{q}$ q $\int |f(x)g(x)|$ $\frac{\|f(x)g(x)\|}{\|f\|_p \|g\|_q} \leq \frac{1}{p}$ $\frac{1}{p} + \frac{1}{q}$ $\frac{1}{q} = 1.$

Theorem 5.10 (Minkowski's inequality). Let $1 \leq p < \infty$. For $f, g \in L^p, ||f + g||_p \leq$ $||f||_p + ||g||_p.$

Proof. $p = 1$ is easy.

Assume $1 < p < \infty$. WLOG assume $\left\|f + g\right\|_p \neq 0$. We have

$$
\int |f(x) + g(x)|^p \le \int |f(x) + g(x)|^{p-1} (|f(x)| + |g(x)|)
$$

\n
$$
\le \left(\int (|f + g|^{p-1})^q \right)^{1/q} \left(\int |f|^p \right)^{1/p} + \left(\int (|f + g|^{p-1})^q \right)^{1/q} \left(\int |g|^p \right)^{1/p}
$$

\n
$$
\le \left(\int (|f + g|^{p-1})^q \right)^{1/q} \left[\left(\int |f|^p \right)^{1/p} + \left(\int |g|^p \right)^{1/p} \right]
$$

\n
$$
\le \left(\int (|f + g|^{p-1})^q \right)^{1/q} \left[||f||_p + ||g||_p \right]
$$

 \blacksquare

Since $q(p-1) = p$, divide by $\left(\int (|f + g|^{p-1})^q\right)^{1/q}$ on both sides we have

$$
\left(\int |f(x) + g(x)|^p\right)^{1-1/q} \le ||f||_p + ||g||_p.
$$

Hölder: $||fg||_1 \leq ||f||_p ||g||_q$, $\frac{1}{p} + \frac{1}{q} = 1$.

Minkowski: $\left\Vert f+g\right\Vert _{p}\leq\left\Vert f\right\Vert _{p}+\left\Vert g\right\Vert _{p},1\leq p<\infty.$

Definition 5.11. For a measurable function f on (X, \mathcal{A}, μ) , let

$$
S = \{ \alpha \ge 0 \mid \mu(\{x \mid |f(x)| > \alpha\}) = 0 \} = \{ \alpha \ge 0 \mid f(x) \le \alpha \text{ a.e} \}.
$$

Define $\|f\|_{\infty} =$ $\sqrt{ }$ \int \mathcal{L} inf S $S \neq \emptyset$ $\begin{aligned}\n\sum_{i=0}^{n} \mathcal{L} & \text{Let } L^{\infty}(X, \mathcal{A}, \mu) = \{f \mid ||f||_{\infty} < \infty\}. \\
& \text{for } S = \emptyset.\n\end{aligned}$

Example 5.12.

- $(\mathbb{R}, \mathcal{L}, m)$, $f(x) = \frac{1}{x} 1_{(0,\infty)}(x) \neq L^{\infty}$, $f(x) = x 1_{\mathbb{Q}}(x) + \frac{1}{1+x^2} \in L^{\infty}$.
- If f is continuous on $(\mathbb{R}, \mathcal{L}, m)$, $||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$. For $a \in \ell^{\infty}$, $||a||_{\infty} = \sup_{i \in \mathbb{N}} |a_i|$. $(\ell^{\infty} = \{a = (a_1, a_2, \ldots) | ||a||_{\infty} < \infty\} = \{a | \exists M \geq 0 \text{ s.t. } |a_i| \leq M_i, \forall i\})$
- **Lemma 5.13.** *(a) For* $\alpha \ge ||f||_{\infty}$, $\mu({x | |f(x)| > \alpha}) = 0$ *. For* $\alpha < ||f||_{\infty}$, $\mu({x |$ $|f(x)| > \alpha$ } > 0 *.*
	- *(b)* $|f(x)| \leq ||f||_{\infty}$ *a.e.*
	- *(c)* $f \in L^\infty$ \iff ∃ bounded *measurable function* g *such that* $f = g$ *a.e.*

Proof. DIY.

Theorem 5.14.

- (a) $||fg||_1 \leq ||f||_1 ||g||_{\infty}$.
- *(b)* $||f + g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$.
- *(c)* $f_n \to f$ *in* $L^{\infty} \iff f_n \to f$ *uniformly a.e.*

Proof. DIY For (c): \implies Let $A_n = \{x \mid |f_n(x) - f(x)| > ||f_n - f||_{\infty}\}\$. Then $\mu(A_n) = 0$.

Let $A = \bigcup_{1}^{\infty} A_n, \mu(A_n) = 0$. $\forall x \in A^c = \bigcap_{1}^{\infty} A_n^c, \forall n, |f_n(x) - f(x)| \leq ||f_n - f||_{\infty}$. The latter converges to 0 by assumption.

Given $\varepsilon > 0$, $\exists N \ s.t.$ $||f_n - f||_{\infty} < \varepsilon$, $\forall n \ge N$. So $\forall x \in A^c$, $\forall n \ge N$, $|f_n(x) - f(x)| \le$ $||f_n - f||_{\infty} < \varepsilon.$

Proposition 5.15.

- *(a)* For $1 \leq p < \infty$, the collection of simple functions with finite measure support is dense in $L^p(X, \mathcal{A}, \mu)$.
- *(b)* For $1 \leq p < \infty$, the collection of step functions (by definition they have finite measure support) is dense in $L^p(\mathbb{R}, \mathcal{L}, m)$. So is $C_c(\mathbb{R})$.
- *(c)* For $p = \infty$, the collection of simple functions is dense in $L^{\infty}(X, \mathcal{A}, \mu)$.

Proof. DIY

NOTE: $C_c(\mathbb{R})$ is *not dense* in $L^{\infty}(\mathbb{R}, \mathcal{L}, m)$.

5.3 Embedding Properties of L^p spaces

Definition 5.16. Two norms $\left\Vert \cdot \right\Vert$, $\left\Vert \cdot \right\Vert'$ on the same spaces V are said to be *equivalent* if

 $\exists c_1, c_2 > 0 \text{ s.t. } c_1 \|v\| \le \|v\|' \le c_2 \|v\|, \forall v \in V.$

So on equivalent norms we have same open sets, same convergence.

Example 5.17.

- For \mathbb{R}^d , $\left\|\cdot\right\|_{p}$, $1 \leq p \leq \infty$ are equivalent.
- For $1 \leq p, q \leq \infty, p \neq q$, $L^p(\mathbb{R}, m)$ -norm and $L^q(\mathbb{R}, m)$ -norm are *not equivalent*. $L^p(\mathbb{R},m) \not\subset L^q(\mathbb{R},m), L^p(\mathbb{R},m) \not\supset L^q(\mathbb{R},m).$

Proposition 5.18. Suppose $\mu(X) < \infty$, then for any $0 < p < q \le \infty$, $L^q \subseteq L^p$.

Proof. • $p = \infty$ is easy.

• Suppose $p < \infty$.

Proposition 5.19. *If* $0 < p < q \le \infty$ *then* $\ell^p \subseteq \ell^q$ *.*

Proposition 5.20. $\forall 0 < p < q < r \leq \infty$, $L^p \cap L^r \subset L^q$.

Proof. • $p = \infty$ is easy.

• Suppose $p < \infty$. Hölder on $p/\lambda q$, $r/(1-\lambda)q$, $\lambda = \frac{q^{-1}-r^{-1}}{p^{-1}-r^{-1}}$.

Theorem 5.21. *Suppose* $(V, \|\cdot\|)$ *a normed space. Then it is complete* \iff *Every absolutely convergent series is convergent (i.e. if* $\sum_1^{\infty} \|v_n\| < \infty$ *then* $\exists s \in V \; s.t. \; \sum_1^N v_n \ \rightarrow \ s$ as $N \to \infty$)

Proof. \implies : DIY. (partial sums form a Cauchy Sequence)

 \Leftarrow : Suppose $v_n, n \in \mathbb{N}$ is a Cauchy sequence. $\forall j \in \mathbb{N}, \exists N_j \in \mathbb{N} \ s.t. \ ||v_n - v_m||$ < $\frac{1}{2^j}, \forall n, m \ge N_j.$

WLOG we may assume $N_1 < N_2 < \ldots$. Let $w_1 = v_{N_1}, w_j = v_{N_j} - v_{N_{j-1}}, \forall j \geq 2 \implies$ $\sum_{1}^{\infty} ||w_j|| \le ||v_{N_1}|| + \sum_{j=2}^{\infty} \frac{1}{2^{j-1}} < \infty \implies \sum_{1}^{k} w_j \to \exists s \in V.$

Thus $V_{N_k} \to s$ as $k \to \infty$. v_n is Cauchy $\implies v_n \to s$ as $n \to \infty$.

5.5 Bounded Linear Transformation

Definition 5.22. Suppose $(V, \|\cdot\|), (W, \|\cdot\|')$ two normed spaces. A linear map $T: V \to W$ is said to be a *bounded map* is $\exists c \geq 0 \ s.t. \ \left\|T_v\right\|' \leq C \left\|v\right\|, \forall v \in V.$

Proposition 5.23. Suppose $T : (V, \|\cdot\|) \to (W, \|\cdot\|')$ is a linear map. Then the followings are *equivalent:*

- *(a)* T *is continuous*
- *(b)* T *is continuous at* 0
- *(c)* T *is a bounded map*

Proof. (a) \implies (b) is clear.

(b) \implies (c): For $\varepsilon = 1$, $\exists \delta > 0$ s.t. $||Tu||' < \varepsilon = 1$ if $||u|| < \delta$. Suppose $v \in V, v \neq 0$. Let $u = \frac{\delta}{2\|v\|}v \implies \|u\| = \frac{\delta}{2} < \delta \implies \|Tu\|' < 1 \implies \frac{\delta}{2\|v\|}\|Tv\|' < 1 \implies \|Tu\|' < \frac{2}{\delta}\|v\|.$ (c) ⇒ (a): Fix $v_0 \in V$. $||Tv - Tv_0||' = ||T(v - v_0)||' \le C ||v - v_0||$.

Example 5.24. (a) $T: \ell^1 \to \ell^1, Ta = (a_2, a_3, \ldots), ||Ta||_1 \le ||a||_1$. *T* is BLT.

- (b) $T: (C([-1, 1]), ||\cdot||_1) \to \mathbb{C}, Tf = f(0)$. This is not continuous.
- (c) $T : (C([-1, 1]), ||\cdot||_{\infty}) \to \mathbb{C}, Tf = f(0)$ is BLT.
- (d) Let *A* be a $n \times m$ matrix. $T : \mathbb{R}^n \to \mathbb{R}^m$, $v \mapsto Av$ is BLT.

(e) Let $K(x, y)$ be a continuous function on $[0, 1] \times [0, 1]$.

$$
T: (C[0,1], ||\cdot||_{\infty}) \to (C[0,1], ||\cdot||_{\infty}), Tf = \int_0^1 K(x,y)f(y) dy
$$

is a BLT.

(f)
$$
T: L^1(\mathbb{R}) \to (C(\mathbb{R}), ||\cdot||_{\infty}), (Tf)(t) = \int_{-\infty}^{\infty} e^{-itx} f(x) dx
$$
 (Fourier transform of f)

(g) $T: (C^{\infty}([0,1]), \left\| \cdot \right\|_{\infty}) \to (C^{\infty}([0,1]), \left\| \cdot \right\|_{\infty}), (Tf)(x) = f'(x)$ is not bounded.

Definition 5.25. Let $L(V, W) = \{T : V \to W \mid T \text{ is BLT}\}$. For $T \in L(V, W)$, the *operator norm* of T is

$$
||T|| := \inf\{c \ge 0 \mid ||Tv||' \le c||v||, \forall v \in V\}
$$

= $\sup \left\{ \frac{||Tv||'}{||v||} \mid v \ne 0, v \in V \right\}$
= $\sup \{ ||Tv||' |||v|| = 1 \}.$

Lemma 5.26. *(a) Above three definitions are equivalent.*

(b) It is indeed a normed space.

Proof. DIY.

5.6 Dual of L^p Spaces

Chapter 6

Signed and Complex Measures

[\[Fol99,](#page-81-0) Ch.3].

Z <u>RECALL</u> Suppose (X, \mathcal{A}, μ) a measure space. $f : X \to [0, \infty]$ measurable. Let $\nu(E) =$ $\int_E f d\mu, E \in \mathcal{A} \implies \nu$ is a measure on (X, \mathcal{A}) .

6.1 Signed Measures

Definition 6.1. Suppose (X, \mathcal{A}) a measurable space. A signed measure is $\nu : \mathcal{A} \rightarrow$ $[-\infty, \infty)$ or $\nu : A \to (-\infty, \infty]$ such that

- $\nu(\emptyset) = 0$.
- $A_1, A_2, \ldots \in \mathcal{A}$, A_i disjoint $\implies \nu \begin{pmatrix} \infty \\ \infty \end{pmatrix}$ 1 A_i \setminus $=\sum^{\infty}$ 1 $\nu(A_i)$ where the series converges absolutely if ν $\begin{pmatrix} \infty \\ 1 \end{pmatrix}$ 1 A_i \setminus $\in (-\infty, \infty).$

Example 6.2.

- ν positive measure $\implies \nu$ is a signed measure.
- μ_1, μ_2 positive measures such that either $\nu_1(X) < \infty$ or $\nu_2(X) < \infty \implies \nu =$ $\mu_1 - \mu_2$ a signed measure.

•
$$
f: X \to \bar{\mathbb{R}} \text{ s.t. } \int_X f^+ \, \mathrm{d}\mu < \infty \text{ or } \int_X f^- \, \mathrm{d}\mu < \infty \implies \nu(E) = \int_E f \, \mathrm{d}\mu.
$$

NOTE:

(a)
$$
A \subset B \nRightarrow \nu(A) \le \nu(B)
$$
 since $\nu(B) = \nu(A) + \nu(B \setminus A)$.

(b) $A \subset B$, $\nu(A) = \infty \implies \nu(B) = \infty$.

Lemma 6.3. ν *is a signed measure on* (X, \mathcal{A}) *. Then*

•
$$
E_n \in \mathcal{A}, E_1 \subset E_2 \subset \ldots \implies \nu\left(\bigcup_{1}^{\infty} E_n\right) = \lim_{n \to \infty} \nu(E_n).
$$

•
$$
E_n \in \mathcal{A}, E_1 \supset E_2 \supset \ldots, -\infty < \nu(E_1) < \infty \implies \nu\left(\bigcap_{1}^{\infty} E_n\right) = \lim_{N \to \infty} \nu(E_n).
$$

Definition 6.4. ν is a signed measure on (X, \mathcal{A}) . Let $E \in \mathcal{A}$. We say

- (a) E is *positive* for ν (a positive set for ν) if $\forall F \subset E, F \in \mathcal{A}, \nu(F) \ge 0$.
- (b) E is *negative* for ν (a negative set for ν) if $\forall F \subset E, F \in \mathcal{A}, \nu(F) \leq 0$.
- (c) E is *null* for ν (a null set for ν) if $\forall F \subset E, F \in \mathcal{A}, \nu(F) = 0$.

NOTE E positive set, $F \subset E \implies \nu(F) \leq \nu(E)$. E negative set, $F \subset E \implies \nu(F) \geq$ $\nu(E).$

Definition 6.5. Suupose μ , ν are signed measure on (X, \mathcal{A}) . $\nu \perp \nu$ (singular to each other) means $\exists E, F \in \mathcal{A}$ s.t. $E \cap F = \emptyset$, $E \cup F = X$, F is null for μ , E is null for ν .

Example 6.6. For $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,

- (a) Lebesgue measure m
- (b) Cantor measure $\mu_C((a, b])$.
- (c) Discrete measure $\mu_D = \delta_1 + 2\delta_{-1}$.

For (a), (c), take $E = \mathbb{R} \setminus \{-1, 1\}$, $F = \{-1, 1\}$. For (a), (b), take the cantor set K, $E = \mathbb{R} \setminus K, F = K.$

Lemma 6.7. ν *is a signed measure on* (X, \mathcal{A}) *.*

- *(a)* E *is positive (for* ν *) and* $G \subset E$ *measurable* $\implies G$ *is positive (for* ν *).*
- (b) E_1, E_2, \ldots positive sets $\implies \bigcup^{\infty}$ 1 E_n is positive.

Proof. DIY.

Lemma 6.8. ν *is a signed measure on* (X, \mathcal{A}) *. Suppose* $E \in \mathcal{A}$ *and* $0 \lt \nu(E) \lt \infty \implies \exists$ *measurable set* $A \subset E$ *s.t.* A *is a positive set (for* ν) *and* $\nu(A) > 0$ *.*

Proof in [\[RF10\]](#page-81-1). If *E* is a positive set, we are done.

Otherwise, E contains sets of negative measure. Let $n_1 \in \mathbb{N}$ be the smallest such that $\exists E_1 \subset E$ with $\nu(E_1) < -\frac{1}{n_1}$. If $E \setminus E_1$ is a positive set then we are done. Otherwise,

 $E \setminus E_1$ contain sets of measure.

Inductively if $E \setminus \bigcup_1^{k_1} E_i$ is not a positive set. Let $n_k \in \mathbb{N}$ be the *smallest* such that $\exists E_k \subset E \setminus \bigcup_1^{k_1} E_i$ with $\nu(E_k) < -\frac{1}{n_k}$. Note: if $n_k \geq 2, \forall B \subset E \setminus \bigcup_1^{k-1} E_i, \nu(B) \geq -\frac{1}{n_{k-1}}$. Let $A = E \setminus \bigcup_{1}^{\infty} E_k$. Since $E = A \cup \bigcup_{1}^{\infty} E_k$, $\nu(E) = \nu(A) + \sum_{1}^{\infty} \nu(E_k) \implies \nu(A) > 0$. Since $\nu(E), \nu(A)$ are finite, then $\sum_{1}^{\infty} \frac{1}{n_k}$ need to be convergent $\implies \lim_{k \to \infty} n_k = \infty$. Now, if $B \subset A$ then $B \subset E \setminus \bigcup_{1}^{k-1} E_i$. If $\nu(B) \geq -\frac{1}{n_{k-1}} \implies \nu(B) \geq 0$. Thus A is positive.

Theorem 6.9 (The Hahn decomposition theorem). *Suppose* ν *is a signed measure of* (X, \mathcal{A}) *. Then* $\exists P, N \in \mathcal{A}$ *s.t.* $P \cap N = \emptyset, P \cup N = X$, P is positive for v, and N is negative for v. If P', N' are another such pair, then $P\triangle P' (= N\triangle N')$ is null for ν .

Proof. Uniqueness: $P \setminus P' \subset P \cap n' \implies P \setminus P'$ is positive and negative, thus a null set. Same for $P \setminus P'$.

Existence: WLOG assume $\nu : A \to [-\infty, \infty)$. Let $s = \sup{\{\nu(E) \mid E \text{ positive for } \nu\}}$. $\exists P_1, P_2, \ldots$ positive sets such that $\lim_{n\to\infty} \nu(P_n) = s$.

Let
$$
P = \bigcup_{1}^{\infty} E_n \implies P
$$
 is positive $\implies \begin{cases} s \ge \nu(P) \\ \nu(P) \ge \nu(P_n) \end{cases} \implies \nu(P) = s$. Note that $0 \le s = \nu(P) < \infty$.

Let $N = X \setminus P$. Is N a negative set?

Suppose not. Then $\exists E \subset N \text{ s.t. } \nu(E) > 0$. Note that $\nu(E) < \infty \implies \exists \text{ positive set}$ $A \subset EA$ with $\nu(A) > 0$. The P, A are disjoint, $P \cup A$ is a positive set, and $\nu(P \cup A)$ = $\nu(P) + \nu(A) > s$, a contradiction.

So N is a negative set.

Theorem 6.10 (Jordan decomposition theorem). *ν signed measure on* (X, \mathcal{A}) *.* $\exists!$ *positive measures* ν^+ , ν^- *on* (X, \mathcal{A}) *s.t.* $\nu(E) = \nu^+(E) - \nu^-(E)$, $\forall E \in \mathcal{A}$ and $\nu^+ \perp \nu^-$.

Proof. $\nu^+(E) = \nu(E \cap P)$, $\nu^-(E) = -\nu(E \cap N)$. DIY.

Example 6.11. $(X, \mathcal{A}, \mu), f : X \to \bar{\mathbb{R}}$. Let $\nu(E) = \int_E f \, d\mu$. $\nu^+ = \int_E f^+ \, d\mu$, $\nu^- = \int_E f^- \, d\mu$. **Definition 6.12.** Suppose ν a signed measure on (X, \mathcal{A}) . *Total variation measure* of ν is $|\nu| = \nu^+ + \nu^-$ (a positive measure on (X, \mathcal{A})).

Definition 6.13. $|\nu|(E) = \int_E |f| \, \mathrm{d}\nu$

Lemma 6.14. *(a)* $|\nu(E)| \leq |\nu|(E)$ *,*

- *(b)* E is a null set for $\nu \iff E$ is a null set for $|\nu|$,
- *(c) Suppose* κ *is another signed measure.* $\kappa \perp \nu \iff \kappa \perp |\nu| \iff \kappa \perp \nu^+$ *and* $\kappa \perp \nu^-$ *.*

Proof. DIY.

Definition 6.15. ν is finite (*σ*-finite) if $|\nu|$ is a finite (*σ*-finite) measure. ($\iff \nu^+, \nu^-$ are finite (σ -finite) measures.)

6.2 Absolutely Measurable Spaces

Definition 6.16. μ a positive measure, ν a signed measure on (X, \mathcal{A}) . $\nu \ll \mu$ (ν is absolutely continuous with respect to μ) \iff $(E \in A, \mu(E) = 0 \implies \nu(E) = 0) \iff$ all μ -null sets and ν -null sets. (check)

Example 6.17. $(X, \mathcal{A}, \mu), f : X \to \overline{\mathbb{R}}$. $\nu(E) = \int E f d\mu \implies \nu \ll \mu$.

<u>NOTATION</u>: $d\nu = f d\mu$ means ν is the measure defined by $\nu(E) = \int_E f d\mu$.

Lemma 6.18. µ *positive measure,* ν *signed measure.*

- (a) $\nu \ll \mu \iff |\nu| \ll \mu \iff \nu^+ \ll \mu$ and $\nu^- \ll \mu$.
- *(b)* $\nu \ll \mu$ and $\nu \perp \mu \implies \nu = 0$.

Proof.

Theorem 6.19 (Radon-Nikodym)**.** *Suppose* µ *a* σ*-finite positive measure,* ν *a* σ*-finite signed measure on* (X, \mathcal{A}) *. Suppose* $\nu \ll \mu$ *. Then* $\exists f : X \to \mathbb{R}$ *measurable function such that* $\nu(E) = \int_E f \, \mathrm{d}\mu$ *. If g is another such function then* $f = g$ *a.e.*

Proof. Will follow by proof of Lebesgue-Radon-Nikodym on Monday.

Definition 6.20. Suppose $\nu \ll \mu$. A *Radon-Nikodym derivative* of ν with respect to μ is a function $\frac{d\nu}{d\mu}: X \to \bar{\mathbb{R}}$ satisfying $\nu(E) = \int_E \frac{d\nu}{d\mu} d\mu, \forall E \in \mathcal{A}$.

NOTE: [6.19](#page-61-0) shows the existence of such functions. If there is another such function g , then $\frac{d\nu}{d\mu} = g \mu$ -a.e.

NOTATION:

$$
\mathrm{d}\nu = \frac{\mathrm{d}\nu}{\mathrm{d}\mu} \,\mathrm{d}\mu.
$$

Example 6.21. $F(x) = e^{2x} : \mathbb{R} \to \mathbb{R}$ is continuous and increasing.

The Lebesgue-Stieltjes measure μ_F on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is the unique locally finite Borel measure satisfying $\mu((a, b]) = e^{2b} - e^{2a}, \forall a < b.$

$$
\mu_F(E) \stackrel{\text{why?}}{=} \int_E 2e^{2x} \, \mathrm{d}x.
$$

So $\mu_F \ll m$ and $\frac{d\mu_F}{dm} = 2e^{2x}$.

Example 6.22. $F(x) = C(x) : \mathbb{R} \to \mathbb{R}$ the Cantor function. $C'(x) = 0$ Lebesgue a.e.

$$
\mu_C(E) \neq \int_E 0 \, \mathrm{d}x.
$$

In particular, $c(b) - c(a) \neq \int_a^b c'(x) dx$ even if c is continuous and has derivative a.e. So $\mu_c \nless m$. But $\mu_c \perp m$.

Lemma 6.23. Let μ , ν be finite positive measures on (X, \mathcal{A}) . Then either

- *(a)* $\mu \perp \nu$ *, or*
- *(b)* $\exists \varepsilon > 0, \exists F \in \mathcal{A} \text{ s.t. } \nu(F) > 0$ *and F is a positive set for* $\nu \varepsilon \mu$ *. (i.e.* $\forall G \subset F, \nu(G) \ge$ $\varepsilon\mu(G)$

Proof. Let $\kappa_n = \nu - \frac{1}{n} \mu$. By Hahn decomposition, write $X = P_n \cup N_n$ where P_n is positive and N_n is negative for κ_n .

Let $P = \bigcup_{1}^{\infty} P_n$ and $N = \bigcap_{1}^{\infty} N_n = X \setminus P$. We have $\kappa_n(N) \leq 0$ since $N \subset N_n, \forall n \implies$ $0 \le \nu(N) \le \frac{1}{n}\mu(N), \forall n \implies \nu(N) = 0.$

Now if $\mu(P) = 0$ then $\mu \perp \nu$. Otherwise $\exists n \ s.t. \ \mu(P_n) > 0$. Take $F = P_n$, $\varepsilon = \frac{1}{n}$ we have that F is a positive set for $\nu - \varepsilon \mu$ and $\nu(F) > 0$.

Theorem 6.24 (Lebesgue-Radon-Nikodym)**.** *Suppose* µ *a* σ*-finite positive measure,* ν *a* σ*finite signed measure on* (X, A)*. Then* ∃!λ, ρ σ*-finite signed measures on* (X, A) *such that* $\lambda \perp \mu, \rho \ll \mu, \nu = \lambda + \rho.$

Furthermore, $\exists f : X \to \overline{\mathbb{R}}$ *measurable function that* $d\rho = f d\mu$ *. And if there exists another q then* $f = g \mu$ -a.e.

Proof. (a) Assume μ , ν finite positive measure. Let

$$
\mathcal{F} = \left\{ g : X \to [0, \infty] \middle| \int_E g \, d\mu \le \nu(E), \forall E \in \mathcal{A} \right\}
$$

=
$$
\left\{ g : X \to [0, \infty] \middle| d\nu - g d\nu \text{ is a positive measure} \right\}.
$$

Note that $\mathcal{F} \neq \emptyset$ since $g = 0 \in \mathcal{F}$. Let $s = \sup \big\{ \int_X g \, d\mu \mid g \in \mathcal{F} \big\}$.

(1) $\exists f \in \mathcal{F} \ s.t. \ s = \int_X f \ d\mu.$ i. $g, h \in \mathcal{F} \implies u(x) = \max\{g(x), h(x)\} \in \mathcal{F}$. Since setting $A = \{x \mid g(x) \geq 0\}$ $h(x)$, we have

$$
\int_E u \, \mathrm{d}\mu = \int_{E \cap A} g \, \mathrm{d}\mu + \int_{E \cap A^c} h \, \mathrm{d}\mu.
$$

ii. ∃ g_1, g_2, \ldots s.t. lim_{n→∞} $\int_X g_n d\mu = S$. By i, WLOG we can assume $0 \le$ $g_1(x) \le g_2(x) \le \dots$ and $s.t.$ $\lim_{n \to \infty} \int_X g_n d\mu = S.$

Let
$$
f(x) = \sup_n g_n(x) = \lim_{n \to \infty} g_n(x)
$$
. By MCT,

$$
\int_{E} f d\mu = \lim_{n \to \infty} \int_{E} g_n d\mu \le \nu(E) = S
$$

when $E = X$.

- (2) Define $\rho(E) = \int_E f \, d\mu \implies \rho \ll \mu$ and $\rho(X) = \int_X f \, d\mu \le \nu(X) < \infty$.
- (3) Define $\lambda(E) = \nu(E) \rho(E) = \nu(E) \int_E f d\mu \ge 0$. Then λ is a positive measure and $\lambda(X) \leq \nu(X) < \infty$.
- (4) $\lambda \perp \mu$. Suppose it is not. Then by lemma, $\exists \varepsilon > 0, F \in \mathcal{A} \text{ s.t. } \mu(F) > 0$ and F is a positive set for $\lambda - \varepsilon \mu$.

Let
$$
g(x) = f(x) + \varepsilon 1_F(x)
$$
. Then $\forall E \in \mathcal{A}$,

$$
\int_{E} g d\mu = \int_{E} f d\mu + \varepsilon \mu(E \cup F) = \nu(E) - \lambda(E) + \varepsilon \mu(E \cup F)
$$
\n
$$
\leq \nu(E) - \lambda(E \cap F) + \varepsilon \mu(E \cap F)
$$
\n
$$
\leq \nu(E)
$$

since $\lambda(E \cap F) - \varepsilon \mu(E \cap F) \geq 0$. But $s \ge \int_X g \, d\mu = \int_X f \, d\mu + \varepsilon \mu(F) = s + \varepsilon \mu(F) > s$, a contradiction.

6.3 Lebesgue Differentiation Theorem for Regular Borel Measures on \mathbb{R}^d

[\[Fol99,](#page-81-0) p. 99]

Definition 6.25. A Borel signed measure *ν* on \mathbb{R}^d is called *regular* if

- (a) $|\nu|(\kappa) < \infty$, \forall compact K.
- (b) $|\nu|(E) = \inf \{m(O) \mid \text{ open } O \supset E\}, \forall \text{ Borel set } E.$

Example 6.26. LS measure on $\mathbb R$ are regular. Lebesgue measure on $\mathbb R^d$ is regular (so, the difference of two of them) Note: from (a), ν regular $\implies \nu$ is σ -finite,

If $d\nu = f dm$ regular, then $|\nu|(\kappa) = \int_K |f| dm < \infty$, so $f \in L^1_{loc}(\mathbb{R}^d)$.

Lemma 6.27. *If* $f \in L^1_{loc}(\mathbb{R}^d) \iff d\nu = f dm$ *is regular*

Proof. Read the book.

RECALL Lebesgue differentiation theorem

Corollary 6.28. Let ρ be a regular signed Borel measure on \mathbb{R}^d . Suppose $\rho \ll m \implies$ For *Lebesgue a.e.-x,* $\lim_{r\to 0} \frac{\rho(E_r)}{m(E_r)} = \frac{d\rho}{dm}(x)$ for every $E_r \to x$ nicely.

Proposition 6.29. Let λ be a regular positive Borel measure on \mathbb{R}^d . Suppose $\lambda \perp m$. For Lebesgue a.e.-x, $\lim_{r\to 0} \frac{\lambda(E_1)}{m(E_1)} = 0$ for every $E_r \to x$ nicely.

Proof. Enough to consider $E_1 = B(x, r)$

$$
\left\{x \mid \limsup_{r \to 0} \frac{\lambda(E_1)}{m(E_1)} \neq 0\right\} = \bigcup_{n=1}^{\infty} G_n, G_n = \left\{x \mid \limsup_{r \to 0} \frac{\lambda(E_1)}{m(E_1)} > \frac{1}{n}\right\}
$$

Enough to show that $m(G_n) = 0, \forall n$.

 $\lambda \perp m \implies \mathbb{R}^d = A \cup B$ disjoint. $\lambda(A) = 0, m(B) = 0$, Enough to show $m(G_n \cap A) = 0$.

Fix $\varepsilon > 0$. Since λ is regular, \exists open $O \supset A$ s.t. $\lambda(O) \leq \lambda(A) + \varepsilon = \varepsilon$. $\forall x \in G_n \cap A$, $\exists r_x >$ $0 s.t. \frac{\lambda(B(x,r_x))}{m(B(x,r_x))} > \frac{1}{n}$ and $B(x,r_x) \subset O$.

Let $K \subset G_n \cap A$, compact. $K \subset \bigcup_{x \in K} B(x,r_x) \implies \exists \text{ finite subcover} \implies \exists B_1, B_2, \ldots, E_N$ disjoint, $K \subset \bigcup_{1}^{N}3B_{i}$.

$$
\implies m(K) \le 3^d \sum_{1}^N m(B_i) \le 3^d n \sum_{1}^N \lambda(B_i) = 3^d n \lambda \left(\bigcap_{1}^N B_i\right) \le 3^d n \lambda(O) \le 3^d n \varepsilon \implies m(G_n \cap A) \le 3^d n \varepsilon.
$$

Theorem 6.30 (LDT for regular Borel measures)**.** *Suppose* ν *is a regular Borel signed meaaure*

on \mathbb{R}^d and $d\nu = d\lambda + f dm$, $\lambda \perp m \implies$ *for Leb a.e.* x , $\lim_{r\to 0} \frac{\nu(E_r)}{m(E_r)} = f(x)$ *for every* $E_r \to x$ *nicely.*

Proof. ν regular $\implies \lambda$, $f \, dm$ are regular.

6.4 Monotone Differentiation Theorem

[\[Fol99,](#page-81-0) 3.5]

Definition 6.31. For $F : \mathbb{R} \to \mathbb{R}$ that is increasing, denote $F(x+) = \lim_{y \downarrow x} F(y) =$ $\inf_{y>x} F(y), F(x-) = \lim_{y \uparrow x} F(y) = \sup_{y \leq x} F(y).$

Lemma 6.32. F *is increasing* $\implies D = \{x \mid F \text{ is discontinuous at } x\}$ *is countable.*

Proof. $x \in D \implies F(x+) > F(x-)$ since $F \nearrow$. For $x, y \in D, x \neq y \implies I_x, I_y$ disjoint. For each $x \in D$, let $I_x = (F(x-), F(x+)) \implies \exists f : D \to \mathbb{Q}$ is 1-1. I_x is open interval, not empty \implies *D* is countable.

Theorem 6.33 (Monotone differentiation theorem). *Suppose* $F \nearrow \implies$

- F *is differentiable Lebesgue a.e.*
- $G(x) = F(x+)$ *is differentiable Lebesgue a.e.*
- $G' = F'$ a.e.

Proof. G is increasing, right-continuous on $\mathbb{R} \implies \exists$ Lebesgue-Stieltjes measure μ_G on R (so, regular). ϵ $(6x + 1)$

$$
\frac{G(x+h) - G(x)}{h} = \begin{cases} \frac{\mu_G((x, x+h])}{m((x, x+h])} & h > 0, \\ \frac{\mu_G((x+h, x])}{m((x+h, x])} & h < 0 \end{cases}
$$

converges for Lebesgue a.e x by LDT. So G' exists a.e.

Let $H(x) = G(x) - F(x) \geq 0$. We have

 ${x | H(x) > 0} \subset {x | x \text{ is discontinuous at } x}.$

So $\{x \mid H(x) > 0\}$ it is countable. Denote the set as $\{x_n\}$.

Let $\mu = \sum_n H(x_n) \delta_{x_n}$. Then

$$
\mu((-N,N)) = \sum_{x_n \in (-N,N)} H(x_n) \stackrel{check}{\leq} G(N) - F(-N) < \infty.
$$

So μ is a locally finite Borel measure on $\mathbb{R} \implies \mu$ is regular. Hence

$$
\left|\frac{H(x+h)-H(x)}{h}\right| \le \frac{H(x+h)+H(x)}{|h|} \le 4\frac{\mu((x-2h,x+2h))}{4|h|} \xrightarrow{\text{LDT}, \mu \perp m} 0
$$

for Lebesgue a.e. x.

So *H* is differentiable a.e and $H' = 0$ a.e.

Proposition 6.34. $\mathit{F} \nearrow \Longrightarrow \; \int^{b}$ a $F'(x) dx \leq F(b) - F(a).$ **Example 6.35.**

•
$$
F(x) = \begin{cases} 0 & x \le 0 \\ 1 & x > 0 \end{cases}
$$
. $F'(x) = 0$ a.e and $\int_{-1}^{1} F'(x) dx = 0 < F(1) - F(-1) = 1$.

•
$$
F(x)
$$
 Cantor function. $F'(x) = 0$ a.e. and $\int_0^1 F'(x) dx = 0 \le F(1) - F(0) = 1$.

6.5 Functions of Bounded Variation

Definition 6.36. For $F : \mathbb{R} \to \mathbb{R}$, the total variation function of F is $T_F : \mathbb{R} \to [0, \infty]$,

$$
T_F(x) = \sup \left\{ \sum_{i=1}^n |F(x_i) - F(x_{i-1})| \mid n \in \mathbb{N}, -\infty < x_0 < x_1 < \ldots < x_n = x \right\}.
$$

Lemma 6.37. *For* a < b*,*

$$
T_F(b) = T_F(a) + \sup \left\{ \sum_{i=1}^n |F(x_i) - F(x_{i-1})| \mid n \in \mathbb{N}, a = x_0 < x_1 < \ldots < x_n = b \right\}
$$

Note that T_F is increasing.

Definition 6.38. $F \in BV$ (*F* is of bounded variation) means $T_F(\infty) = \lim_{x \to \infty} T_F(x)$ < ∞.

 $F \in \mathrm{BV}([a, b])$ means $\sup \left\{ \sum_{1}^{N} |F(x_i) - F(x_{i-1})| \mid a = x_0 < x_1 < \ldots < x_n = b \right\} < \infty.$ Note that $F \in BV \implies F$ is bounded.

Example 6.39.

(a) $F(x) = \sin x \notin BV$, $\in BV([a, b])$.

(b)
$$
F(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ 1 & x = 0 \end{cases} \notin BV([a, b])
$$
 for $a < 0 < b$.

(c)
$$
F, G \in BV \implies \alpha F + \beta G \in BV
$$
.

- (d) $F \nearrow$ and bounded $\implies F \in BV$.
- (e) *F Lipschitz* on $[a, b] \implies F \in BV([a, b])$. (*Lipschitz* $\implies \exists M \ge 0 \ s.t. |F(x)-F(y)| ≤$ $M|x-y|, \forall x, y.$
- (f) *F* differentiable, *F'* bounded on $[a, b] \implies F \in BV([a, b])$.

(g)
$$
F(x) = \int_{-\infty}^{x} f(t) \in L^{1}(\mathbb{R}) \implies F \in BV
$$
 since

$$
\sum_{1}^{N} |F(x_i) - F(x_{i-1})| \leq \sum_{1}^{N} \int_{x_{i-1}}^{x_i} |f(t)| dt = \int_{x_0}^{x} |f(t)| dt \leq \int_{-\infty}^{\infty} |f(t)| dt < \infty.
$$

Definition 6.40. NBV = { $G \in BV \mid G$ right-continuous, $G(-\infty) = 0$ }.

Example 6.41.

- (a) $F \nearrow$, bounded, right-continuous, $F(-\infty) = 0$.
- (b) $F(x) = \int_{-\infty}^{x} f(t) dt, f \in L^{1}(\mathbb{R})$. (Midterm $\implies F$ is uniformly continuous.)

Lemma 6.42. $F \in BV$ *and right-continuous* $\implies T_F \in NBV$.

Proof. $T_F \nearrow$, bounded $\implies T_F \in BV$, $T_F(-\infty) = 0$. Is T_F right-continuous? Suppose it is not. $\exists a \in \mathbb{R} \ s.t. \ c := T_F(a+) - T_F(a) > 0$. Fix $\varepsilon > 0$. Since $F(x)$ and $g(x) := T_F(x+)$ are right continuous, $\exists \delta > 0$ s.t.

$$
|F(y) - F(a)| < \varepsilon, \quad |g(y) - g(a)| < \varepsilon \quad \forall y \in (a, a + \delta].
$$

So $T_F(y) - T_F(a+) \leq T_F(y+) - T_F(a+) < \varepsilon$. $\exists a = x_0 < x_1 < x_2 < \ldots < x_n = a + \delta s.t.$

$$
\sum_{i=1}^{n} |F(x_i) - F(x_{i-1})| \ge T_F(a + \delta) - T_F(a) - \frac{c}{4}
$$

$$
\ge T_F(a+) - T_F(a) - \frac{c}{4} = \frac{3}{4}c.
$$

This shows that $\sum_{i=2}^{n} |F(x_i) - F(x_{i-1})| \geq \frac{3}{4}c - \varepsilon$ since

Consider $[a, x_1]$. $\exists a = t_0 < t_1 < \ldots < t_k = x_1 s.t.$

$$
\sum_{i=1}^{k} |F(t_i) - F(t_{i-1})| \ge T_F(x_1) - T_F(a) - \frac{c}{4} \ge \frac{3}{4}c.
$$

So we can write $[a, a + \delta] = [a, x_1] \cup [x_1, a + \delta]$. So

$$
\varepsilon + c \ge T_F(a + \delta) - T_F(a+) + T_F(a+) - T_F(a)
$$

= $T_F(a + \delta) - T_F(a)$

$$
\ge \sum_{j=1}^k |F(t_j) - F(t_{j-1})| + \sum_{i=2}^n |F(x_i) - F(x_{i-1})| \ge \frac{3}{4}c - \varepsilon + \frac{3}{4}c = \frac{3}{2} - \varepsilon
$$

$$
\implies c \le 4\varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, we conclude that $c = 0$, a contradiction.

Corollary 6.43. $F \in NBV \iff F = F_1 - F_2, F_1, F_2 \in NBV$ and \nearrow .

Proof. Write $F = \frac{T_F + F}{2}$ $\frac{F}{2} - \frac{T_F - F}{2}$ $\frac{1}{2}$. $T_F(x_1) - T_F(x_2) \ge$ total variation of F on $(x_1, x_2) \ge$ $|F(x_1) - F(x_2)|$ so both functions are increasing.

Theorem 6.44.

- *(a)* μ *is a finite* signed *Borel measure on* $\mathbb{R} \implies F(x) := \mu((-\infty, x]) \in \text{NBV}$.
- *(b)* $F \in NBV \implies \exists!$ *finite* signed *Borel measure* μ_F *on* $\mathbb R$ *satisfying* $\mu((-\infty, x]) = F(x)$ *.*
- *Proof.* (a) $\mu = \mu^+ \mu^- \implies F = F^+ F^-, F^{\pm}(x) = \mu^{\pm}((-\infty, x])$ is increasing, bounded, right-continuous, and $F^{\pm}(-\infty) = 0$.
	- (b) $F \in NBV \implies F = F_1 F_2, F_1, F_2 \in NBV$ and are increasing. So $\exists \mu_{F_1}, \mu_{F_2}$ Lebesgue-Stieltjes measure. $\mu_F := \mu_{F_1} - \mu_{F_2}$. Uniqueness is left for homework.

Proposition 6.45. *Let* $F \in NBV$ *. Then*

- (a) *F* is differentiable a.e, $F \in L^1(\mathbb{R}, m)$.
- (*b*) $d\mu_F = d\lambda + F'dm, \lambda \perp m$.
- (c) $\mu_F \perp m \iff F' = 0$ *Lebesgue a.e.*
- (d) $\mu_F \ll m \iff \int_{-\infty}^x$ $F'(t) dt = F(x)$.

 \blacksquare

(d) $\mu_F \ll m \iff \lambda = 0 \iff d\mu_F = F'dm \iff \mu_F = \int_E F' dm, \forall E$ Borel \iff $F(x) = \int_{-\infty}^{x} F'(t) dt$, $\forall x \in \mathbb{R}$. (by uniqueness)

6.6 Absolutely Continuous Functions

Definition 6.46. $F : \mathbb{R} \to \mathbb{R}$ is absolutely continuous ($F \in AC$) means $\forall \varepsilon > 0, \exists \delta > 0$ *s.t.* if $(a_1, b_1), \ldots, (a_N, b_N)$ are *disjoint* open intervals satisfying $\sum_{n=1}^N (b_n - a_n) < \delta$, then $\sum_{i=1}^{N}$ $n=1$ $|F(b_n) - F(a_n)| < \varepsilon.$

Lemma 6.47. *(a)* $F \in AC \implies F$ *is uniformly continuous.*

(b) F *is Lipschitz* \implies $F \in AC$ *.* (c) $F(x) = \int_{\infty}^{x}$ $f(t) \, dt, f \in L^1 \implies F \in AC.$

Proof.

$$
\sum_{n=1}^{N} |F(b_n) - F(a_n)| = \sum_{1}^{N} \left| \int_{a_n}^{b_n} f(t) dt \right| \le \sum_{1}^{N} \int_{a_n}^{b_n} |f(t)| dt = \int_{E} |f| dm
$$

where $E=\bigcup_1^N(a_n,b_n).$ By midterm Q1, If $f\in L^1(X,\mu)$ then $\forall \varepsilon>0,\exists \delta>0$ s.t. $\mu(E)<$ $\delta \implies \int_E$ $|f| < \varepsilon$.

The inverse of (a) is not always true. The Cantor function $C(x)$ is uniformly continuous but $C \notin AC$.

Proposition 6.48. *Suppose* $F \in NBV$ *. Then* $F \in AC \iff \mu_F \ll m$ *.*

Corollary 6.49. $F \in NBV \cap AC \iff F(x) = \int_{\infty}^{x} f(t) dt$ for some $f \in L^{1}(\mathbb{R}, m)$. If this $holds, f = F'$ *Lebesgue a.e.*

Lemma 6.50. $F \in \mathrm{AC}([a, b]) \implies F \in \mathrm{NBV}([a, b]).$

Proof. Check. (read the textbook) ■

Theorem 6.51 (Fundamental theorem of Calculus). *For* $F : [a, b] \rightarrow \mathbb{R}$, *TFAE:*

(a)
$$
F \in \text{AC}([a, b]),
$$

\n(b) $F(x) - F(a) = \int_a^x f(t) dt$ for some $f \in L^1([a, b], m),$

Proof of Prop. \iff : Suppose $\mu_F \ll m$. Then $F(x) = \int_{-\infty}^x F'(t) dt, F' \in L^1 \implies F \in AC$. \Longrightarrow : Suppose $F \in AC$.

Note: since F is continuous, $\mu_F((a, b]) = \lim_{n \to \infty} \mu_F((a, b - \frac{1}{n}]) = \lim_{h \to \infty} F(b - \frac{1}{n})$ $F(a) = F(b) - F(a).$

Let E be a Borel set with $m(E) = 0$. Fix $\varepsilon > 0$. Let $\delta > 0$ be the constant from $F \in AC$. Since m and μ_F are *regular*,

$$
\exists \text{ open } U_1 \supset U_2 \supset \ldots \supset E \text{ s.t. } \lim_{n \to \infty} m(U_n) = m(E) = 0,
$$

$$
\exists \text{ open } V_1 \supset V_2 \supset \ldots \supset E \text{ s.t. } \lim_{n \to \infty} \mu_F(V_n) = \mu_F(E).
$$

Let $O_n = U_n \cap V_n$. O_n is open and $O_1 \supset O_2 \supset \ldots \supset E$. Then

$$
\lim_{n \to \infty} m(O_n) = m(E) = 0, \quad \lim_{n \to \infty} \mu_F(O_n) = \mu_F(E)
$$
 (think about it).

WLOG, we may assume $m(O_1)<\delta.$ Each $O_n=\bigcup_{k=1}^{\infty}(a_k^n,b_K^n)$ disjoint, $\sum_{k=1}^N(b_k^n,a_k^n)\leq$ $m(O_n) \leq m(O_1) \leq \delta \implies$

$$
\mu_F\left(\bigcup_{k=1}^N (a_k^n, b_K^n)\right) = \sum_{k=1}^N \mu_F(a_k^n, b_K^n) = \sum_{k=1}^N F(b_k^n) - F(a_k^n).
$$

Take the absolute value we have

$$
\left| \mu_F \left(\bigcup_{k=1}^N (a_k^n, b_K^n) \right) \right| \le \sum_{k=1}^N |F(b_k^n) - F(a_k^n)| < \varepsilon.
$$

Hence

$$
|\mu_F(O_n)| = \lim_{n \to \infty} \left| \mu_F\left(\bigcup_{k=1}^N (a_k^n, b_K^n)\right) \right| \le \varepsilon \implies |\mu_F(E)| = \lim_{n \to \infty} |\mu_F(O_n)| \le \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary we conclude that $\mu_F(E) = 0$.

Definition 6.52. Suppose μ a finite signed Borel measure on \mathbb{R} .

- μ is a *discrete* measure means ∃countable set $\{x_n\}$ and $c_n \neq 0$ *s.t.* $\sum_1^{\infty} c_n < \infty$ and $\mu = \sum_n c_n \delta_{x_n}.$
- μ is a *continuous* measure means $\mu({a}) = 0, \forall a \in \mathbb{R}$.

- *(b)* μ *discrete* $\implies \mu \perp m$ *.*
- *(c)* $\mu \ll m \implies \mu$ *is continuous.*

Corollary 6.54. *Suppose* µ *is finite signed Borel measure on* R*. Then* µ *can be uniquely written as*

$$
\mu = \mu_d + \mu_{ac} + \mu_{sc}
$$

where $\mu_{ac} \in AC$ *and* μ_{sc} *is singularly continuous (continuous and* \perp *m).*
Chapter 7

Hilbert Spaces

[\[Fol99,](#page-81-0) 5.5]

7.1 Inner Product Spaces

Definition 7.1. Suppose V a (complex) vector space. An *inner product* is \langle, \rangle , $V \times V \rightarrow \mathbb{C}$ such that

- (a) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$,
- (b) $\langle x, y \rangle = \overline{\langle y, x \rangle},$
- (c) $\langle x, x \rangle \in [0, \infty)$,
- (d) $\langle x, x \rangle = 0 \iff x = 0.$

Note that $\langle x, \alpha y + \beta z \rangle = \bar{\alpha} \langle x, y \rangle + \bar{\beta} \langle x, z \rangle$.

Example 7.2. • \mathbb{R}^d , $\langle x, y \rangle = x \cdot y = \sum_1^d x_i y_i$

- \mathbb{C}^d , $\langle x, y \rangle = x \cdot y = \sum_1^d x_i \overline{y}_i$.
- $L^2(X,\mu), \langle f,g \rangle = \int_X f\bar{g} d\mu$. (Note: by Hölder, $\left| \int f\bar{g} \right| \leq \|f\bar{g}\|_1 \leq \|f\|_2 \|g\|_2$)
- $\ell^2, \langle x, y \rangle = \sum_1^{\infty} x_i y_i.$

Definition 7.3. $||x|| = \sqrt{\langle x, x \rangle}$. Does it satisfy triangle inequality?

 $||x+y||^2 = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle = ||x||^2 + 2 \operatorname{Re} \langle x, y \rangle + ||y||^2.$

Theorem 7.4 (Cauchy-Schwarz Inequality). $|\langle x, y \rangle| \le ||x|| ||y||$.

Proof. Clearly if $\langle x, y \rangle = 0$. Assume that $\langle x, y \rangle \neq 0$.

$$
\forall \alpha \in \mathbb{C}, 0 \le ||\alpha x - y||^2 = |\alpha|^2 ||x||^2 - 2 \operatorname{Re} \alpha \langle x, y \rangle + ||y||^2. \text{ Write } \langle x, y \rangle = |\langle x, y \rangle| e^{i\theta}.
$$

Let $\alpha = e^{-i\theta}t, t \in \mathbb{R}$. Then $0 \le ||x||^2 t^2 - 2|\langle x, y \rangle| t + ||y||^2, \forall t \in \mathbb{R}$. Hence $4|\langle x, y \rangle|^2 - 4 ||x||^2 ||y||^2 \le 0$.

Corollary 7.5. $||x + y|| \le ||x|| + ||y||$. As a consequence, $||x|| = \sqrt{\langle x, x \rangle}$ is a norm.

Proof.
$$
||x + y||^2 = ||x||^2 + 2 \operatorname{Re} \langle x, y \rangle + ||y||^2 \le ||x||^2 + 2 ||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2
$$
.

Theorem 7.6 (Parallelogram law). Let V be a normed space. Then, $\|\cdot\|$ is induced by an inner $\text{product} \iff \|x + y\|^2 + \|x - y\|^2 = 2\, \|x\|^2 + 2\, \|y\|^2 \,, \forall x, y \in V.$

Proof. \implies : Follows from $||x \pm y|| = ||x||^2 \pm 2 \operatorname{Re} \langle x, y \rangle + ||y||^2$.

 \Leftarrow : Let

$$
\langle x, y \rangle = \frac{1}{4} \left(\left\| x + y \right\|^2 - \left\| x - y \right\|^2 + i \left\| x + iy \right\|^2 - i \left\| x - iy \right\|^2 \right)
$$

and check that it is a inner product.

Example 7.7. $L^p(\mathbb{R}, m)$, $f = 1_{(0,1)}$, $g = 1_{(1,2)}$. For $p \neq 2$, the parallelogram law fails.

Lemma 7.8. *Let V be an inner product space. If* $X_n \to X$ *strongly (i.e.* $\lim_{n\to\infty} ||x_n - x|| =$ 0*.)* Then $X_n \to X$ *weakly (i.e.* $\forall y \in V$, $\lim_{n \to \infty} \langle x_n - x, y \rangle = 0$ *.)*

Proof. $|\langle x_n - x, y \rangle| \le ||x_n - x|| ||y||.$

Example 7.9. ℓ^2 , $x_n = (0, \ldots, 0, 1(n{-}th), 0, \ldots)$. Fix $y = \ell^2$. Then $\langle x_n, y \rangle = \overline{y_n} \to 0$ as $n \to \infty$ since $\sum_1^{\infty} |y_n|^2 < \infty$.

Thus, $x_n \to 0$ weakly. But $||x_n - 0|| = ||x_n|| = 0$ so $x_n \to 0$ strongly.

7.2 Orthonormal Basis

Definition 7.10. x, y are called orthogonal $(x \perp y)$ if $\langle x, y \rangle = 0$.

Lemma 7.11 (Pythagorean theorem)**.**

$$
x_1, ..., x_n \in V, \langle x_i, x_j \rangle = 0, \forall i \neq j \implies ||x_1 + ... + x_n||^2 = ||x_1||^2 + ... + ||x_n||^2.
$$

Definition 7.12. $\{e_k\}$ is an *orthonormal set* is $\langle e_m, e_n \rangle =$ $\sqrt{ }$ J \mathcal{L} 0 $m \neq n$ 1 $m = n$.

Lemma 7.13 (Best approximation). Let e_1, \ldots, e_n orthonormal vectors. For $x \in V$, let $\alpha_i =$ $\langle x, e_i \rangle$, $i = 1, \ldots, N$ *. Then*

$$
\left\|x - \sum_{i=1}^N \alpha_i e_i\right\| \le \left\|x - \sum_{i=1}^N \beta_i e_i\right\|, \quad \forall \beta_1, \dots, \beta_N \in \mathbb{C}.
$$

Proof. Let $z = x - \sum_{1}^{N} \alpha_i e_i$, $w = \sum_{1}^{N} (\alpha_i - \beta_i) e_i$. $\forall n = 1, \ldots, N, \langle z, e_n \rangle = \langle x, e_n \rangle - \alpha_n =$ 0 ⇒ $\langle z, w \rangle = 0$ ⇒ $||z + w||^2 = ||z||^2 + ||w||^2 \ge ||z||^2$.

Lemma 7.14. *Suppose* $\{e_i\}_1^{\infty}$ *orthonormal set. For* $x \in V$ *, let* $\alpha_i = \langle x, e_i \rangle$ *. Then*

- (*a*) $||x||^2 = ||x \sum_1^N \alpha_i e_i||$ $2^{2} + \sum_{1}^{N} |\alpha_{i}|^{2}, \forall N \in \mathbb{N}.$
- (b) $\sum_{1}^{\infty} |\alpha_i|^2 \le ||x||^2$. (Bassel's inequality)

Proof. (a) We have

$$
\left\|x - \sum_{1}^{N} \alpha_{i} e_{i}\right\| = \|x\|^{2} - 2 \operatorname{Re}\left\langle x, \sum_{1}^{N} \alpha_{i} e_{i}\right\rangle + \left\|\sum_{1}^{N} \alpha_{i} e_{i}\right\|^{2}
$$

$$
= \|x\|^{2} - 2 \sum_{1}^{N} \operatorname{Re}\overline{\alpha_{i}} \left\langle x, e_{i}\right\rangle + \left\|\sum_{1}^{N} \alpha_{i} e_{i}\right\|^{2}
$$

$$
= \|x\|^{2} - \sum_{1}^{N} |\alpha_{i}|^{2}.
$$

(b) follows from (a).

Definition 7.15. An orthonormal set $\{e_i\}$ is said to be an orthonormal basis of V if \overline{W} = V where $W = \{\sum_{i=1}^{n} \beta_i e_i \mid N \in \mathbb{N}, \beta_1, \dots, \beta_N \in \mathbb{C}\} = \{\text{finite linear combinations of } \{e_i\}\}\$ i.e. $\forall x \in V, \forall \varepsilon > 0, \exists w \in W \text{ s.t. } ||x - w|| < \varepsilon$.

Example 7.16. \mathbb{C}^d , $e_i = (0, \ldots, 0, 1, 0, \ldots, 0), i = 1, \cdots, d$ and ℓ^2 , $e_i = (0, \ldots, 0, 1, 0, \ldots), i =$ $1, 2, \cdots$.

Definition 7.17. A *Hilbert space* is an inner product space that is complete.

Example 7.18. \mathbb{R}^d , \mathbb{C}^d , $L^2(X, \mathcal{A}, \mu)$, ℓ^2 .

 $C([0, 1]) \subset L^2([0, 1], m)$ is not closed, so it is not a Hilbert space.

Theorem 7.19. Let H *be a Hilbert space. Let* $\{e_i\}_{i=1}^{\infty}$ *be an orthonormal set. TAFE:*

- $(a) \{e_i\}_{i=1}^{\infty}$ *is an orthonormal basis.*
- *(b)* $x \in \mathcal{H}$ *and* $\langle x, e_i \rangle = 0, \forall i \implies x = 0$ *.*

\n- (c)
$$
x \in \mathcal{H} \implies S_N := \sum_1^N \alpha_i e_i \to x
$$
 strongly where $\alpha_i = \langle x, e_i \rangle$.
\n- (d) $x \in \mathcal{H} \implies ||x||^2 = \sum_1^\infty |\alpha_i|^2$. (Plancherel identity)
\n

Proof. (c) \implies (d): $||x|| = ||x - s_N||^2 + \sum_{1}^{N} ||\alpha_i||^2$. Since $S_N \to x$ strongly we have $||x|| = \lim_{N \to \infty} \sum_{1}^{N} ||\alpha_1||^2.$ (d) \implies (a): $||x|| = ||x - s_N||^2 + \sum_{1}^{N} ||\alpha_i||^2$ taking limit of both sides we have $0 =$ $\lim_{N\to\infty}||x-s_N||^2.$

(a) \implies (b): Fix $x \in \mathcal{H}$. Fix $\varepsilon > 0$. Then, by (a), $\exists y \in \left\{\sum_{1}^{N}\beta_{i}e_{i}\right\}\ s.t.$ $\|x-y\| < \varepsilon$. By the best approximation lemma, $\|x - s_k\| \leq \|x - y\| < \varepsilon$. If $\langle x, e_i \rangle = 0, \forall i$, then $s_k = 0$. Thus, $||x|| = ||x - S_k|| < \varepsilon$. Since $\varepsilon > 0$ arbitrary, $||x|| = 0$.

(b) \implies (c): Bessel $\implies \sum_{1}^{\infty} |\alpha_i| \leq ||x|| < \infty$.

$$
||S_N - S_M||^2 = \left\| \sum_{i=M+1}^N \alpha_i e_i \right\|^2 \sum_{i=M+1}^N \alpha_i |^2 \to 0 \text{ as } N > M \to \infty.
$$

So $\{S_N\}_{N=1}^{\infty}$ is a Cauchy sequence in H. Since H is complete, $\exists y \in \mathcal{H}$ such that $\lim_{N\to\infty}||S_n - y|| = 0$ i.e. $S_n \to y$ strongly. Is $y = x$?

Fix $i \in \mathbb{N}, \langle y - x, e_i \rangle = \langle y - S_n, e_i \rangle + \langle S_n - x, e_i \rangle = \alpha_i - \langle x, e_i \rangle = 0$ (if $N > i$). So for $N > i$, $\langle y - x, e_i \rangle = \langle y - S_n, e_i \rangle \implies \langle y - x, e_i \rangle$ as $N \to 0$. (Since $S_n \to y$ strongly $\implies S_n \to y$ weakly)

By (b) we have $y - x = 0 \iff y = x$.

Corollary 7.20 (Parseval). $\langle x, y \rangle = \sum_{1}^{\infty} \alpha_n \overline{\beta_n}$.

Definition 7.21. A metric space is called *separable* if ∃ countable dense subset.

Definition 7.22. $\mathbb{Q}^d \subset \mathbb{R}^d$. $\ell^p, 1 \leq p < \infty$ not $p = \infty$. $L^p(\mathbb{R}, m), 1 \leq p < \infty$ not $p = \infty$.

Proposition 7.23. *Every separable Hilbert space has a countable orthonormal basis.*

Proof. Gram-Schmidt process.

Every vector space has a basis, but need to use Zorn's lemma.

Chapter 8

Intro to Fourier Analysis

8.1 Fourier Series

Lemma 8.1. $e_n(x) = \frac{1}{\sqrt{2}}$ $rac{1}{2\pi}e^{inx} = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}(\cos(nx) + i\sin(nx))_{n\in\mathbb{Z}}$ *is an orthonormal set in* $\mathcal{H} = L^2 \left([-\pi, \pi] \right).$

Proof. Direct check.

$$
\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(m-n)x} dx = \begin{cases} 1 & m = n \\ 0 & m \neq n \end{cases}.
$$

Question: is $\{e_n\}$ an orthonormal basis?

In $L([-\pi, \pi])$, we have

$$
||f||_1 = \int_{-\pi}^{\pi} |1||f(x)| \le ||1||_2 ||f||_2 = \frac{1}{\sqrt{2\pi}} ||f||_2 \le 2\pi ||f||_{\infty}.
$$

Definition 8.2. For $F \in L^1([-\pi,\pi])$, its Fourier coefficients are

$$
\hat{f}_n = \langle f, e_n \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(y) e^{-iny} dy.
$$

We want to have

$$
\sum_{n=-M}^{N} \hat{f}_n e_n(x) = \frac{1}{2\pi} \sum_{n=-M}^{N} \left[\int_{-\pi}^{\pi} f(y) e^{-iny} dy \right]
$$

= $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \left(\sum_{n=-M}^{N} e^{-in(x-y)} \right) dy \xrightarrow[n \to \infty]{M,N \to \infty} f(x).$

Definition 8.3 (Poisson Kernel). For $0 \le r < 1$,

$$
P_r(t) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} e^{int} r^{|n|} = \frac{1 - r^2}{2\pi (1 - 2r \cos t + r^2)}.
$$

Lemma 8.4. For $f \in L^1([-\pi,\pi])$ and $0 \leq r < 1$, $\sum_{-\infty}^{\infty} \hat{f}_n e_n(x) r^{|n|}$ converges absolutely and *uniformly for* x ∈ [−π, π]*, and is equal to*

$$
\int_{-\pi}^{\pi} P_r(x-y)f(y) \, \mathrm{d}y.
$$

Proof.

$$
\sum_{-\infty}^{\infty} \left[\int_{-\pi}^{\pi} |f(y)e^{-int} | dy \right] |e_n(x)| r^{|n|} = \frac{\|f\|_1}{2\pi} \sum_{-\infty}^{\infty} r^{|n|} < \infty.
$$

Thus, Fubini's theorem applies. Now

$$
\sum_{-\infty}^{\infty} \left[\int_{-\pi}^{\pi} \left| f(y)e^{-int} \right| dy \right] |e_n(x)|r^{|n|} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \left(\sum_{n=-M}^{N} e^{-in(x-y)} r^{|n|} \right) dy
$$

$$
= \int_{-\pi}^{\pi} P_r(x-y) f(y) dy.
$$

Need to check a bit more about uniform convergence.

$$
\blacksquare
$$

$$
\underline{\text{NOTE}} \, P_r(0) = \frac{1 - r^2}{2\pi (1 - r)^2} = \frac{1 + r}{2\pi (1 - r)} \to \infty \text{ as } r \nearrow 1.
$$

Lemma 8.5. $P_r(t)$ *form a "family of good kernels" i.e.*

(a)
$$
P_r(t) \ge 0
$$

\n(b) $\int_{-\pi}^{\pi} P_r(t) dt = 1$
\n(c) $\forall \delta > 0$, $\lim_{r \nearrow 1} \int_{[-\pi,\pi] \setminus [-\delta,\delta]} P_r(t) dt = 0$.

Proof. (b) 1st formula; (a), (c) 2nd formula.

$$
\int_{[-\pi,\pi]\setminus[-\delta,\delta]} P_r(t) \, \mathrm{d}t \le \frac{1-r^2}{2\pi(1-2r\cos\delta+r^2)} 2\pi \xrightarrow{r \nearrow 1} 0.
$$

Lemma 8.6. *For* $f \in C([-\pi,\pi])$ *satisfying* $f(-\pi) = f(\pi)$ *, then*

$$
\lim_{r \nearrow 1} \int_{-\pi}^{\pi} P_r(x - y) f(y) \, \mathrm{d}y = f(x)
$$

uniformly for $x \in [-\pi, \pi]$ *.*

Proof. Extend f to $f : \mathbb{R} \to \mathbb{R}$ where $f(x + 2\pi) = f(x)$. So f is uniformly continuous and bounded.

$$
\int_{-\pi}^{\pi} P_r(x - y) f(y) \, dy - f(x) = \int_{-\pi}^{\pi} P_r(y) f(x - y) \, dy - f(x) \int_{-\pi}^{\pi} P_r(y) \, dy
$$

$$
= \int_{-\delta}^{\delta} P_r(y) (f(x - y) - f(x)) \, dy
$$

$$
+ \int_{[-\pi,\pi] \setminus [-\delta,\delta]} P_r(y) (f(x - y) - f(x)) \, dy.
$$

Theorem 8.7. $\Big\{ e_n(x) = \frac{1}{\sqrt{2}} \Big\}$ $\left\{\frac{1}{2\pi}e^{inx}\right\}$ is an orthonormal basis of $L^2([-\pi, -\pi]).$

Proof. Let $f \in L^2([-\pi,\pi])$. Fix $\varepsilon > 0$. $\exists g \in C([-\pi,\pi])$ with $g(\pi) = g(-\pi) \ s.t.$ $||f - g||_2 < \frac{\varepsilon}{3}$ (why?) Let $g_r(x) = \int_{-\pi}^{\pi} P_r(x-y)g(y) \,dy$. By [8.6,](#page-78-0) $\exists r \in [0,1) \ s.t. \ \|g_r - g\|_{\infty} < \frac{\varepsilon}{3\sqrt{2\pi}}$ $\frac{\varepsilon}{3\sqrt{2\pi}}$. So $\|g_r - g\|$ < $\frac{\varepsilon}{3}$. Let $g_{r,N}(x) = \sum_{N=N}^{N} \hat{g_n} e_n(x) r^{|n|}$. By [8.4,](#page-77-0) $\exists N \in \mathbb{N} \ s.t. \ \|g_{r,N} - g_r\|_{\infty} < \frac{\varepsilon}{3\sqrt{2}}$ $\frac{\varepsilon}{3\sqrt{2\pi}}$. Thus $\left\Vert g_{r,N} - g_r \right\Vert_2 < \frac{\varepsilon}{3}.$

Hence, $||f - g_{r,N}||_2 1 < \varepsilon$. $1 < \varepsilon$.

Example 8.8 (Plancherel identity). $||f||^2 = \sum_{-\infty}^{\infty} |\hat{f}_n|^2$.

$$
f(x) = x, \hat{f}_n = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} x e^{-inx} dx \begin{cases} 0 & n = 0\\ \frac{(-1)^n i \sqrt{2\pi}}{n} & n \neq 0 \end{cases}
$$

So the identity becomes

$$
\sum_{1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.
$$

Example 8.9 (Isoperimetric inequality). Suppose $(x(t), y(t))$, $t \in [-\pi, \pi]$ is a parametric curve in \mathbb{R}^2 that is

- (a) closed: $(x(-\pi), y(-\pi)) = (x(\pi), y(\pi))$,
- (b) smooth: x, y are $C¹$ functions,
- (c) simple.

Suppose

$$
L = \int_{-\pi}^{\pi} \sqrt{x'(t)^2 + y'(t)^2} \, dt = 2\pi.
$$

What is the largest area A encloses?

By Green's theorem $(\oint_C P \, dx - Q \, dy = \iint_D (Q_x - P_y) \, dA)$,

$$
A = \frac{1}{2} \oint (x \, dy - y \, dx) = \frac{1}{2} \oint (x(t)y'(t) - x(t)y'(t)) \, dt.
$$

Arc length parametrization so that $x'(t)^2 + y'(t)^2 = 1$ for all t. Then the condition $L = 2\pi$ can be written as

$$
L = \int_{-\pi}^{\pi} \left(x'(t)^2 + y'(t)^2 \right) dt = 2\pi
$$

Rewrite using $z(t) = x(t) + iy(t), t \in [-\pi, \pi]$ subject to

$$
\int_{-\pi}^{\pi} \|z'(t)\|^2 \, \mathrm{d}t = 2\pi,
$$

find the max of

$$
A = \frac{1}{4i} \int_{-\pi}^{\pi} \left(\overline{z(t)} z'(t) - z(t) \overline{z'(t)} \right) dt
$$

Note that $z \in C^1$ and $z(-\pi) = z(\pi)$. Denote $\hat{z}_n = \alpha_n$. Now, $\widetilde{(z')}_n = \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi} \int_{-\pi}^{\pi} z'(t) e^{-int} dt = in\alpha_n$ (integrate by parts). By Plancherel, the L constraint becomes

$$
\sum_{-\infty}^{\infty} |in\alpha_n|^2 = 2\pi.
$$

By Parseval, the A object becomes

$$
A = \frac{1}{4i} \sum_{-\infty}^{\infty} \overline{\alpha_n}(in\alpha_n) - \alpha_n \overline{(in\alpha_n)} = \frac{1}{2} \sum_{-\infty}^{\infty} n|\alpha_n|^2.
$$

The question now becomes the max of $\frac{1}{2}$ \sum^{∞} −∞ $n|\alpha_n|^2$ subject to $\displaystyle\sum^\infty$ −∞ $n^2|\alpha_n|^2=2\pi.$

Show that $2\pi - \sum_{n=1}^{\infty}$ −∞ $\langle n | \alpha_n |^2$ is nonnegative $\iff \sum_{n=1}^\infty \alpha_n$ −∞ $(n^2 - n)|\alpha_n|^2$ is nonnegative, which is obvious.

 $A = \pi \iff$ the equality holds $\iff \alpha_n = 0$ for $n \neq 0, 1 \iff z(t) = \alpha_0 + \alpha_1 e_1(t) \iff$ $z(t) = \alpha_0 + \alpha_1 e^{-it} \iff |z(t) - \alpha_0| = |\alpha_1|$, which is a circle.

This beautiful proof is by Hurwitz.

Books: Fourier Series & Integrals, Dym & McKean.

Bibliography

- [Fol99] G. B. Folland. *Real Analysis: Modern Techniques and Their Applications*. Pure and Applied Mathematics. Wiley, New York, 2nd ed edition, 1999. "A Wiley-Interscience publication.".
- [RF10] H. L Royden and P. M Fitzpatrick. *Real Analysis*. Prentice Hall, Boston, 2010.
- [Tao11] Terence Tao. *An Introduction to Measure Theory*. Number v. 126 in Graduate Studies in Mathematics. American Mathematical Society, Providence, R.I, 2011.