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Chapter 1

Abstract Measure

1.1 σ-Algebra

Definition 1.1. Let X be a set. A collectionM of subsets of X is called a σ-algebra on X
if

• ∅ ∈ M.

• M is closed under complements: E ∈M =⇒ Ec ∈M.

• M is closed under countable unions: E1, E2, . . . ∈M =⇒
⋃∞
i=1Ei ∈M.

SIMPLE PROPERTIES:

• X = ∅c ∈M.

•
⋂∞
i=1Ei = (

⋃n
i=1E

c
i )
c ∈M. It is closed under countable intersections.

•
⋃N
i=1Ei = Ei ∪ . . . ∪ En ∪ ∅ ∪ . . . . It is closed under finite unions (similarly, inter-

sections). sigma

• E \ F = E ∩ F c ∈M, E4F = (E ∩ F c) ∪ (F ∩ Ec) ∈M.

Example 1.2. (a) A = P(X) power algebra.

(b) A = {∅, X} trivial algebra.

(c) Let B ⊂ X,B 6= ∅, B 6= X.A = {∅, B,Bc, X}.

Lemma 1.3. (An intersection of σ-algebras is a σ-algebra) Let Aα, α ∈ I, be a family a σ-
algebras of X . Then

⋂
α∈I Aα is a σ-algebra. (I can be uncountable.)

Proof. DIY �
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Measures Yiwei Fu

Definition 1.4. For E ⊂ P(X) (not necessarily a σ-algebra), let 〈E〉 be the intersection of
all σ-algebras on X that contains E . Call it the σ-algebra generated by E .

• 〈E〉 is the smallest σ-algebra containing E and is unique.

• {∅, B,Bc, X} = 〈{B}〉 = 〈{Bc}〉 = 〈{∅, B}〉.

The above definition gives us (potentially) lots of examples of σ-algebra on a set X

Lemma 1.5. (a) Suppose E ⊂ P(X),A is a σ-algebra on X . E ∈ A =⇒ 〈E〉 ∈ A.

(b) E ⊂ F ⊂ P(X) =⇒ 〈E〉 ⊂ 〈F〉.

Proof. �

Definition 1.6. For a topological space X , the Borel σ-algebra B(X) is the σ-algebra gen-
erated by the collection of open sets.

Example 1.7. (X = R) B(R) contains the following collections:

E1 = {(a, b) | a < b}, E2 = {[a, b] | a < b},

E3 = {(a, b] | a < b}, E4 = {[a, b) | a < b},

E5 = {(a,∞) | a ∈ R}, E6 = {[a,∞) | a ∈ R},

E7 = {(−∞, a) | a ∈ R}, E8 = {(−∞, a] | a < b}.

Proposition 1.8. B(R) = 〈Ei〉 for each i = 1, . . . , 8.

Proof. Use 1.5. �

Definition 1.9. (X,A) is called a measurable space.

1.2 Measures

Definition 1.10. A measure on (X,A) is a function µ : A → [0,∞] s.t.

(a) µ(∅) = 0

(b) (countable additive) For A1, A2, . . . ∈ A disjoint we have

µ

(∞⋃
1

Ai

)
=

∞∑
i=1

µ(Ai).

(X,A, µ) is then called a measure space.

2



Measures Yiwei Fu

Example 1.11. (a) For any (X,A), µ(A) = #A counting measure.

(b) For any (X,A), let x0 ∈ X. The Dirac measure at x0 is

µ(A) =

1 x0 ∈ A,

0 x0 /∈ A.

(c) For (N,P(N)), let a1, a2, . . . ∈ [0,∞). µ(A) =
∑
i∈A ai is a measure.

(X,A) measurable space

(X,A, µ) measure space

µ : A → [0,∞] s.t. µ(∅) = 0, countable additivity.

NOTE: A,B ∈ A, A ⊂ B, then µ(B \ A) + µ(A) = µ(B) =⇒ µ(B \ A) = µ(B)− µ(A) if
µ(A) <∞.

Theorem 1.13. Suppose (X,A, µ) a measure space. Then

(a) (monotonicity)
A,B ∈ A, A ⊂ B =⇒ µ(A) ≤ µ(B).

(b) (countable subadditivity)

A1, A2, . . . ,∈ A, =⇒ µ

(∞⋃
i

Ai

)
≤
∞∑
i

µ(Ai).

(c) (continuity from below/(MCT) from sets)

A1, A2, . . . ∈ A, A1 ⊂ A2 ⊂ A3 ⊂ . . . =⇒ µ

(∞⋃
i

Ai

)
= lim
n→∞

µ(An).

(d) (continuity from above)

A1, A2, . . . ∈ A, A1 ⊃ A2 ⊃ A3 ⊃ . . . , µ(A1) <∞ =⇒ µ

(∞⋂
i

Ai

)
= lim
n→∞

µ(An).

Proof. (a), (b), DIY.
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For (c), let B1 = A1, Bi = Ai \Ai−1, i ≥ 2.Bi ∈ A and are disjoint.

∞⋃
i

Ai =

∞⋃
i

Bi

=⇒ µ

(∞⋃
i

Ai

)
= µ

(∞⋃
i

Bi

)
=

∞∑
i

µ(Bi) = lim
n→∞

n∑
i

µ(Bi) = lim
n→∞

µ(An).

For (d), let Ei = A1 \Ai. Hence Ei ∈ A, E1 ⊂ E2 ⊂ . . . We have

∞⋃
i

Ei =

∞⋃
i

(A1 \Ai) = A1 \

(∞⋂
1

Ai

)
=⇒

∞⋂
1

Ai = A1 \

(∞⋃
1

Ei

)
.

Hence

µ

(∞⋂
1

Ai

)
= µ(A1)− µ

(∞⋃
1

Ei

)
= µ(A1)− lim

n→∞
µ(En) = µ(A1)− lim

n→∞
µ(A1)− µ(An).

�

NOTE: the condition that µ(A1) <∞ cannot be dropped.
For example, in (N,P(N), counting measure), letAn = {n, n+1, n+2}, A1 ⊃ A2 ⊃ A3 ⊃
. . . We have

⋂∞
1 = ∅ =⇒ µ (

⋂∞
1 Ai) = 0.

Definition 1.14. For (X,A, µ) measure space,

• A ⊂ X is a µ-null set if A ∈ A, µ(A) = 0.

• A ⊂ X is a µ-subnull set if ∃B,µ-null set A ⊂ B.

• (X,A, µ) is a complete measure space if every µ-subnull set is A-measurable.

Definition 1.15. (X,A, µ) measure space. A statement P (x), x ∈ X holds µ-almost ev-
erywhere (a.e.) if the set {x ∈ X | P (x)does not hold} is µ-null.

Definition 1.16. (X,A, µ) measure space.

• µ is a finite measure is µ(X) <∞.

• µ is a σ-finite measure if X =
⋃∞

1 Xn, Xn ∈ A, µ(Xn) <∞.

HW: every measure space can be "completed."

1.3 Outer Measures

Definition 1.17. An outer measure on X is µ∗ : P(X)→ [0,∞] s.t.

4
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• µ∗(∅) = 0

• (monotonicity) µ∗(A) ≤ µ∗(B) if A ⊂ B.

• (countable subadditivity)

∀A1, A2, . . . ∈ X,µ∗
(∞⋃

i

Ai

)
≤
∞∑
i

µ∗(Ai).

Example 1.18. For A ⊂ R,

µ∗(A) = inf

{ ∞∑
i=1

(bi − ai)
∣∣∣∣ ∞⋃

1

(ai, bi) ⊃ A

}
.

is an outer measure due to the next proposition.

Proposition 1.19. (1.19) Let E ∈ P(X) s.t. ∅, X ∈ E . Let ρ : E → [0,∞] s.t. ρ(∅) = 0. Then

µ∗(A) = inf

{ ∞∑
i=1

ρ(Ei)

∣∣∣∣ Ei ∈ E ,∀i ∈ N, ∞⋃
1

Ei ⊃ A

}

is an outer measure on X .

Proof. (a) µ∗ is well-defined (inf is taken over non-empty set.)

(b) µ∗(∅) = 0

(c) A ⊂ B =⇒ µ∗(A) ≤ µ∗(B).

We check the countable subadditivity.

Let A1, A2, . . . ⊂ X. If one of µ∗(Ai) = ∞, then the result holds. Suppose µ∗(An) <

∞,∀n ∈ N.

"Give your self a room of epsilon":

Fix ε > 0. We will show

µ∗

(∞⋃
1

An

)
≤
∞∑
1

µ∗(Ai) + ε.

For each n ∈ N,∃En,1, En,2, . . . ∈ E s.t.

∞⋃
k=1

En,k ⊃ An and µ∗(An) +
ε

2n
≥
∞∑
k=1

ρ(En,k).

5
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Then,
∞⋃
1

An ⊂
∞⋃
n=1

∞⋃
k=1

En,k =
⋃

(n,k)∈N2

En,k.

RECALL: Tonelli’s thm for series. If aij ∈ [0,∞],∀i, j ∈ N, then

∑
(i,j)∈N2

aij =

∞∑
i=1

∑
j=1∞

aij =

∞∑
j=1

∞∑
i=1

aij.

Hence

µ∗

( ∞⋃
n=1

An

)
≤
∞∑
n=1

ρ(Ek,n) =

∞∑
n=1

∞∑
k=1

ρ(Ek,n) ≤
∞∑
n=1

(
µ∗(An) +

ε

2n

)
=

∞∑
n=1

µ∗(An) + ε.

We have shown countable subadditivity. �

Outer measure is very close to a measure. Here the textbooks diverge.

[Tao11] introduces Lebesgue measure on R using topological qualities of subsets of R.
[Fol99] introduces abstract method by Carathéodory and Kolmogorov.

Definition 1.20. Let µ∗ be an outer measure on X . We say A ⊂ X is Carathéodory
measurable with respect to µ∗ if ∀E ⊂ X,µ∗(E) = µ∗(E \A) + µ∗(E ∩A).

Lemma 1.21. Let µ∗ be an outer measure on X . Suppose B1, B2, . . . , BN are disjoint C-
measurable sets. Then,

∀E ⊂ X,µ∗
(
E ∩

(
N⋃
1

Bi

))
=

n∑
i=1

µ∗(E ∩Bi)

Proof.

µ∗

(
E ∩

(
N⋃
1

Bi

))
= µ∗(E ∩B1) + µ∗

(
E ∩

(
N⋃
2

Bi

))

because B1 is C-measurable. Then, iterate. �

Improved version:

B1, B2, . . . C-measurable and disjoint =⇒ µ∗ (E ∩
⋃∞

1 Bn) =
∑∞

1 µ∗ (E ∩Bn) ,∀E ⊂
X.

6
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Proof.

∞∑
1

µ∗(E ∩Bn) ≥ µ∗
(
E ∩

∞⋃
1

Bn

)

≥ µ∗
(
E ∩

N⋃
1

Bn

)
=

N∑
1

µ∗(E ∩Bn.)

Take N →∞ or note that N ∈ N is arbitrary we get the result. �

First big theorem:

Theorem 1.22 (Carathéodory extension theorem). Let µ∗ be an outer measure on X. Let A
be the collection of C-measurable sets with respect to µ∗. Then

(a) A us a σ-algebra on X .

(b) µ = µ∗|A is a measure on (X,A).

(c) (X,A, µ) is a complete measure space.

Proof. (a) (1) ∅ ∈ A.

(2) A is closed under complements.

(3) To show A closed under countable unions.

• (finite union)
CLAIM A,B ∈ A =⇒ A ∪B ∈ A.

A B

E

1
2

3

4

Figure 1.1: Venn diagram of A,B,E

Fix arbitrary E ⊂ X . We need to show

µ∗(E) = µ∗(E ∩ (A ∪B)) + µ∗(E \ (A ∪B)).

i.e.
µ∗(1 ∪ 2 ∪ 3 ∪ 4) = µ∗(1 ∪ 2 ∪ 3) + µ∗(4)

7
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Since A is C-measurable, we have

µ∗(1 ∪ 2 ∪ 3 ∪ 4) = µ∗(1 ∪ 2) + µ∗(3 ∪ 4)

µ∗(1 ∪ 2 ∪ 3) = µ∗(1 ∪ 2) + µ∗(3)

Similarly since B is C-measurable, we have

µ∗(3 ∪ 4) = µ∗(3) + µ∗(4)

Hence

µ∗(1 ∪ 2 ∪ 3 ∪ 4) = µ∗(1 ∪ 2) + µ∗(3 ∪ 4)

= µ∗(1 ∪ 2 ∪ 3)− µ∗(3) + µ∗(3) + µ∗(4)

= µ∗(1 ∪ 2 ∪ 3) + µ∗(4).

• (countable disjoint unions)
Let A1, A2, . . . ∈ A and disjoint.

Fix E ⊂ X arbitrary. Since µ∗ is countably subadditive,

µ∗(E) ≤ µ∗
(
E ∩

∞⋃
1

)
+ µ∗

(
E \

∞⋃
1

An

)

Fix n ∈ N.

=⇒
N⋃
1

An ∈ A

=⇒ µ∗(E) = µ∗

(
E ∩

N⋃
1

)
+ µ∗

(
E \

N⋃
1

An

)

≥
N∑
1

µ∗(E ∩An) + µ∗

(
E \

∞⋃
1

An

)
by lemma.

Take n→∞.

• (countable unions)
Let A1, A2, . . . ∈ A. Take E1 = A1, En = An \

(⋃n−1
1 Ai

)
for n ≥ 2. Then⋃

An =
⋃
En and En’s are disjoint.

(b) Firstly we have µ(∅) = µ∗(∅) = 0.

Countable additvity of µ∗ on A follows from the improved lemma with E = X .

8
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(c) HW. �

1.4 Hahn-Kolmogorov Theorem

RECALL 1.19 Let E ⊂ P(X) s.t. ∅, X ∈ E . Let ρ : E → [0,∞] s.t. ρ(∅) = 0

(E , ρ) −−→
1.19

(P(X), µ∗) −−−−−−→
C-theorem

(A,µ)

QUESTION E ⊂ A and µ|E = ρ? No!

Definition 1.23. Let A0 be an algebra on X . We say µ0 : A0 → [0,∞] is a pre-measure if

(a) µ0(∅) = 0.

(b) (finite additivity)

µ0

(
N⋃
1

Ai1

)
=

N∑
1

µ0(Ai) if A1, . . . , AN ∈ A0 are disjoint.

(c) (countable additivity within the algebra) If A ∈ A0 and

A =

∞⋃
1

An, An ∈ A0 and are disjoint, then µ0(A) =

∞∑
1

µ0(An)

NOTATION: Folland usesM for σ-algebra andA for algebra. (Jinho) usesA for σ-algebra
and A0 for alegbra.

Example 1.24. A0 finite disjoint unions of (a, b].

µ0

(∞⋃
1

(ai, bi]

)
=

∞∑
1

(bi − ai) or bni − ani , ebi − eai , etc.

Lemma 1.25. • (a) + (c) =⇒ (b).

• µ0 is monotone.

Theorem 1.26 (Hahn-Kolmogorov Theorem). Let µ0 be a pre-measure on algebra A0 on X .
Let µ∗ be the outer measure induced by (A0, µ0) in 1.19. Let A and µ be the Carathéodory
σ-algebra and measure for µ∗ =⇒ (A, µ) extends (A0, µ0) i.e. A ⊃ A0, µ|A0 = µ0.

Proof. (a) (A ⊃ A0) Let A ∈ A0.

Question: A ∈ A? i.e. isAC-measurable? i.e. µ∗(E) = µ∗(E∩A)+µ∗(E∩Ac),∀E ⊂

9
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X.

Fix E ⊂ X.

• (countable) subadditivity of µ∗ =⇒ µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac).

• If µ∗(E) =∞ then µ∗(E) =∞ ≥ µ∗(E ∩A) + µ∗(E ∩Ac).

• If µ∗(E) <∞.

Fix ε > 0. By the definition of µ∗,∃B1, B2, . . . ∈ A0 s.t.
⋃∞

1 Bn ⊃ E and

µ∗(E) + ε ≥
∞∑
1

µ0(Bn) =

∞∑
1

(µ0(Bn ∩A) + µ0 (Bn ∩Ac))) .

Note that

∞⋃
1

(Bn ∩A) ⊃ E ∩A,
∞⋃
1

(Bn ∩Ac) ⊃ E ∩Ac =⇒ ≥

(b) Let A ∈ A0. We want to show that µ(A) = µ0(A).

By definition, µ(A) = µ∗(A).

• Let Bi =

A i = 1,

∅ i = 2
∈ A0 and

⋃∞
1 Bi ⊃ A.

Hence µ∗(A) ≤
∑∞

1 µ0(Bi) = µ0(A).

• Let Bi ∈ A0,
⋃∞

1 Bi ⊃ A an arbitrary collection of sets.

LetC1 = A∩B1, Ci = A∩Bi\
(⋃i−1

j=1Bj

)
. ThenA =

⋃∞
1 is a disjoint countable

union. By countable additivitiy we have

µ0(A) =

∞∑
1

µ0(Ci) =⇒ µ0(A) ≤
∞∑
1

µ0(Bi).

Hence we have µ0(A) = µ∗(A) = µ(A). We have completed our proof. �

Definition 1.27. Such (A, µ) is called the Hahn-Kolmogorov extension of (A0, µ0), and is
also called the Carathéodory σ-algebra for (A0, µ0).

Theorem 1.28 (uniqueness of HK extension). LetA0 be an algebra onX , µ0 be a pre-measure
onA0, (A, µ) be the Hahn-Kolmogorov extension of (A0, µ0). And let (A′, µ′) be another exten-
sion of (A0, µ0).

If µ0 is σ-finite, then µ |A∩A′= µ′ |A∩A′ .

10
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NOTE σ-finite means

∀X,X =

∞⋃
1

Xn, Xn ∈ A0, µ0(Xn) <∞.

Corollary 1.29. Let µ0 be a pre-measure on algebra A0 on X . Suppose µ0 is σ-finite, then ∃!
measure µ on 〈A0〉 that extends A0. Furthermore,

(a) the completion of (X, 〈A0〉, µ) is the HK extension of (A0, µ0).

(b)

µ(A) = inf

{ ∞∑
i=1

µ0(Bi) | Bi ⊂ A0,∀i ∈ N,
∞⋃
1

Bi ⊃ A

}
,∀A ∈ 〈A0〉.

Proof of 1.28. Let A ∈ A ∩A′. We need to show µ(A) = µ∗(A) = µ′(A).

• µ∗(A) ≥ µ′(A) (HW)

• µ(A) ≤ µ′(A):

(i) Assume µ(A) <∞. Fix ε > 0. Then ∃Bi ∈ A0,∀i ∈ N,
⋃∞

1 Bi ⊃ A s.t.

µ(A) + ε = µ∗(A) + ε ≥
∞∑
1

µ0(Bi) =

∞∑
1

µ(Bi) ≥ µ

(∞⋃
1

Bi

)
= µ(B)

Hence µ(B \A) = µ(B)− µ(A) ≤ ε.

On the other hand,

µ(B) = lim
N→∞

µ

(
N⋃
1

Bi

)
= lim
N→∞

µ′

(
N⋃
1

Bi

)
= µ′(B)

by continuity of measure from below.

µ(A) ≤ µ(B) = µ′(B) = µ′(A) + µ′(B \A) ≤ µ′(A) = ε.

(ii) Assume µ(A) =∞.

Since µ0 is σ-finite, X =
⋃∞

1 Xn, Xn ∈ A0, µ0(X0) < ∞. Replacing Xn by
X1 ∪ . . . ∪Xn, we may assume X1 ⊂ X2 ⊂ . . ..

∀n ∈ N,µ(A ∩Xn) <∞ =⇒ µ(A ∩Xn) ≤ µ′(A ∩Xn).

11
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Hence
µ(A) = lim

N→∞
µ(A ∩Xn) ≤ lim

N→∞
µ′(A ∩Xn) = µ′(A). �

1.5 Borel Measures on R

Definition 1.30. F : R→ R is an increasing function if F (x) ≤ F (y) for x < y. F : R→ R
is increasing and right-continuous =⇒ F is distribution function.

Example 1.31.

• F (x) =

1, x ≥ 0

0, x < 0.

• Q = {r1, r2, . . .}, Fn(x) =

1 x ≥ rn
0 x < rn

. F (x) =

∞∑
n=1

Fn(x)

2n
is a distribution func-

tion.

NOTE If F is increasing, F (∞) := limx→∞ F (x), F (−∞) := limx→−∞ F (x) exists in
[−∞,∞].

In probability theory, cumulative distribution function (CDF) is a distribution function
with F (∞) = 1 and F (−∞) = 0.

There are distributions [Fol99, Ch.9], but these are different from distribution functions.

Definition 1.32. Suppose X a topological space. µ on (X,B(X)) is called locally finite is
µ(K) <∞ for any compact set K ⊂ X .

Lemma 1.33. Let µ be a locally finite Borel measure on R =⇒

Fµ(x) =


µ((0, x]), x > 0

0, x = 0

−µ((x, 0]), x < 0

is a distribution function.

Proof. DIY. Use continuity of measure. �

Definition 1.34. h-intervals are ∅, (a, b], (a,∞), (−∞, b], (∞,∞).

Lemma 1.35. Let H be the collections of finite disjoint unions of h-intervals. Then H is an
algebra on R.

Proof. DIY. �

12
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Proposition 1.36 (Distribution function defines a pre-measure). Let F : R → R be a
distribution function. For an h-interval I , define

`(I) = `F (I) =



0, I = ∅

F (b)− F (a), I = (a, b]

F (∞)− F (a), I = (a,∞)

F (b)− F (∞), I = (−∞, b]

F (∞)− F (−∞), I = (−∞,∞).

Define µ0 = µ0,F : H → [0,∞] by

µ0(A) :=

N∑
k=1

`(Ik) if A =

N⋃
k=1

Ik, finite disjoint union of h-intervals.

Then µ0 is a pre-measure.

Proof. (a) µ0 is well-defined.

(b) µ0 is finite additive.

(c) µ0 is countable additive withinH.

Suppose A ∈ H and A =
⋃∞

1 Ai a disjoint union, Ai ∈ H. It is enough to consider
the case A = I, Ak = Ik all h-intervals. (Why?)

Focus on the case I = (a, b]: (HW: check other cases)
We have

(a, b] =

∞⋃
1

(an, bn], a disjoint union.

Check

F (b)− F (a)
?
=

∞∑
1

(F (bn)− F (an))

(a, b] ⊃
⋃N

1 (an, bn] =⇒ F (b) − F (a) ≥
∑N

1 F (bn) − F (an),∀N ∈ N. (Arranging
them in decreasing order) Take N →∞we have

F (b)− F (a) ≥
∞∑
1

(F (bn)− F (an)).

Since F is right-continuous, ∃a′ > a s.t. F (a′) − F (a) < ε. For each n ∈ N, ∃b′n >

13
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bn s.t. F (b′n)− F (bn) < ε
2n .

=⇒ [a′, b] ⊂
∞⋃
1

(an, b
′
n)

=⇒ ∃N ∈ N s.t. [a′, b] ⊂
n⋃
1

(an, b
′
n)

=⇒ F (b)− F (a′) ≤
N∑
1

F (b′n)− F (an)

=⇒ F (b)− F (a) ≤ F (b)− F (a′) + ε ≤
∞∑
1

(F (b′n)− F (an)) + ε

≤
∞∑
1

(
F (bn)− F (an) +

ε

2n

)
+ ε �

Once we have this pre-measure, HK theorem allows us to extended it to a measure.

Theorem 1.37 (Locally finite Borel measures on R).

(a) F : R → R is a distribution function =⇒ ∃! locally finite Borel measure µF on R
satisfying µF ((a, b]) = F (b)− F (a),∀a, b, a < b.

(b) Suppose F,G : R→ R are distribution functions. Then, µF = µG on B(R) if and only if
F −G is a constant function.

Proof. HW �

1.6 Lebesgue-Stieltjes Measures on R

F distribution function =⇒ µF on Carathéodory σ-algebra AµF
.

Actually (AµF
, µF ) = (B(R), µF ) (HW3).

Definition 1.38. • µF onAµF
is called the Lebesgue-Stieltjes measure corresponding

to F .

• Special case: F (x) = x =⇒ Lebesgue measure (B,m).

Example 1.39.

(a) µF ((a, b]) = F (b) − F (a). F is right-continuous and increasing =⇒ F (x−) ≤
F (x) = F (x+).

(HW) µF ({a}) = F (a) − F (a−), µF ([a, b]) = F (b) − F (a−), µF ((a, b)) = F (b−) −
F (a).

14
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(b)

F (x) =

1 x ≤ 0

0 x < 0
=⇒ µF ({0}) = 1, µF (R) = 1, µF (R \ {0}) = 0.

µF is the Dirac measure at 0.

(c)

Q = {r1, r2, . . .}, F (x) =

∞∑
n=1

Fn(x)

2n
, Fn(x) =

1 x ≤ rn
0 x < rn

=⇒ µF ({v}) > 0,∀v ∈ Q, µF (R \Q) = 0.

(d) If F is continuous at a, µF ({a}) = 0.

(e) F (x) = x =⇒ m((a, b])) = m((a, b)) = m([a, b]) = b− a.

(f) F (x) = ex, =⇒ µF ((a, b]) = µF ((a, b)) = eb − ea

(a), (b) are examples of discrete measure.

Example 1.40 (Middle thirds Cantor set C =
⋃∞
n=1Kn).

C is uncountable set with m(C) = 0.

x ∈ C =⇒ x =

∞∑
n=1

an
3n
, an ∈ {0, 2}.

We are interested in the Cantor function F .

Example 1.41. Cantor function F is continuous and increasing. This defines the Cantor
measure µF (R \ C) = 0, µF (C) = 1, µF ({a}) = 0. Compare with Lebesgue measure
m(R \ C) =∞ > 0, µ(C) = 0,m({a}) = 0.

1.7 Regularity Properties of Lebesgue-Stieltjes Measures

Lemma 1.42. µ is Lebesgue-Stieltjes measure on R =⇒

µ(A) = inf

{ ∞∑
1

µ((ai, bi])

∣∣∣∣ ∞⋃
1

(ai, bi] ⊃ A

}

= inf

{ ∞∑
1

µ((ai, bi))

∣∣∣∣ ∞⋃
1

(ai, bi) ⊃ A

}

15
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Proof. Using the continuity of measure. �

Theorem 1.43. µ is a Lebesgue-Stieltjes measure. Then ∀A ∈ Aµ,

(a) (outer regularity)
µ(A) = inf{µ(O) | open O ⊃ A}.

(b) (inner regularity)
µ(A) = sup{µ(K) | compact K ⊂ A}.

Proof. (a) Followed from 1.42.

(b) Let s = sup{. . .}. Monotonicity =⇒ µ(A) ≥ s.

• (A bounded) A ∈ B(R) ⊂ Aµ, A bounded =⇒ µ(A) <∞.

Fix ε > 0. By 1, ∃ open O ⊃ A \A,µ(O)− µ(A \A) = µ(O \ (A \A)) ≤ ε.

Let K = A \O︸ ︷︷ ︸
K⊂A

= A \O︸ ︷︷ ︸
compact

. Show that µ(K) ≥ µ(A)− ε.

• (A unbounded but µ(A) <∞) We have

A =

∞⋃
1

An, An = A ∩ [−n, n], A1 ⊂ A2 ⊂ . . .

Hence
lim
n→∞

µ(An) = µ(A) <∞.

• (µ(A) =∞)
lim
n→∞

µ(An) = µ(A) =∞.

Fix L > 0. ∃N s.t. µ(AN ) ≥ L. �

Definition 1.44. Suppose X a topological space.

A Gσ-set is G =

∞⋂
1

Oi, Oi open. An Fσ-set is F =

∞⋃
1

Fi, Fi closed.

Theorem 1.45. Suppose µ a LS measure. Then the following statements are equivalent:

(a) A ∈ Aµ.

(b) A = G \M , G is a Gσ-set, and M is µ-null.

(c) A = F ∪N , F is an Fσ-set, and N is µ-null.

Proof. (b) =⇒ (a) and (c) =⇒ (a) are clear.

16
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• (a) =⇒ (c)

(i) Assume µ(A) <∞. By inner regularity,

∀n ∈ N,∃ compact Kn ⊂ A s.t. µ(Kn) +
1

n
≥ µ(A).

Let F =
⋃∞

1 Kn. Then N = A \ F is µ-null.

(ii) Assume µ(A) =∞. We construct

A =
⋃
k∈Z

Ak, Ak = A ∩ (k, k + 1].

By (i), ∀k ∈ Z, Ak = Fk ∪Nk. Hence

A =

(⋃
k

Fk

)
︸ ︷︷ ︸

Fσ

∪

(⋃
k

Nk

)
︸ ︷︷ ︸

µ-null

.

• (a) =⇒ (b)
Ac = F ∪N,A = F c ∪N c = F c \N. �

Proposition 1.46. Suppose µ a LS measure, A ∈ Aµ, µ(A) <∞. Then

∀ε > 0,∃I =

N=N(ε)⋃
1

Ii, disjoint open intervals s.t. µ(A4I) ≤ ε.

Proof. DIY - use outer regularity. �

Properties of Lebesgue measure

Theorem 1.47.
A ∈ L =⇒ A+ s ∈ L, rA ∈ L,∀r, s ∈ R.

In addition, m(A+ r) = m(A) and m(rA) = rm(A).

Proof. DIY. �

Example 1.48.

(a) Q = {r1}∞i=1, which is dense in R. Let ε > 0 and

O =

∞⋃
i=1

(
ri −

ε

2i
, ri +

ε

2i

)
.

17
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O is open and dense in R. We have

m(O) ≤
∞∑
i=1

2ε

2i
= 2ε, ∂O = O \O,m(O) =∞.

(b) ∃ uncountable set A with m(A) = 0.

(c) ∃A with m(A) > 0, but A contains no non-empty open interval.

(d) ∃A /∈ L that is Vitali set.

(e) ∃A ∈ L \ B(R). We will deal with that later.

18



Chapter 2

Integration

2.1 Measurable Functions

Definition 2.1. Suppose (X,A), (Y,B) two measurable spaces. f : X → Y is (A,B)-
measurable if

∀B ∈ B, f−1(B) ∈ A.

Lemma 2.2. Suppose B = 〈E〉. Then

f : X → Y is (A,B)-measurable ⇐⇒ ∀E ∈ E , f−1(E) ∈ A.

Proof. =⇒ clear

⇐= Let D = {E ⊂ Y | f−1(E) ∈ A}. We have E ⊂ D by assumption. In addition D is a
σ-algebra =⇒ 〈E〉 ⊂ D. �

Definition 2.3. Suppose (X,A) a measurable space.

f : X → R
f : X → R = [−∞,∞]

f : X → C

 is A-measurable if


f is (A,B(R))-measurable
f is (A,B(R))-measurable
Re f, Im f : X → R are A-measurable.

Here B(R) = {E ⊂ R | E ∩R ∈ B(R)}.

Lemma 2.4. Suppose f : X → R. Then the followings are equivalent:

(a) f is A-measurable

19
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(b) ∀a ∈ R, f−1((a,∞)) ∈ A.

(c) ∀a ∈ R, f−1([a,∞)) ∈ A.

(d) ∀a ∈ R, f−1((−∞, a)) ∈ A.

(e) ∀a ∈ R, f−1((−∞, a]) ∈ A.

For f : X → R, change the interval to include −∞ and∞.

Proof. By 2.2. �

Example 2.5. A = P(X) =⇒ every function is Ameasurable.

A = {∅, X} =⇒ only A functions are constant functions.

PROPERTIES Suppose f, g : X → R, A-measurable functions.

(a) φ : R → R, B(R) measurable (i.e. Borel measurable) =⇒ φ ◦ f : X → R is
A-measurable.

(b) −f, 3f, f2, |f | are A-measurable, 1
f is A-measurable if f(x) = 0,∀x ∈ X .

(c) f + g is A-measurable

(f + g)−1((a,∞)) =
⋃
r∈Q

(
f−1((r,∞)) ∩ g−1((a− r,∞))

)
.

(d) fg is A-measurable

f(x)g(x) =
1

2

(
(f(x) + g(x))2 − f(x)2 − g(x)2

)
.

(e) (f ∧ g)(x) = min{f(x), g(x)}, (f ∨ g)(x) = max{f(x), g(x)} are A-measurable.

(f) fn : X → R are a sequence of A-measurable functions =⇒

sup fn, inf fn, lim sup
n→∞

fn, lim inf
n→∞

fn are A-measurable.

(g) If f(x) = limn→∞ fn(x) converges for every x ∈ X , then f is measurable.

Example 2.6. Suppose f : R → R is continuous. Then f is Borel measurable =⇒ f is
Lebesgue measurable. (Preimage of an open set of a continuous function is open.)

Definition 2.7. For f : X → R, let f+ = f ∨ 0, f− = (−f) ∨ 0.

NOTE supp f+ ∩ supp f− = ∅. f(x) = f+(x) − f−(x). f is A-measurable ⇐⇒ f+, f−

measurable.
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Definition 2.8. For E ⊂ X , characteristic (indicator) funtion of E

χE(x) = 1E(x) =

1 x ∈ E

0 x ∈ Ec.

1E is A-measurable ⇐⇒ E ∈ A.

Definition 2.9. Suppose (X,A) a measurable space. A simple function φ : X → C that is
A-measurable and takes only finitely many values.

φ(X) = {c1, . . . , cN}, ci 6= ±∞, Ei = φ−1(ci) ∈ A =⇒ φ =

N∑
i=1

ci1Ei
.

Theorem 2.10. Suppose (X,A) a measurable space and f : X → [0,∞]. Then the followings
are equivalent:

(a) f is A-measurable.

(b) ∃ simple functions 0 ≤ φ1(x) ≤ φ2(x) ≤ . . . ≤ f(x) such that

lim
n→∞

φn(x) = f(x), ∀x ∈ X.

(f is the pointwise upward limit of simple functions.)

Proof. • (b) =⇒ (a) is easy: f(x) = sup
n∈N

φn(x).

• (a) =⇒ (b): suppose f is A-measurable.

Fix n ∈ N. Let Fn = f−1([2n,∞]) ∈ A. For

0 ≤ k ≤ 22n − 1, En,k = f−1
([

k

2n
,
k + 1

2n

])
∈ A.

Let φn(x) =

22n−1∑
k=0

1En,k
+ 2n1Fn

.

This shows that

– 0 ≤ φ1(x) ≤ φ2(x) ≤ . . . ≤ f(x), ∀x ∈ X .

– ∀x ∈ X \ Fn, 0 ≤ f(x)− φn(x) ≤ 1

2n
.

Since F1 ⊃ F2 ⊃ . . . and
∞⋂
1

Fn = f−1({∞}), we have
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– x ∈ f−1([0,∞)) = X \

(∞⋂
1

Fn

)
=⇒ lim

n→∞
φn(x) = f(x).

– x ∈ f−1({∞}) =

∞⋂
1

Xn =⇒ φn(x) ≥ 2n =⇒ lim
n→∞

φn(x) =∞ = f(x). �

Corollary 2.11. If f is bounded on a set A ⊂ R (i.e. ∃L > 0 s.t. |f(x)| ≤ L, ∀x ∈ A) then
φn → f uniformly on A.

Proof. DIY. �

Corollary 2.12. f : X → C, measurable function ⇐⇒ ∃ simple functions φn : X →
C s.t. 0 ≤ |φ1| ≤ |φ2| ≤ . . . ≤ |f | and φn converges to f pointwise. (Again, if f is bounded the
convergence can be uniform.)

2.2 Integration of Nonnegative Functions

Definition 2.13. Suppose (X,A, µ) a measure space and φ =
∑N
i=1 ci1Ei

: X → [0,∞] a
simple function. Let

∫
φ =

∫
φ dµ =

∫
X

φ dµ =

N∑
1

ciµ(Ei).

Proposition 2.14. Suppose φ, ψ ≥ 0 are simple functions. Then,

• 2.13 is well-defined.

•
∫
cφ = c

∫
φ, c ∈ [0,∞).

•
∫

(φ+ ψ) =

∫
φ+

∫
ψ.

• φ(x) ≥ ψ(x), ∀x =⇒
∫
φ ≥

∫
ψ.

• ν(A) =

∫
A

φ dµ is a measure on (X,A).

Proof. DIY. �

Definition 2.15. Suppose (X,A, µ), f : X → [0,∞] is A-measurable.

Define ∫
f =

∫
f dµ = sup

{∫
φ | 0 ≤ φ ≤ f, φ simple

}
.
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Proposition 2.16.

• If f is a simple function then two definitions are the same.

•
∫
cf = c

∫
f .

• f ≥ g ≥ 0 =⇒
∫
f ≥

∫
g.

•
∫
f + g =

∫
f +

∫
g. (A bit harder to check)

Theorem 2.17 (Monotone convergence theorem). Suppose (X,A, µ) a measure space and

• f : X → [0,∞] is A-measurable, ∀n ∈ N.

• 0 ≤ f1(x) ≤ . . ..

• lim
n→∞

fn(x) = f(x).

Then ∫
f = lim

n→∞

∫
fn.

Proof. Note that limn→∞ fn(x) converges ∀x ∈ X and limn→∞ fn(x) converges.

• fn ≤ f =⇒
∫
fn ≤

∫
f =⇒ lim

n→∞

∫
fn ≤

∫
f .

• Fix simple function 0 ≤ φ ≤ f . Enough to show that lim
n→∞

∫
fn ≥

∫
φ.

Now fix α ∈ (0, 1). Enough to prove that lim
n→∞

∫
fn ≥ α

∫
φ.

Let An = {x | fn(x) ≥ αφ(x)}.

– An ∈ A.

– A1 ⊂ A2 ⊂ . . .

–
∞⋃
n=1

An = X . (check!)

So we have ∫
fn ≥

∫
fn1An

≥
∫
αφ1An

= αν(An)

where ν(A) =
∫
A
φ is a measure.

=⇒ lim
n→∞

∫
fn ≥ lim

n→∞
ν(An) = αν(x) = α

∫
φ. �

Corollary 2.18. f, g ≥ 0 measurable =⇒
∫
f + g =

∫
f +

∫
g.
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Proof. ∃ simple functions 0 ≤ φ1 ≤ φ2 ≤ . . . , φn → f pointwise and 0 ≤ ψ1 ≤ ψ2 ≤
. . . , ψn → g pointwise.

By MCT, we have∫
(f + g) = lim

n→∞

∫
(φn + ψn) = lim

n→∞

∫
φn +

∫
ψn =

∫
f +

∫
g. �

Corollary 2.19 (Tonelli’s theorem for series and integrals). Given sn ≥ 0,∀n ∈ N measur-
able functions. Then ∫ ∞∑

n=1

sn =

∞∑
n=1

∫
sn.

Proof. Let fN =
∑N
n=1 sn, 0 ≤ f1 ≤ f2 ≤ . . ..

lim
N→∞

fN (x) =

∞∑
n=1

sn(x)

By MCT, we have

lim
N→∞

N∑
1

sn =

∞∑
1

sn

�

Theorem 2.20 (Fatou’s lemma). Suppose fn ≥ 0 measurable. Then∫
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn.

Recall that
lim inf
n→∞

fn := lim
k→∞

inf
n≥k

fn = sup
k∈N

inf
n≥k

fn,

and
lim
n→∞

an exists ⇐⇒ lim sup
n→∞

an = lim inf
n→∞

an.

Proof. Let gk = infn≥k fn =⇒ sk measurable and 0 ≤ g1 ≤ g2 ≤ . . .. By MCT, we have∫
lim inf
n→∞

=

∫
lim
k→∞

sk = lim
k→∞

∫
sk = lim

k→∞

∫
inf
n≥k

fn
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inf
n≥k

fn ≤ fm,∀m ≥ k

=⇒
∫

inf
n≥k

fn ≤
∫
fm,∀m ≥ k

=⇒
∫

inf
n≥k

fn ≤ inf
m≥k

∫
fm

�

Example 2.21. Suppose (R,L,m)

(a) (escape to horizontal infinity) fn = 1(n,n+1).

We see that fn → 0 = f pointwise and
∫
fn = 1,∀n,

∫
f = 0.

(b) (escape to width infinity) fn = 1
n1(0,n).

(c) (escape to vertical infinity) fn = n1(0,1/n).

Lemma 2.22 (Markov’s inequality). f ≥ 0 is measurable =⇒

∀c ∈ (0,∞), µ ({x | f(x) ≥ c}) ≤ 1

c

∫
f.

Proof. Let E = {x | f(x) ≥ c}. Then

f(x) ≥ c1E(x) =⇒
∫
f ≥ c

∫
1E = cµ(E). �

Proposition 2.23. Suppose f ≥ 0 measurable. Then
∫
f = 0 ⇐⇒ f = 0 almost everywhere

(a.e.) ∫
f dµ = µ(A) = 0, A = {x | f(x) > 0} = f−1((0,∞])

Proof. (a) Assume f = φ a simple function. We may assume

φ =

N∑
i=1

ci1Ei , ci ∈ (0,∞), Ei’s are disjoint.

∫
φ =

N∑
i=1

ciµ(Ei) = 0

⇐⇒ µ(E1) = . . . = µ(EN ) = 0

⇐⇒ µ(A) = 0, A =

N⋃
i=1

Ei.
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(b) General f ≥ 0.

(1) Assume µ(A) = 0 (i.e. f = 0 a.e.)

Let 0 ≤ φ ≤ f, φ is simple.

=⇒ φ(x) = 0, ∀x ∈ Ac

=⇒ φ = 0 a.e.

=⇒
∫
φ = 0

Then
∫
f = 0 by the definition of

∫
f .

(2) Assume inf f = 0. Let An = f−1
([

1
n ,∞

])
=⇒ A1 ⊂ A2 ⊂ . . .

∞⋃
1

An = f−1

(∞⋃
1

[
1

n
,∞
])

= f−1((0,∞)) = A

µ(An) = µ

({
x | f(x) ≥ 1

n

})
≤ n

∫
f = 0

=⇒ µ(A) = lim
n→∞

µ(An) = 0

by the continuity of measure from below. �

Corollary 2.24. f, g ≥ 0 are measurable, f = g a.e. =⇒
∫
f =

∫
g.

Proof. Let A = {x | f(x) ≥ g(x)}. A is measurable (why?). By assumption µ(A) = 0.
Hence f1A = 0 a.e. ∫

f =

∫
f(1A + 1Ac)

=

∫
f1A +

∫
f1Ac

=

∫
f1Ac

=

∫
g1Ac =

∫
g1A +

∫
g1Ac =

∫
g. �

Corollary 2.25. fn ≥ 0 measurable. Then

(a)
0 ≤ f1 ≤ f2 ≤ . . . ≤ f a.e.

limn→∞ fn = f a.e.

}
=⇒ lim

n→∞
fn =

∫
f.

26



Integration of Complex Functions Yiwei Fu

(b)
lim
n→∞

fn = f a.e =⇒
∫
f ≤ lim inf

n→∞

∫
fn.

2.3 Integration of Complex Functions

I was afraid that you are bored.

— Jinho Baik on homework

Definition 2.26. (X,A, µ) measure space.

• f : X → R or f : X → C measurable functions is called integrable if
∫
|f | < ∞.

Then ∫
f =

∫
f+ −

∫
f− or

∫
f =

∫
u+ −

∫
u− + i

(∫
v+ −

∫
v−
)
.

• Suppose f : X → R. Define

∫
f =


∞

∫
f+ =∞,

∫
f− <∞,

−∞
∫
f+ <∞,

∫
f− =∞.

Lemma 2.27. Suppose f, g : x → R → C integrable. Assume f(x) + g(x) is well-defined
∀x ∈ X . (i.e. ∞+ (−∞), −∞+∞ do not occur)

(a) f + g, cf, c ∈ C are integrable.

(b)
∫
f + g =

∫
f +

∫
g.

(c)
∣∣∣∣∫ f

∣∣∣∣ ≤ ∫ |f |. (This is essentially triangle inequality.)

Proof. Check [Fol99, p.53]. �

Lemma 2.28. (X,A, µ) measure space and f integrable function on X .

(a) f is finite a.e. (i.e. {x ∈ X : |f(x)| =∞} is a null set)

(b) The set {x ∈ X : f(x) 6= 0} is σ-finite.

Proof. HW5Q8. �

Proposition 2.29. Suppose (X,A, µ) a measure space.
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(a) If h is integrable on X , then∫
E

h = 0,∀E ∈ A ⇐⇒
∫
|h| = 0 ⇐⇒ h = 0 a.e.

(b) If f, g are integrable on X then∫
E

f =

∫
E

g,∀E ∈ A ⇐⇒ f = g a.e.

Proof. (a)
∫
|h| = 0 ⇐⇒ h = 0 is shown in 2.23.∫

|h| = 0 =⇒
∣∣∣∣∫
E

h

∣∣∣∣ ≤ ∫
E

|h| ≤
∫
|h| = 0.

On the other hand, assume
∫
E
h = 0,∀E ∈ A. h = u+ iv = u+ − u− + i(v+ − v−).

Let B = {x | u+(x) > 0}.

0 = Re

∫
B

h =

∫
B

u =

∫
B

u+ =

∫
B

u+ +

∫
Bc

u+ =

∫
u+ =⇒ u+ = 0 a.e.

Similarly, we get u−, v+, v− = 0 a.e..

(b) follows from (a). �

Theorem 2.30 (Dominated convergence theorem). Suppose (X,A, µ) a measure space and

(a) fn integrable on X , ∀n ∈ N.

(b) lim
n→∞

fn(x) = f(x) a.e. (pointwise)

(c) ∃g : X → [0,∞] s.t.

• g is integrable.

• |fn(x)| ≤ g(x) a.e., ∀n ∈ N.

Then
lim
n→∞

∫
fn =

∫
f.

Proof. Let F be the countable union of null sets on which (a)-(c) may fail. Modifying the
def of fn, f, g on F we may assume (a)-(c) hold everywhere. (b)+(c) =⇒ f is integrable.
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We consider R-valued case only. (C-valued case follows)

g + fn ≥ 0, g − fn ≥ 0

Fatou
===⇒

∫
g + f ≤ lim inf

n→inf

∫
g + fn,

∫
g − f ≤ lim inf

n→inf

∫
g − fn

=⇒
∫
g +

∫
f ≤

∫
g + lim inf

n→∞

∫
fn,

∫
g −

∫
f ≤

∫
g − lim sup

n→∞

∫
fn∫

g<∞
====⇒

∫
f ≤ lim inf

n→∞

∫
fn, −

∫
f ≤ − lim sup

n→∞

∫
fn.

=⇒
∫
f ≤ lim inf

n→∞

∫
fn ≤ lim sup

n→∞

∫
fn ≤

∫
f

So we should have ∫
f = lim inf

n→∞

∫
fn = lim sup

n→∞

∫
fn. �

Next we investigate the question:

∫ ∞∑
1

fn
?
=

∞∑
1

∫
fn.

Tonelli: yes if fn ≥ 0. Fubini:

Corollary 2.31 (Fubini’s theorem for series and integrals).

fn integrable
∞∑
1

∫
|fn| <∞

 =⇒
∫ ∞∑

1

fn =

∞∑
1

∫
fn.

Proof. G(x) =

∞∑
1

|fn(x)| ≥ |FN (x)|, FN (x) =

N∑
1

fn(x). �

2.4 L1 space

Definition 2.32. Suppose V is a vector space over field R or C. A seminorm on V is
‖ · ‖ : V → [0,∞) s.t.

• ‖cv‖ = |c|‖v‖,∀v ∈ V,∀c scalar

• ‖v + w‖ ≤ ‖v‖+ ‖w‖, triangle inequality

A norm is a seminorm such that ‖v‖ ⇐⇒ v = 0.

Lemma 2.33. A normed vector space is a metric space with metric ρ(v, w) = ‖v − w‖.
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Proof. (DIY)

• ρ(v, w) = 0 ⇐⇒ ‖v − w‖ = 0 ⇐⇒ v − w = 0 ⇐⇒ v = w.

• ρ(v, w) = ‖v − w‖ = ‖−1(w − v)‖ = | − 1| ‖w − v‖ = ρ(w, v).

• ρ(v, w) + ρ(w, z) = ‖v − w‖+ ‖w − z‖ ≥ ‖v − w + w − z‖ = ‖v − z‖ = ρ(v, z). �

Example 2.34. Rd with ‖x‖p =


(

d∑
1

|xi|p
)1/p

p ∈ [1,∞)

max
1≤i≤d

|xi| p =∞
is a normed vector space.

Unit ball {x : ‖x‖p < 1}.

All ‖ · ‖p norm induce the same topology i.e. if U is open in p-norm then it is open in
p′-norm. This implies that a sequence converging under p-norm also converges under
p′-norm.

RECALL f is integrable =⇒
∫
|f | <∞. f = g a.e. =⇒

∫
f =

∫
g.

Definition 2.35. Suppose (X,A, µ) a measure space.
f ∈ L1(X,A, µ) = L1(X,µ) = L1(X) = L1(µ) means f is an integrable function on X .

Lemma 2.36. L1(X,A, µ) is a vector space with seminorm ‖f‖1 =

∫
|f |.

Definition 2.37. Define f ∼ g if f = g a.e. L1(X,A, µ)/∼ = L1(X,A, µ). “ = ” is just a
notation for convenience!

With new definition we have L1(X,A, µ) is a normed vector space. ρ(f, g) =

∫
|f − g|.

Something interesting to discuss is what are the dense subsets of L1.

Theorem 2.38.

(a) { integrable simple functions } is dense in L1(X,A, µ) (with respect to L1 metric)

(b) (X,A, µ) = (R,Aµ, µ), µ is Lebesgue-Stieltjes measure =⇒ { integrable step functions
} is dense in L1(X,A, µ)

(c) Cc(R) is dense in L1(R,L,m).

Definition 2.39.

• A step function on R is ψ +
∑N

1 ci1Ii , where Ii is an interval.

• Cc(R) is the collection of continuous functions with compact support supp(f) =

{x ∈ R | f(x) 6= 0}.

Proof. (a) ∃ simple functions 0 ≤ |φ1| ≤ |φ2| ≤ . . . ≤ |f |, φn → f pointwise =⇒
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lim
n→∞

∫
|φn − f | = 0 by DCT. (|φn − f | ≤ |φn|+ |f | ≤ 2|f |)

(b) 1E approx by
∑N

1 ci1Ii? Regularity theorem for Lebesgue-Stieltjes measure =⇒
∀ε′ > 0,∃I =

⋃N
1 Ii s.t. µ(E4I) < ε′.

(c) Suppose 1(a,b), g ∈ Cc(R).
∫
|1(a,b) − g| dm ≤ 1 · ε

2
+ 1 · ε

2
= ε. �

2.5 Riemann Integrability

Suppose P = {a = t0 < t1 < . . . < tk = b} a partition of [a, b]. Lower Riemann sum of f
using P

LP =
k∑
i=1

(
inf

[ti−1,ti]
f

)
(ti − ti−1)

and upper Riemann sum

Up =

k∑
i=1

(
sup

[ti−1,ti]

f

)
(ti − ti−1)

Lower Riemann integral of f = I = supP LP . Upper Riemann integral of f = I =

infP UP .

Definition 2.40. A bounded function f : [a, b] → R is called Riemann (Darboux) inte-
grable if I = I . (If so, I = I =

∫ b
a
f(x) dx.)

NOTE

• If P ⊂ P ′, then LP ≤ LP ′ , UP ′ ≤ UP .

• Recall that continuous functions on [a, b] are Riemann integrable on [a, b].

Theorem 2.41. Let f : [a, b]→ R be a bounded function.

(a) If f is Riemann integrable, then f is Lebesgue measurable. (thus Lebesgue integrable) and∫ b

a

f(x) dx =

∫
[a,b]

f dm.

(b) f is Riemann integrable ⇐⇒ f is continuous Lebesgue a.e.

Proof. ∃partitions P1 ⊂ P2 ⊂ P3 ⊂ . . . s.t. LPn
↗ I, UPn

↘ I .

Define simple (step) functions

φn =

k∑
i=1

(
inf

[ti−1,ti]

)
1(ti−1,ti]
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ψn =

k∑
i=1

(
sup

[ti−1,ti]

)
1(ti−1,ti]

Define φ = supn φn, ψ = infn ψn. Then φ, ψ are Lebesgue measurable functions.

NOTE

• ∃M > 0 s.t. |φn|, |ψn| ≤M1[a, b],∀n ∈ N.

•
∫
φn dm = LPn ,

∫
ψn dm = UPn .

By DCT, I = lim
n→∞

∫
φn dm =

∫
φ dm, I =

∫
ψ dm.

Thus, f is Riemann integrable ⇐⇒
∫
φ =

∫
ψ ⇐⇒

∫
(φ−ψ) = 0 ⇐⇒ φ = ψ Lebesgue

a.e.

Recall that φ ≤ f ≤ ψ,∀x ∈ (a, b]. So f = φ a.e. Since (R,L, µ) is complete, f is Lebesgue
measurable (see HW). The second statement hence follows. �

2.6 Modes of Convergence

Suppose fn, f : X → C, S ⊂ X .

• fn → f pointwise on S: ∀x ∈ S,∀ε > 0,∃N ∈ N s.t. ∀n ≥ N, |fn(x)− f(x)| < ε.

• fn → f uniformly on S: ∀ε > 0,∃N ∈ N s.t. ∀x ∈ X,∀n ≥ N, |fn(x)− f(x)| < ε.

We can change ∀ε > 0 to ∀k ∈ N and bound the distance by 1
k .

Lemma 2.42. Let Bn,k = {x ∈ X | |fn(x)− f(x)| < 1
k}.

(a) fn → f pointwise on S ⇐⇒ S ⊂
∞⋂
k=1

∞⋃
N=1

∞⋂
n=N

Bn,k.

(b) fn → f uniformly on S ⇐⇒ ∃N1, N2, . . . ∈ N s.t. S ⊂
∞⋂
k=1

∞⋂
n=Nk

Bn,k.

Definition 2.43. Suppose (X,A, µ) a measure space.

(a) fn → f a.e means ∃ null set E s.t. fn → f pointwise on Ec.

(b) fn → f in L1 means lim
n→∞

‖fn − f‖ = 0.

Example 2.44. (R,L, µ). f = 0.

(a) fn = 1(n,n+1), fn = 1
n1(0,n), fn = n1(0, 1n ). All of fn → f pointwise but 6→ f in L1.

(b) Typewriter functions: fn → f in L1. fn 6→ f a.e.

Proposition 2.45 (Fast L1 convergence =⇒ a.e. convergence). Suppose (x,A, µ) measure
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space. fn, f measurable function on X .

∞∑
1

‖fn − f‖1 <∞ =⇒ fn → f a.e.

Proof. RECALL Markov’s inequality.

Let E =

∞⋃
k=1

∞⋂
N=1

∞⋃
n=N

Bcn,k = {x | fn(x) 6→ f(x)}. By Markov we have

∀k, ∀N,µ(Bcn,k) ≤ k
∫
|fn − f |

=⇒ ∀k, µ

( ∞⋂
n=N

Bcn,k

)
≤
∞∑
n=N

k ‖fn − f‖1 → 0 as n→ 0

=⇒ ∀k, µ

( ∞⋂
N=1

∞⋂
n=N

Bcn,k

)
= lim
N→∞

µ

( ∞⋂
n=N

Bcn,k

)
= 0

=⇒ µ(E) = 0. �

Corollary 2.46. fn → f in L1 =⇒ ∃subsequence fnj
→ f a.e.

Proof. ∀j ∈ N,∃nj ∈ N s.t.
∥∥fnj

− f
∥∥
1
< 1

j2 . Then
∑∞
j=1

∥∥fnj
− f

∥∥
1
<∞. �

Definition 2.47. fn, f measurable functions on (X,A, µ). fn → f in measure means

∀ε > 0, lim
n→∞

µ ({x ∈ X | |fn(x)− f(x)| ≥ ε}) = 0.

Example 2.48. • fn = n1(0, 1n ), f = 0.

∀ε > 0, {x | |fn(x)− f(x)| > ε} =

(
0,

1

n

)
.

(Recall that fn 6→ 0 in L1.)

• Typewriter function. (Recall that fn 6→ 0 a.e.)

We can easily check that fn → f in L1 =⇒ fn → f in measure. But the converse is not
true.

fn → f in measure =⇒ ∃fnj
→ f a.e. (Check [Fol99])
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We have then the following diagram:

fn → f fast L1 fn → f in L1 fn → f in measure

fn → f a.e. ∃fnj
→ f a.e.

/

/ /

Definition 2.49. fn, f measurable functions on (X,A, µ).

(a) fn → f uniformly a.e means ∃ null set F s.t. fn → f uniformly on F c.

(b) fn → f almost uniformly means ∀ε > 0,∃F ∈ A, s.t. µ(F ) < ε, fn → f uniformly
on F c.

Recall 2.42.

Theorem 2.50 (Egoroff). fn, f measurable on (X,A, µ). Suppose µ(X) < ∞. Then fn → f

a.e ⇐⇒ fn → f almost uniformly.

Proof. "⇐= ": DIY

" =⇒ ": Fix ε > 0.

fn → f a.e =⇒ µ

( ∞⋃
k=1

∞⋂
N=1

∞⋃
n=N

Bcn,k

)
= 0 =⇒ ∀k, µ

( ∞⋂
N=1

∞⋃
n=N

Bcn,k

)
= 0.

By the continuity of measure from above and since µ(X) <∞,

∀k, lim
N→∞

µ

( ∞⋃
n=N

Bcn,k

)
= 0 =⇒ ∀k, ∃Nk ∈ N, µ

( ∞⋃
n=Nk

Bcn,k

)
<

ε

2k
.

Let F =

∞⋃
k=1

∞⋃
n=Nk

Bcn,k =⇒ µ(F ) < ε, fn → F uniformly on F c. �
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Chapter 3

Product Measures

(p.22 - 36, section 1.2 and section 2.5, 2.6 of [Fol99])
The ultimate goal is to prove Fubini’s theorem. This is also related to probability in in
the sense that a series of events is in product measure.

3.1 Product σ-algebra

• Product space X =
∏
α∈I Xα, x = (xα)α∈I .

• Coordinate map πα : X → Xα.

Definition 3.1. (Xα,Aα) measurable space. ∀α ∈ I , the product σ-algebra on X =
∏
α∈I

Xα

is ⊗
α∈I
Aα =

〈⋃
α∈I

π−1α (Aα)

〉
where

π−1α (Aα) = {π−1α (E)|E ∈ Aα}.

NOTATION

I = {1, . . . , d} =⇒ X =

d∏
i=1

Xi, x = (x1, . . . , xd),

d⊗
i=1

Ai = A1 ⊗ . . .⊗Ad.
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Lemma 3.2. If I is countable, then

⊗
α∈I
Aα =

〈{ ∞∏
i=1

Ei | Ei ∈ Ai

}〉

Lemma 3.3. Suppose Aα = 〈Eα〉 ,∀α ∈ I .

(a) π−1α (Aα) =
〈
π−1α (Eα)

〉
.

(b)
⊗
α

Aα =

〈⋃
α

π−1α (Eα)

〉
.

(c) If I is countable, then
⊗
α∈I
Aα =

〈{ ∞∏
i=1

Ei | Ei ∈ Ei

}〉
.

Proof.

(a) • f : Y → Z, B a σ-algebra on Z =⇒ f−1(B) is a σ-algebra since set
union commutes with preimage. Hence π−1α (Aα) is a σ-algebra on X . Since
π−1α (Eα) ⊂ π−1α (Aα) =⇒

〈
π−1α (Eα)

〉
⊂ π−1α (Aα).

• LetM = {B ⊂ Xα | π−1α (B) ∈
〈
π−1α (Eα)

〉
}. We show that Aα ⊂M.

– M is a σ-algebra. (easy)

– Eα ⊂M. (by definition)

So Aα = 〈Eα〉 ⊂ M. Hence, if E ∈ Aα, E ⊂ M =⇒ π−1α (E) ∈
〈
π−1α (Eα)

〉
i.e.

Aα ⊂
〈
π−1α (Eα)

〉
.

(b, c) DIY. �

Theorem 3.4. SupposeX1, . . . , Xd metric spaces. LetX =

d∏
1

Xi with product metric ρ(x, y) =

d∑
i=1

ρi(x, y). Then

(a)
d⊗
i=1

B(Xi) ⊂ B(X).

(b) If, in addition, each Xi has a countable dense subset, then
d⊗
i=1

B(Xi) = B(X).

Proof. DIY. �

As a consequence, we have B(Rd) = B(R)⊗ . . .⊗ B(R).
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Suppose f = u + iv : X → C. f is measurable ⇐⇒ u−1(E) ∈ A, v−1(E) ∈ A,∀E ∈
B(R) ⇐⇒ f−1(F ) ∈ A,∀F ∈ B(C) = B(R2) = B(R)⊗ B(R).

p.65. Let’s focus on finite product.

You like Minecraft right? It’s all rectangles.

Definition 3.5. Suppose X,Y sets.

(a) For a E ⊂ X × Y , Ex = {y ∈ Y | (x, y) ∈ E} and Ey = {x ∈ X | (x, y) ∈ E}.

(b) For f : X × Y → C, define fx : Y → C, fy : X → C by fx(y) = f(x, y) = fy(x).

(c)

Example 3.6. (1E)x = 1Ex . (1E)y = 1Ey .

Proposition 3.7. (X,A), (Y,B) measurable spaces.

(a) E ∈ A⊗ B =⇒ Ex ∈ B, Ey ∈ A,∀x ∈ X, y ∈ Y .

(b) f : X × Y → C is A ⊗ B-measurable =⇒ fx is B-measurable, fy is A-measurable,
∀x ∈ X, y ∈ Y .

Proof. (a) Let F = {E ⊂ X × Y | (a) holds}.

• F is a σ-algebra (easy)

• R0 := {A×B | A ∈ A, B ∈ B} ⊂ F (easy) =⇒ A⊗B = 〈R0〉 ⊂ F

(b) DIY. �

MIDTERM is up till here.

3.2 Product Measures

Definition 3.8. Suppose (X,A), (Y,B). A (measurable) rectangle is R = A × B,A ∈
A, b ∈ B.

LetR0 := {R = A×B | A ∈ A, B ∈ B}.

R :=

{
N⋃
1

Ri | N ∈ N, R1, . . . , RN disjoint rectangles

}
.

Lemma 3.9. R is an algebra. 〈R0〉 = 〈R〉 = A⊗ B.

Theorem 3.10. Suppose (X,A, µ), (Y,B, ν) measure spaces.
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(a) ∃ measure µ× ν on A⊗ B satisfying (µ× ν)(A⊗B) = µ(A)ν(B),∀A ∈ A, B ∈ B.

(b) If µ, ν are σ-finite, then µ× ν is unique.

Proof. (a) Define π : R → [0,∞] by π(A×B) = µ(A)ν(B) and extend linearly.

CLAIM π is a pre-measure onR.

Enough to check π(A×B) =

∞∑
1

π(An×Bn) ifA×B =

∞⋃
1

(An×Bn) disjoint union.

Since An ×Bn are disjoint,

1A×B(x, y) =

∞∑
1

1An×Bn
(x, y), 1A(x)1B(y) =

∞∑
1

1An
(x)1Bn

(y).

By Tonelli’s theorem for series and integrals, we have

µ(A)1B(y) =

∫
x

1A(x)1B(y) dµ(x)

=

∞∑
1

∫
x

1An
(x)1Bn

(y) dµ(x) =

∞∑
1

µ(An)1Bn
(y).

We then integrate with respect to y to complete the claim.

By HK theorem, ∃µ⊗ ν on 〈R〉 = A⊗ B extending π onR.

(b) µ, ν σ-finite =⇒ π is σ-finite onR =⇒ HK uniqueness them applies. �

So we have a measure

(µ× ν)(E) = inf

{ ∞∑
1

µ(Au)ν(Bi)

∣∣∣∣E ⊂ ∞⋃
1

Ai ×Bi, Ai ∈ A, Bi ∈ B

}
.

Then one questions naturally arises: suppose f : X × Y → C,∫
X×Y

f d(µ× v)
?
=

∫
y

(∫
x

f dµ

)
dν.

3.3 Monotone Class Lemma

Definition 3.11. Suppose X is a set, C ⊂ P(X). C is a monotone class on X if

• closed under countable increasing unions
(i.e. En ∈ C, E1 ⊂ E2 ⊂ . . . =⇒

⋃∞
1 Ci ∈ C.)
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• closed under countable decreasing intersections
(i.e. En ∈ C, E1 ⊃ E2 ⊃ . . . =⇒

⋂∞
1 Ci ∈ C.)

Example 3.12. • σ-algebra is a monotone class.

•
⋂
α

Cα is a monotone class =⇒ if E ∈ P(X), there is unique smallest monotone

class containing E .

The importance of this definition shows up in the following theorem:

Theorem 3.13. Suppose A0 is an algebra on X . Then 〈A0〉 is the monotone class generated by
A0.

Proof. Let A = 〈A0〉, C = monotone class generated by A0.

(a) A is a σ-algebra =⇒ A is a monotone class containing A0 =⇒ A ⊃ C.

(b) To show that C ⊃ A, we show that C is a σ-algebra.

(1) ∅ ⊂ A0 ⊂ C.

(2) Let C′ = {E ⊂ X | Ec ⊂ C}.

• C′ is a monotone class (easy)

• A0 ⊂ C′ since (E ∈ A0 =⇒ Ec ∈ A0 ⊂ C).

These two show that C ⊂ C′. So E ∈ C =⇒ E ∈ C′ =⇒ Ec ∈ C. So C is
closed under complements.

(3) For E ⊂ X , let D(E) = {F ∈ C | E ∪ F ∈ C}.

• D(E) ⊂ C by definition.

• D(E) is a monotone class (easy). E ∪ (
⋃∞

1 Fn) =
⋂∞

1 (E ∪ Fn).

• If E ∈ A0, then A0 ⊂ D(E). (F ∈ A0 =⇒ E ∪ F ∈ A0 ⊂ C.)

These show that C = D(E) if E ∈ A0.

(4) Let D = {E ∈ C | D(E) = C} = {E ∈ C | E ∪ F ∈ C,∀F ∈ C}.

• A0 ⊂ D by (3).

• D is a monotone class (easy).

• D ⊂ C by definition.

So we conclude that D = C. Now we have C is closed under finite unions.

(5) C is closed under finite unions and countable increasing unions =⇒ C is
closed under countable unions. (check) �
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RECALL E ∈ A ⊗ B =⇒ Ex ∈ B, Ey ∈ A,∀x ∈ X, y ∈ Y . However, the inverse is not
necessarily true.

Now comes the main thing:

3.4 Fubini-Tonelli Theorem

Theorem 3.14 (Tonelli for characteristic functions). Suppose (X,A, µ), (Y,B, ν) are σ-finite
measure spaces. Suppose E ∈ A⊗ B. Then

(a) α(x) := ν(Ex) : X → [0,∞] is a A-measurable function.

(b) β(y) := µ(Ey) : Y → [0,∞] is a B-measurable function.

(c) (µ× ν)(E) =

∫
X

ν(Ex) dµ(x) =

∫
Y

µ (Ey) dν(y).

Proof. (a) Assume µ, ν are finite measures. Let

C = {E ∈ A⊗ B | (a), (b), (c) hold} .

Enough to prove that 〈R〉 = A⊗ B ⊂ C.

Because of monotone class lemma and that R is a σ-algebra, it is enough to show
thatR ⊂ C and C is a monotone class.

• Show thatR ⊂ C.

α(x) = ν((A×B)x) =

ν(B) x ∈ A

0 x /∈ A
= ν(B)1A(x).

(µ× ν)(A×B) = µ(A)ν(B)

⇐⇒
∫
X

ν((A×B)x) dµ(x) = ν(B)µ(A)

• Show that C is a monotone class.
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(1) Let En ∈ C, E1 ⊂ E2 ⊂ . . .. Need to show that E =
⋃∞

1 En ∈ C.

En ∈ C, E1 ⊂ E2 ⊂ . . .

=⇒ Ex =

∞⋃
1

(En)x, (E1)x ⊂ (E2)x ⊂ . . .

=⇒ α(x) = ν(Ex) = lim
n→∞

ν ((En)x) ,∀x ∈ X, αn(x) A-measurable

This satisfies (a), (b). For (c), we have

(µ× ν)(E) = lim
n→∞

(µ× ν)(En)

= lim
n→∞

∫
X

ν ((En)x) dµ(x)
MCT

=

∫
X

ν(Ex) dµ(X).

So we have shown countable increasing unions.

(2) Let Fn ∈ C, F1 ⊃ F2 ⊃ . . .. Need to show that F
⋃∞

1 Fn ∈ C. Using
continuity of measure from above instead of below, DCT instead of MCT,
we obtained a similar result.

(b) Now assume that µ, ν are σ-finite. Since X × Y =
⋃∞

1 (Xn × Yn), where X1 ⊂
X2 . . . , Y1 ⊂ Y2 ⊂ . . . with µ(Xk), ν(Yk) finite. Apply results from then finite case.
(DIY) �

Theorem 3.15 (Fubini-Tonelli). Suppose (X,A, µ) and (Y,B, ν) are σ-finite measure spaces.

(a) (Tonelli) If f : X × Y → [0,∞] is A⊗ B-measurable then

(1) g(x) :=

∫
Y

f(x, y) dν(y) : X → [0,∞] is a A-measurable function.

(2) h(y) :=

∫
X

f(x, y) dµ(x) : Y → [0,∞] is a B-measurable function.

(3) We have the iterated integral formula∫
X×Y

f d(µ× ν) =

∫
X

[∫
Y

f(x, y) dν(y)

]
dµ(x)

=

∫
X

[∫
X

f(x, y) dµ(x)

]
dν(y).

(b) (Fubini) If f ∈ L1(X × Y, µ× ν), then

(1) fx ∈ L1(Y, ν) for µ-a.e x and g(x) (which is defined µ-a.e) ∈ L1(X,µ).

(2) fy ∈ L1(X,µ) for ν-a.e y and h(y) (which is defined ν-a.e) ∈ L1(Y, ν).

41



Lebesgue Measure on Rd Yiwei Fu

(3) The iterated integral formula from (a).(3) hold.

Usually we apply Tonelli to |f | to show f ∈ L1(X × Y, µ × ν) and then apply Fubini to
evaluate.

Proof. See [Fol99]. �

3.5 Lebesgue Measure on Rd

Example 3.16 ((R2,L ⊗ L,m × m) is not complete). Let A ∈ L, A 6= ∅,m(A) = 0. Let
B ⊂ [0, 1], B /∈ L (e.g. Vitali set). Then let E = A × B,F = A × [0, 1]. We can see that
E ⊂ F and F ∈ L ⊗ L, (m×m)(F ) = m(A)m([0, 1]) = 0.

So E is a subnull set but not L ⊗ L-measurable. (otherwise each section of E is measur-
able, a contradiction.)

Definition 3.17. Let (Rd,Ld,md) be the completion of (Rd,B(Rd),m× . . .×m), which is
same(check!) as the completion of (Rd,L ⊗ . . .⊗ L,m× . . .×m).

So how do we compute md?

A rectangle in Rd is R =

d∏
i=1

Ei, Ei ∈ B(R). Then

md(E) = inf

{ ∞∑
1

mdRk

∣∣∣∣ E ⊂ ∞⋃
1

Rk, Rk rectangle

}
.

Theorem 3.18. Let E ∈ Ld.

(a) md(E) = inf
{
md(O) | open O ⊃ E

}
= sup

{
md(K) | compact K ⊂ E

}
.

(b) E = A1︸︷︷︸
Fσ

∪ N1︸︷︷︸
null

= A2︸︷︷︸
Gσ

\ N2︸︷︷︸
null

.

(c) If md(E) < ∞,∀ε > 0,∃R1, . . . , Rm rectangles whose sides are intervals such that

md

(
E4

(
m⋃
1

Ri

))
< ε.

Proof. Similar to d = 1 case. �

Theorem 3.19. Integrable "step functions" and Cc(Rd) are dense in L1(Rd,Ld,md).

Theorem 3.20. Lebesgue measure in Rd is translation-invariant.

Theorem 3.21. "Effect of linear transformations on Lebesgue measure"
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Skip p. 71-81 of [Fol99] except 3.21.
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Chapter 4

Differentiation on Euclidean
Space

Suppose f : [a, b]→ R. There are two versions of fundamental theorem of Calculus:

•
∫ b

a

f ′(x) dx = f(b)− f(a).

•
d

dx

∫ x

a

f(t)dt = f(x).

We focus on the second statement, which implies that

lim
r→0+

1

r

∫ x+r

x

f(t) dt = lim
r→0+

1

r

∫ x

x−r
f(t) dt

Write f(x) =
1

r

∫ x+r

x

f(x) dt, then

lim
r→0+

1

r

∫ x+r

x

(f(t)− f(x)) dt = lim
r→0+

1

r

∫ x

x−r
(f(t)− f(x)) dt.

This generalizes well in Rd:

f : Rd → R, lim
r→0+

1

v(B(x, r))

∫
B(x,r)

f(t)− f(x) dt = 0.

QUESTION to what extent does this hold?

Start from [Fol99, 3.4].
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4.1 Hardy-Littlewood Maximal Function

Suppose an open ball in Rd, B = B(a, r). Denote cB = B(a, cr), c > 0.

Lemma 4.1 (Vitali-type covering lemma). Let B1, . . . , Bk be a finite collection of open balls
in Rd. Then ∃ a sub-collection B′1, . . . , B′m of disjoint open balls such that

m⋃
1

(3B′j) ⊃
k⋃
1

Bi.

Proof. Greedy algorithm. �

NOTATION:
∫
E

f dm =

∫
E

f(x) dx.

Definition 4.2. f : Rd → C is Lebesgue measurable. f is locally integrable if∫
K

|f | dm <∞,∀ compact K ⊂ Rd.

We write f ∈ L1
loc(Rd).

Example 4.3. f(x) = x2 ∈ L1
loc(Rd). (in fact all continuous functions ∈ L1

loc(Rd)).

Definition 4.4. For f ∈ L1
loc(Rd), define Hardy-Littlewood maximal function for f

Hf(x) = sup{Ar(x) | r > 0}, Ar(x) =
1

m(B(x, r))

∫
B(x,r)

|f(y)| dy.

Lemma 4.5. Let f ∈ L1
loc(Rd). Then,

(a) Ar(x) is jointly continuous for (x, r) ∈ Rd × (0,∞).

(b) Hf(x) is Borel measurable.

Proof.

(a) (x, r)→ (x∗, r∗) =⇒ Ar(x)→ Ar∗(x
∗).

Let (xn, rn) be any sequence→ (x∗, r∗).

Arn(xn) ≤
∫
|f(y)|1B(xn,rn)(y).

Apply DCT.

(b) (Hf)−1((a,∞)) =
⋃
r>0

A−1r ((a,∞)) is open. �
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RECALL Markov inequality

m ({x | |f(x)| ≥ c}) ≤ 1

c

∫
|f(x)| dx

Theorem 4.6 (Hardy-Littlewood maximal inequality). ∃Cd > 0 s.t. ∀f ∈ L1
loc(Rd),∀α >

0,

m ({x | Hf(x) > α}) ≤ Cd
α

∫
|f(x)| dx.

Proof. Fix f ∈ L1 and α > 0. Let E = {x | (Hf)(x) > α}. E is a Borel measurable set.
Then

x ∈ E =⇒ ∃rx > 0, s.t. Arx(x) > α =⇒ m(B(x, rx)) <
1

α

∫
B(x,rx)

|f(y)| dy.

By inner regularity, we have m(E) = sup{m(K) | compact K ⊂ E}. Let K ⊂ E be
compact. Then

K ⊂
⋃
x∈K

B(x, rx)

=⇒ K ⊂
⋃
i = 1NBi

=⇒ K ⊂
m⋃
j=1

(3B′j), B
′
1, . . . , B

′
m disjoint

=⇒ m(K) ≤
n∑
j=1

m(3B′j) = 3d
n∑
j=1

m(B′j)

=⇒ m(K) ≤ 3d

α

N∑
j=1

∫
B′j

|f(y)| dy

=⇒ m(K) ≤ 3d

α

∫
Rd

|f(y)| dy. �

4.2 Lebesgue Differentiation Theorem

Theorem 4.7. Let f ∈ L1(Rd). Then

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy = 0 for a.e x.

Proof. (a) The result holds for f ∈ Cc(Rd) (check!)
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(b) Let f ∈ L1(Rd). Fix ε > 0. ∃g ∈ Cc(Rd) s.t. ‖f − g‖1 < ε. Then

∫
B(x,r)

|f(y)− f(x)| dy

≤
∫
B(x,r)

|f(y)− g(y)| dy +

∫
B(x,r)

|g(y)− g(x)| dy +

∫
B(x,r)

|g(x)− f(x)| dy.

Let Q(x) = lim sup
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy. We want to show that

m ({x | Q(x) > 0}) = m

( ∞⋃
n=1

{
x | Q(x) >

1

n

})
= 0.

Enough to show that m(Eα) = 0,∀α > 0, Eα = {x | Q(x) > α}.

But Q(x) ≤ (H(f − g))(x) + 0 + |g(x)− f(x)| =⇒

{x | Q(x) > α} ⊂
{
x | H(f − g)(x) >

α

2

}⋃{
x | |g(x)− f(x)| > α

2

}
.

So we have

m ({x | Q(x) > α}) ≤ 2Cd
α
‖f − g‖1 +

2

α
‖f − g‖1 ≤

2(Cd + 1)

α
ε. �

Corollary 4.8. This also holds for f ∈ L1
loc(Rd).

Proof. DIY. �

Corollary 4.9. For f ∈ L1
loc(Rd),

lim
r→0

1

m(B(x, r))

∫
B(x,r)

f(y) dy = 0 for a.e x.

Proof. DIY. �

Definition 4.10. Let f ∈ L1
loc(Rd). The point x ∈ Rd is called a Lebesgue point of f if

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| = 0.

f ∈ L1
loc(Rd) =⇒ a.e point is a Lebesgue point of f .

Definition 4.11. {Er}r>0 shrinks nicely to x as r → 0 means Er ⊂ B(x, r) and ∃c >
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0 s.t. cm(B(x, n)) ≤ m(Er).

Corollary 4.12 (Lebesgue differentiation theorem).

Er shrinks nicely to 0

f ∈ L1
loc(Rd)

x a Lebesgue point of f

 =⇒ lim
r→0

1

m(Er)

∫
Er+x

|f(y)− f(x)| dy = 0.

Proof. DIY. �

Corollary 4.13. f ∈ L1
loc(Rd) =⇒ F (x) =

∫ x
0
f(y) dy is differentiable and F ′(x) = f(x)

a.e.

Rest of [Fol99, Ch.3] will be covered later.
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Chapter 5

Normed Vector Spaces

Topological spaces ⊃metric spaces ⊃ normed spaces ⊃ inner product spaces.

Let’s start with metric spaces. [Fol99, 5.1, 6.1, 6.2]

5.1 Metric Spaces and Normed Spaces

Definition 5.1. Suppose Y is a set. A metric of Y is ρ : Y × Y → [0,∞) s.t.

(a) ρ(x, y) = ρ(y, x)

(b) ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

(c) ρ(x, y) = 0 ⇐⇒ x = y.

Example 5.2.

(a) Q, ρ(x, y) = |x− y|.

(b) R, ρ(x, y) = |x− y|.

(c) R+, ρ(x, y) =
∣∣∣ln(y

x

)∣∣∣.
(d) Rd, ρ1(x, y) =

d∑
i=1

|xi−yi|, ρp(x, y) =

(
d∑
i=1

|xi − yi|p
)1/p

, ρ∞(x, y) = max
1≤i≤d

|xi−yi|.

(e) C([0, 1]), ρp(f, g) =

(∫ 1

0

|f − g|p
)1/p

, ρ∞ = max
x∈[0,1]

|f(x)− g(x)|.

They are all metric spaces.

Definition 5.3 (Recall 2.32). Suppose V is a vector space over field R or C. A seminorm
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on V is ‖ · ‖ : V → [0,∞) s.t.

• ‖cv‖ = |c|‖v‖,∀v ∈ V,∀c scalar

• ‖v + w‖ ≤ ‖v‖+ ‖w‖, triangle inequality

A norm is a seminorm such that ‖v‖ ⇐⇒ v = 0.

Norm gives rise to a metric where ρ(v, w) = ‖v − w‖.

vn → v ⇐⇒ limn→∞ ‖vn − v‖ = 0.

Example 5.4. (a) L1(X,A, µ)

(b) C([0, 1]), ‖f‖1 =
∫ 1

0
|f(x)| dx, ‖f‖∞max0≤x≤1 |f(x)|.

(c) Rd, ‖x‖2 =
√∑d

1 |xi|2, ‖x‖1 =
∑d

1 |xi, ‖x‖∞max1≤i≤d |xi|.

5.2 Lp Spaces

Definition 5.5. Suppose (X,A, µ) a measure space. f is measurable function. For 0 <

p <∞, define ‖f‖p =

(∫
X

|f |p dµ

)1/p

. Define Lp(X,A, µ) =

{
f

∣∣∣∣ ‖f‖p <∞}.

Example 5.6.

Definition 5.7. `p = `p(N) = {a = (a1, a2, . . .) | ‖a‖p = (
∑∞

1 |ai|p)
1/p

<∞}.

Lemma 5.8. Lp is a vector space, ∀p ∈ (0,∞).

Proof. (∫
|cf |p

)1/p

= |c| ‖f‖p .

Given the following inequality

(α+ β)p ≤ (2 max(|α|, |β|))p = 2p max (|α|p, |β|p) ≤ 2p(|α|p + |β|p)

we have∫
|f + g|p ≤ 2p

(∫
(|f |p + |g|p)

)
=⇒ ‖f + g‖p ≤ 2

(∫
(|f |p + |g|p)

)1/p

. �

But we want to know that whether

‖f + g‖p ≤ ‖f‖p + ‖g‖p
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holds.

Theorem 5.9 (Hölder’s Inequality). Let p <∞, q = p
p−1 so 1

p + 1
q = 1. Then

‖fg‖1 ≤ ‖f‖p ‖g‖q

Proof.

t ≤ tp

p
+ 1− 1

p
,∀t ≥ 0

(Take F (t) = t− tp

p )

αβ ≤ αp

p
+
βq

q
,∀α, β ≥ 0 (Young’s inequality) (5.1)

WLOG assume 0 ≤ ‖f‖p , ‖g‖q <∞. Let F (x) = f(x)
‖f‖p

, G(x) = g(x)
‖g‖q

.

=⇒ ‖F‖p = 1 = ‖G‖q .

By (5.1), ∫
|F (x)G(x)| ≤

∫
|F (x)|p

p
+

∫
|G(x)|q

q∫
|f(x)g(x)|
‖f‖p ‖g‖q

≤ 1

p
+

1

q
= 1.

�

Theorem 5.10 (Minkowski’s inequality). Let 1 ≤ p < ∞. For f, g ∈ Lp, ‖f + g‖p ≤
‖f‖p + ‖g‖p.

Proof. p = 1 is easy.

Assume 1 < p <∞. WLOG assume ‖f + g‖p 6= 0. We have∫
|f(x) + g(x)|p ≤

∫
|f(x) + g(x)|p−1(|f(x)|+ |g(x)|)

≤
(∫

(|f + g|p−1)q
)1/q (∫

|f |p
)1/p

+

(∫
(|f + g|p−1)q

)1/q (∫
|g|p
)1/p

≤
(∫

(|f + g|p−1)q
)1/q

[(∫
|f |p

)1/p

+

(∫
|g|p
)1/p

]

≤
(∫

(|f + g|p−1)q
)1/q [

‖f‖p + ‖g‖p
]
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Since q(p− 1) = p, divide by
(∫

(|f + g|p−1)q
)1/q on both sides we have

(∫
|f(x) + g(x)|p

)1−1/q

≤ ‖f‖p + ‖g‖p . �

Hölder: ‖fg‖1 ≤ ‖f‖p ‖g‖q ,
1
p + 1

q = 1.

Minkowski: ‖f + g‖p ≤ ‖f‖p + ‖g‖p , 1 ≤ p <∞.

Definition 5.11. For a measurable function f on (X,A, µ), let

S = {α ≥ 0 | µ({x | |f(x)| > α}) = 0} = {α ≥ 0 | f(x) ≤ α a.e}.

Define ‖f‖∞ =

inf S S 6= ∅

∞ S = ∅.
. Let L∞(X,A, µ) = {f | ‖f‖∞ <∞}.

Example 5.12.

• (R,L,m), f(x) = 1
x1(0,∞)(x) 6= L∞, f(x) = x1Q(x) + 1

1+x2 ∈ L∞.

• If f is continuous on (R,L,m), ‖f‖∞ = supx∈R |f(x)|. For a ∈ `∞, ‖a‖∞ = supi∈N |ai|.
(`∞ = {a = (a1, a2, . . .) | ‖a‖∞ <∞} = {a | ∃M ≥ 0 s.t. |ai| ≤Mi,∀i})

Lemma 5.13. (a) For α ≥ ‖f‖∞ , µ({x | |f(x)| > α}) = 0. For α < ‖f‖∞ , µ({x |
|f(x)| > α}) > 0.

(b) |f(x)| ≤ ‖f‖∞ a.e.

(c) f ∈ L∞ ⇐⇒ ∃ bounded measurable function g such that f = g a.e.

Proof. DIY. �

Theorem 5.14.

(a) ‖fg‖1 ≤ ‖f‖1 ‖g‖∞.

(b) ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

(c) fn → f in L∞ ⇐⇒ fn → f uniformly a.e.

Proof. DIY For (c): =⇒ Let An = {x | |fn(x)− f(x)| > ‖fn − f‖∞}. Then µ(An) = 0.

Let A =
⋃∞

1 An, µ(An) = 0. ∀x ∈ Ac =
⋂∞

1 Acn,∀n, |fn(x) − f(x)| ≤ ‖fn − f‖∞. The
latter converges to 0 by assumption.

Given ε > 0,∃N s.t. ‖fn − f‖∞ < ε, ∀n ≥ N . So ∀x ∈ Ac,∀n ≥ N, |fn(x) − f(x)| ≤
‖fn − f‖∞ < ε. �
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Proposition 5.15.

(a) For 1 ≤ p < ∞, the collection of simple functions with finite measure support is dense in
Lp(X,A, µ).

(b) For 1 ≤ p < ∞, the collection of step functions (by definition they have finite measure
support) is dense in Lp(R,L,m). So is Cc(R).

(c) For p =∞, the collection of simple functions is dense in L∞(X,A, µ).

Proof. DIY �

NOTE: Cc(R) is not dense in L∞(R,L,m).

5.3 Embedding Properties of Lp spaces

Definition 5.16. Two norms ‖·‖ , ‖·‖′ on the same spaces V are said to be equivalent if

∃c1, c2 > 0 s.t. c1 ‖v‖ ≤ ‖v‖′ ≤ c2 ‖v‖ ,∀v ∈ V.

So on equivalent norms we have same open sets, same convergence.

Example 5.17.

• For Rd, ‖·‖p, 1 ≤ p ≤ ∞ are equivalent.

• For 1 ≤ p, q ≤ ∞, p 6= q, Lp(R,m)-norm and Lq(R,m)-norm are not equivalent.
Lp(R,m) 6⊂ Lq(R,m), Lp(R,m) 6⊃ Lq(R,m).

Proposition 5.18. Suppose µ(X) <∞, then for any 0 < p < q ≤ ∞, Lq ⊆ Lp.

Proof. • p =∞ is easy.

• Suppose p <∞. �

Proposition 5.19. If 0 < p < q ≤ ∞ then `p ⊆ `q .

Proposition 5.20. ∀0 < p < q < r ≤ ∞, Lp ∩ Lr ⊂ Lq .

Proof. • p =∞ is easy.

• Suppose p <∞. Hölder on p/λq, r/(1− λ)q, λ = q−1−r−1

p−1−r−1 . �
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5.4 Banach Spaces

Theorem 5.21. Suppose (V, ‖·‖) a normed space. Then it is complete ⇐⇒ Every absolutely
convergent series is convergent (i.e. if

∑∞
1 ‖vn‖ < ∞ then ∃s ∈ V s.t.

∑N
1 vn → s as

N →∞)

Proof. =⇒ : DIY. (partial sums form a Cauchy Sequence)

⇐= : Suppose vn, n ∈ N is a Cauchy sequence. ∀j ∈ N,∃Nj ∈ N s.t. ‖vn − vm‖ <
1
2j ,∀n,m ≥ Nj .

WLOG we may assume N1 < N2 < . . .. Let w1 = vN1 , wj = vNj − vNj−1 ,∀j ≥ 2 =⇒∑∞
1 ‖wj‖ ≤ ‖vN1‖+

∑∞
j=2

1
2j−1 <∞ =⇒

∑k
1 wj → ∃s ∈ V .

Thus VNk
→ s as k →∞. vn is Cauchy =⇒ vn → s as n→∞. �

5.5 Bounded Linear Transformation

Definition 5.22. Suppose (V, ‖·‖), (W, ‖·‖′) two normed spaces. A linear map T : V →W

is said to be a bounded map is ∃c ≥ 0 s.t. ‖Tv‖′ ≤ C ‖v‖ ,∀v ∈ V .

Proposition 5.23. Suppose T : (V, ‖·‖) → (W, ‖·‖′) is a linear map. Then the followings are
equivalent:

(a) T is continuous

(b) T is continuous at 0

(c) T is a bounded map

Proof. (a) =⇒ (b) is clear.

(b) =⇒ (c): For ε = 1, ∃δ > 0 s.t. ‖Tu‖′ < ε = 1 if ‖u‖ < δ. Suppose v ∈ V, v 6= 0. Let
u = δ

2‖v‖v =⇒ ‖u‖ = δ
2 < δ =⇒ ‖Tu‖′ < 1 =⇒ δ

2‖v‖ ‖Tv‖
′
< 1 =⇒ ‖Tu‖′ < 2

δ ‖v‖.

(c) =⇒ (a): Fix v0 ∈ V . ‖Tv − Tv0‖′ = ‖T (v − v0)‖′ ≤ C ‖v − v0‖. �

Example 5.24. (a) T : `1 → `1, Ta = (a2, a3, . . .), ‖Ta‖1 ≤ ‖a‖1. T is BLT.

(b) T : (C([−1, 1]), ‖·‖1)→ C, Tf = f(0). This is not continuous.

(c) T : (C([−1, 1]), ‖·‖∞)→ C, Tf = f(0) is BLT.

(d) Let A be a n×m matrix. T : Rn → Rm, v 7→ Av is BLT.
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(e) Let K(x, y) be a continuous function on [0, 1]× [0, 1].

T : (C[0, 1], ‖·‖∞)→ (C[0, 1], ‖·‖∞), Tf =

∫ 1

0

K(x, y)f(y) dy

is a BLT.

(f) T : L1(R)→ (C(R), ‖·‖∞), (Tf)(t) =

∫ ∞
−∞

e−itxf(x) dx (Fourier transform of f )

(g) T : (C∞([0, 1]), ‖·‖∞)→ (C∞([0, 1]), ‖·‖∞), (Tf)(x) = f ′(x) is not bounded.

Definition 5.25. Let L(V,W ) = {T : V → W | T is BLT}. For T ∈ L(V,W ), the operator
norm of T is

‖T‖ := inf{c ≥ 0 | ‖Tv‖′ ≤ c ‖v‖ ,∀v ∈ V }

= sup

{
‖Tv‖′

‖v‖

∣∣∣∣ v 6= 0, v ∈ V
}

= sup
{
‖Tv‖′ | ‖v‖ = 1

}
.

Lemma 5.26. (a) Above three definitions are equivalent.

(b) It is indeed a normed space.

Proof. DIY. �

5.6 Dual of Lp Spaces
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Chapter 6

Signed and Complex Measures

[Fol99, Ch.3].

RECALL Suppose (X,A, µ) a measure space. f : X → [0,∞] measurable. Let ν(E) =∫
E

f dµ,E ∈ A =⇒ ν is a measure on (X,A).

6.1 Signed Measures

Definition 6.1. Suppose (X,A) a measurable space. A signed measure is ν : A →
[−∞,∞) or ν : A → (−∞,∞] such that

• ν(∅) = 0.

• A1, A2, . . . ∈ A,Ai disjoint =⇒ ν

(∞⋃
1

Ai

)
=

∞∑
1

ν(Ai) where the series converges

absolutely if ν

(∞⋃
1

Ai

)
∈ (−∞,∞).

Example 6.2.

• ν positive measure =⇒ ν is a signed measure.

• µ1, µ2 positive measures such that either ν1(X) < ∞ or ν2(X) < ∞ =⇒ ν =

µ1 − µ2 a signed measure.

• f : X → R̄ s.t.

∫
X

f+ dµ <∞ or
∫
X

f− dµ <∞ =⇒ ν(E) =

∫
E

f dµ.

NOTE:

(a) A ⊂ B ; ν(A) ≤ ν(B) since ν(B) = ν(A) + ν(B \A).
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(b) A ⊂ B, ν(A) =∞ =⇒ ν(B) =∞.

Lemma 6.3. ν is a signed measure on (X,A). Then

• En ∈ A, E1 ⊂ E2 ⊂ . . . =⇒ ν

(∞⋃
1

En

)
= lim
n→∞

ν(En).

• En ∈ A, E1 ⊃ E2 ⊃ . . . ,−∞ < ν(E1) <∞ =⇒ ν

(∞⋂
1

En

)
= lim
N→∞

ν(En).

Definition 6.4. ν is a signed measure on (X,A). Let E ∈ A. We say

(a) E is positive for ν (a positive set for ν) if ∀F ⊂ E,F ∈ A, ν(F ) ≥ 0.

(b) E is negative for ν (a negative set for ν) if ∀F ⊂ E,F ∈ A, ν(F ) ≤ 0.

(c) E is null for ν (a null set for ν) if ∀F ⊂ E,F ∈ A, ν(F ) = 0.

NOTE E positive set, F ⊂ E =⇒ ν(F ) ≤ ν(E). E negative set, F ⊂ E =⇒ ν(F ) ≥
ν(E).

Definition 6.5. Suupose µ, ν are signed measure on (X,A). ν ⊥ ν (singular to each
other) means ∃E,F ∈ A s.t. E ∩ F = ∅, E ∪ F = X , F is null for µ, E is null for ν.

Example 6.6. For (R,B(R)),

(a) Lebesgue measure m

(b) Cantor measure µC((a, b]).

(c) Discrete measure µD = δ1 + 2δ−1.

For (a), (c), take E = R \ {−1, 1}, F = {−1, 1}. For (a), (b), take the cantor set K,
E = R \K,F = K.

Lemma 6.7. ν is a signed measure on (X,A).

(a) E is positive (for ν) and G ⊂ E measurable =⇒ G is positive (for ν).

(b) E1, E2, . . . positive sets =⇒
∞⋃
1

En is positive.

Proof. DIY. �

Lemma 6.8. ν is a signed measure on (X,A). Suppose E ∈ A and 0 < ν(E) < ∞ =⇒ ∃
measurable set A ⊂ E s.t. A is a positive set (for ν) and ν(A) > 0.

Proof in [RF10]. If E is a positive set, we are done.

Otherwise, E contains sets of negative measure. Let n1 ∈ N be the smallest such that
∃E1 ⊂ E with ν(E1) < − 1

n1
. If E \ E1 is a positive set then we are done. Otherwise,
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E \ E1 contain sets of measure.

Inductively if E \
⋃k1

1 Ei is not a positive set. Let nk ∈ N be the smallest such that
∃Ek ⊂ E \

⋃k1
1 Ei with ν(Ek) < − 1

nk
.

Note: if nk ≥ 2,∀B ⊂ E \
⋃k−1

1 Ei, ν(B) ≥ − 1
nk−1

.

Let A = E \
⋃∞

1 Ek. Since E = A ∪
⋃∞

1 Ek, ν(E) = ν(A) +
∑∞

1 ν(Ek) =⇒ ν(A) > 0.

Since ν(E), ν(A) are finite, then
∑∞

1
1
nk

need to be convergent =⇒ limk→∞ nk =∞.

Now, if B ⊂ A then B ⊂ E \
⋃k−1

1 Ei. If ν(B) ≥ − 1
nk−1

=⇒ ν(B) ≥ 0. Thus A is
positive. �

Theorem 6.9 (The Hahn decomposition theorem). Suppose ν is a signed measure of (X,A).
Then ∃P,N ∈ A s.t. P ∩ N = ∅, P ∪ N = X , P is positive for ν, and N is negative for ν. If
P ′, N ′ are another such pair, then P4P ′(= N4N ′) is null for ν.

Proof. Uniqueness: P \ P ′ ⊂ P ∩ n′ =⇒ P \ P ′ is positive and negative, thus a null set.
Same for P \ P ′.

Existence: WLOG assume ν : A → [−∞,∞). Let s = sup{ν(E) | E positive for ν}.
∃P1, P2, . . . positive sets such that limn→∞ ν(Pn) = s.

Let P =

∞⋃
1

En =⇒ P is positive =⇒

s ≥ ν(P )

ν(P ) ≥ ν(Pn)
=⇒ ν(P ) = s. Note that

0 ≤ s = ν(P ) <∞.

Let N = X \ P . Is N a negative set?

Suppose not. Then ∃E ⊂ N s.t. ν(E) > 0. Note that ν(E) < ∞ =⇒ ∃ positive set
A ⊂ EA with ν(A) > 0. The P,A are disjoint, P ∪ A is a positive set, and ν(P ∪ A) =

ν(P ) + ν(A) > s, a contradiction.

So N is a negative set. �

Theorem 6.10 (Jordan decomposition theorem). ν signed measure on (X,A). ∃! positive
measures ν+, ν− on (X,A) s.t. ν(E) = ν+(E)− ν−(E),∀E ∈ A and ν+ ⊥ ν−.

Proof. ν+(E) = ν(E ∩ P ), ν−(E) = −ν(E ∩N). DIY. �

Example 6.11. (X,A, µ), f : X → R̄. Let ν(E) =
∫
E
f dµ. ν+ =

∫
E
f+ dµ, ν− =

∫
E
f− dµ.

Definition 6.12. Suppose ν a signed measure on (X,A). Total variation measure of ν is
|ν| = ν+ + ν− (a positive measure on (X,A)).

Definition 6.13. |ν|(E) =
∫
E
|f | dν
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Lemma 6.14. (a) |ν(E)| ≤ |ν|(E),

(b) E is a null set for ν ⇐⇒ E is a null set for |ν|,

(c) Suppose κ is another signed measure. κ ⊥ ν ⇐⇒ κ ⊥ |ν| ⇐⇒ κ ⊥ ν+ and κ ⊥ ν−.

Proof. DIY. �

Definition 6.15. ν is finite (σ-finite) if |ν| is a finite (σ-finite) measure. ( ⇐⇒ ν+, ν− are
finite (σ-finite) measures.)

6.2 Absolutely Measurable Spaces

Definition 6.16. µ a positive measure, ν a signed measure on (X,A). ν � µ (ν is abso-
lutely continuous with respect to µ) ⇐⇒ (E ∈ A, µ(E) = 0 =⇒ ν(E) = 0) ⇐⇒ all
µ-null sets and ν-null sets. (check)

Example 6.17. (X,A, µ), f : X → R̄. ν(E) =
∫
Ef dµ =⇒ ν � µ.

NOTATION: dν = f dµ means ν is the measure defined by ν(E) =
∫
E
f dµ.

Lemma 6.18. µ positive measure, ν signed measure.

(a) ν � µ ⇐⇒ |ν| � µ ⇐⇒ ν+ � µ and ν− � µ.

(b) ν � µ and ν ⊥ µ =⇒ ν = 0.

Proof. �

Theorem 6.19 (Radon-Nikodym). Suppose µ a σ-finite positive measure, ν a σ-finite signed
measure on (X,A). Suppose ν � µ. Then ∃f : X → R̄ measurable function such that
ν(E) =

∫
E
f dµ. If g is another such function then f = g a.e.

Proof. Will follow by proof of Lebesgue-Radon-Nikodym on Monday. �

Definition 6.20. Suppose ν � µ. A Radon-Nikodym derivative of ν with respect to µ is a
function dν

dµ : X → R̄ satisfying ν(E) =
∫
E

dν
dµ dµ,∀E ∈ A.

NOTE: 6.19 shows the existence of such functions. If there is another such function g,
then dν

dµ = g µ-a.e.

NOTATION:

dν =
dν

dµ
dµ.
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Example 6.21. F (x) = e2x : R→ R is continuous and increasing.

The Lebesgue-Stieltjes measure µF on (R,B(R)) is the unique locally finite Borel measure
satisfying µ((a, b]) = e2b − e2a,∀a < b.

µF (E)
why?
=

∫
E

2e2x dx.

So µF � m and dµF

dm = 2e2x.

Example 6.22. F (x) = C(x) : R→ R the Cantor function. C ′(x) = 0 Lebesgue a.e.

µC(E) 6=
∫
E

0 dx.

In particular, c(b) − c(a) 6=
∫ b
a
c′(x) dx even if c is continuous and has derivative a.e. So

µc 6� m. But µc ⊥ m.

Lemma 6.23. Let µ, ν be finite positive measures on (X,A). Then either

(a) µ ⊥ ν, or

(b) ∃ε > 0,∃F ∈ A s.t. ν(F ) > 0 and F is a positive set for ν − εµ. (i.e. ∀G ⊂ F, ν(G) ≥
εµ(G))

Proof. Let κn = ν− 1
nµ. By Hahn decomposition, writeX = Pn∪Nn where Pn is positive

and Nn is negative for κn.

Let P =
⋃∞

1 Pn and N =
⋂∞

1 Nn = X \ P . We have κn(N) ≤ 0 since N ⊂ Nn,∀n =⇒
0 ≤ ν(N) ≤ 1

nµ(N),∀n =⇒ ν(N) = 0.

Now if µ(P ) = 0 then µ ⊥ ν. Otherwise ∃n s.t. µ(Pn) > 0. Take F = Pn, ε = 1
n we have

that F is a positive set for ν − εµ and ν(F ) > 0. �

Theorem 6.24 (Lebesgue-Radon-Nikodym). Suppose µ a σ-finite positive measure, ν a σ-
finite signed measure on (X,A). Then ∃!λ, ρ σ-finite signed measures on (X,A) such that
λ ⊥ µ, ρ� µ, ν = λ+ ρ.

Furthermore, ∃f : X → R̄ measurable function that dρ = f dµ. And if there exists another g
then f = g µ-a.e.
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Proof. (a) Assume µ, ν finite positive measure. Let

F =

{
g : X → [0,∞]

∣∣∣∣ ∫
E

g dµ ≤ ν(E),∀E ∈ A
}

=

{
g : X → [0,∞]

∣∣∣∣ dν − gdν is a positive measure
}
.

Note that F 6= ∅ since g = 0 ∈ F . Let s = sup
{∫
X
g dµ | g ∈ F

}
.

(1) ∃f ∈ F s.t. s =
∫
X
f dµ.

i. g, h ∈ F =⇒ u(x) = max{g(x), h(x)} ∈ F . Since setting A = {x | g(x) ≥
h(x)}, we have ∫

E

u dµ =

∫
E∩A

g dµ+

∫
E∩Ac

h dµ.

ii. ∃g1, g2, . . . s.t. limn→∞
∫
X
gn dµ = S. By i, WLOG we can assume 0 ≤

g1(x) ≤ g2(x) ≤ . . . and s.t. limn→∞
∫
X
gn dµ = S.

Let f(x) = supn gn(x) = limn→∞ gn(x). By MCT,∫
E

f dµ = lim
n→∞

∫
E

gn dµ ≤ ν(E) = S

when E = X .

(2) Define ρ(E) =
∫
E
f dµ =⇒ ρ� µ and ρ(X) =

∫
X
f dµ ≤ ν(X) <∞.

(3) Define λ(E) = ν(E)−ρ(E) = ν(E)−
∫
E
f dµ ≥ 0. Then λ is a positive measure

and λ(X) ≤ ν(X) <∞.

(4) λ ⊥ µ. Suppose it is not. Then by lemma, ∃ε > 0, F ∈ A s.t. µ(F ) > 0 and F

is a positive set for λ− εµ.

Let g(x) = f(x) + ε1F (x). Then ∀E ∈ A,∫
E

g dµ =

∫
E

f dµ+ εµ(E ∪ F ) = ν(E)− λ(E) + εµ(E ∪ F )

≤ ν(E)− λ(E ∩ F ) + εµ(E ∩ F )

≤ ν(E)

since λ(E ∩ F )− εµ(E ∩ F ) ≥ 0.

But s ≥
∫
X
g dµ =

∫
X
f dµ+ εµ(F ) = s+ εµ(F ) > s, a contradiction. �
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6.3 Lebesgue Differentiation Theorem for Regular Borel

Measures on Rd

[Fol99, p. 99]

Definition 6.25. A Borel signed measure ν on Rd is called regular if

(a) |ν|(κ) <∞,∀ compact K.

(b) |ν|(E) = inf{m(O) | open O ⊃ E},∀ Borel set E.

Example 6.26. LS measure on R are regular. Lebesgue measure on Rd is regular (so, the
difference of two of them) Note: from (a), ν regular =⇒ ν is σ-finite,

If dν = f dm regular, then |ν|(κ) =
∫
K
|f | dm <∞, so f ∈ L1

loc(Rd).

Lemma 6.27. If f ∈ L1
loc(Rd) ⇐⇒ dν = f dm is regular

Proof. Read the book. �

RECALL Lebesgue differentiation theorem

Corollary 6.28. Let ρ be a regular signed Borel measure on Rd. Suppose ρ � m =⇒ For
Lebesgue a.e.-x, limr→0

ρ(Er)
m(Er)

= dρ
dm (x) for every Er → x nicely.

Proposition 6.29. Let λ be a regular positive Borel measure on Rd. Suppose λ ⊥ m. For
Lebesgue a.e.-x, limr→0

λ(E1)
m(E1)

= 0 for every Er → x nicely.

Proof. Enough to consider E1 = B(x, r)

{
x | lim sup

r→0

λ(E1)

m(E1)
6= 0

}
=

∞⋃
n=1

Gn, Gn =

{
x | lim sup

r→0

λ(E1)

m(E1)
>

1

n

}

Enough to show that m(Gn) = 0,∀n.

λ ⊥ m =⇒ Rd = A ∪B disjoint. λ(A) = 0,m(B) = 0, Enough to show m(Gn ∩A) = 0.

Fix ε > 0. Since λ is regular, ∃ open O ⊃ A s.t. λ(O) ≤ λ(A) + ε = ε. ∀x ∈ Gn ∩A,∃rx >
0 s.t. λ(B(x,rx))

m(B(x,rx))
> 1

n and B(x, rx) ⊂ O.

LetK ⊂ Gn∩A, compact. K ⊂
⋃
x∈K B(x, rx) =⇒ ∃ finite subcover =⇒ ∃B1, B2, . . . , EN

disjoint, K ⊂
⋃N

1 3Bi.

=⇒ m(K) ≤ 3d
∑N

1 m(Bi) ≤ 3dn
∑N

1 λ(Bi) = 3dnλ
(⋂N

1 Bi

)
≤ 3dnλ(O) ≤ 3dnε =⇒

m(Gn ∩A) ≤ 3dnε. �

Theorem 6.30 (LDT for regular Borel measures). Suppose ν is a regular Borel signed meaaure
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on Rd and dν = dλ + f dm, λ ⊥ m =⇒ for Leb a.e. x, limr→0
ν(Er)
m(Er)

= f(x) for every
Er → x nicely.

Proof. ν regular =⇒ λ, f dm are regular. �

6.4 Monotone Differentiation Theorem

[Fol99, 3.5]

Definition 6.31. For F : R → R that is increasing, denote F (x+) = limy↓x F (y) =

infy>x F (y), F (x−) = limy↑x F (y) = supy<x F (y).

Lemma 6.32. F is increasing =⇒ D = {x | F is discontinuous at x} is countable.

Proof. x ∈ D =⇒ F (x+) > F (x−) since F ↗. For x, y ∈ D,x 6= y =⇒ Ix, Iy disjoint.
For each x ∈ D, let Ix = (F (x−), F (x+)) =⇒ ∃f : D → Q is 1-1. Ix is open interval, not
empty =⇒ D is countable. �

Theorem 6.33 (Monotone differentiation theorem). Suppose F ↗ =⇒

• F is differentiable Lebesgue a.e.

• G(x) = F (x+) is differentiable Lebesgue a.e.

• G′ = F ′ a.e.

Proof. G is increasing, right-continuous on R =⇒ ∃ Lebesgue-Stieltjes measure µG on
R (so, regular).

G(x+ h)−G(x)

h
=


µG((x, x+ h])

m((x, x+ h])
h > 0,

µG((x+ h, x])

m((x+ h, x])
h < 0

converges for Lebesgue a.e x by LDT. So G′ exists a.e.

Let H(x) = G(x)− F (x) ≥ 0. We have

{x | H(x) > 0} ⊂ {x | x is discontinuous at x}.

So {x | H(x) > 0} it is countable. Denote the set as {xn}.

Let µ =
∑
nH(xn)δxn

. Then

µ((−N,N)) =
∑

xn∈(−N,N)

H(xn)
check
≤ G(N)− F (−N) <∞.
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So µ is a locally finite Borel measure on R =⇒ µ is regular. Hence∣∣∣∣H(x+ h)−H(x)

h

∣∣∣∣ ≤ H(x+ h) +H(x)

|h|
≤ 4

µ((x− 2h, x+ 2h))

4|h|
LDT,µ⊥m−−−−−−→ 0

for Lebesgue a.e. x.

So H is differentiable a.e and H ′ = 0 a.e. �

Proposition 6.34. F ↗ =⇒
∫ b

a

F ′(x) dx ≤ F (b)− F (a).

Example 6.35.

• F (x) =

0 x ≤ 0

1 x > 0
. F ′(x) = 0 a.e and

∫ 1

−1
F ′(x) dx = 0 < F (1)− F (−1) = 1.

• F (x) Cantor function. F ′(x) = 0 a.e. and
∫ 1

0

F ′(x) dx = 0 ≤ F (1)− F (0) = 1.

6.5 Functions of Bounded Variation

Definition 6.36. For F : R→ R, the total variation function of F is TF : R→ [0,∞],

TF (x) = sup

{
n∑
i=1

|F (xi)− F (xi−1)| | n ∈ N,−∞ < x0 < x1 < . . . < xn = x

}
.

Lemma 6.37. For a < b,

TF (b) = TF (a) + sup

{
n∑
i=1

|F (xi)− F (xi−1)| | n ∈ N, a = x0 < x1 < . . . < xn = b

}

Note that TF is increasing.

Definition 6.38. F ∈ BV (F is of bounded variation) means TF (∞) = limx→∞ TF (x) <

∞.

F ∈ BV([a, b]) means sup
{∑N

1 |F (xi)− F (xi−1)| | a = x0 < x1 < . . . < xn = b
}
<∞.

Note that F ∈ BV =⇒ F is bounded.

Example 6.39.

(a) F (x) = sinx /∈ BV,∈ BV([a, b]).
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(b) F (x) =

 sin x
x x 6= 0

1 x = 0
/∈ BV([a, b]) for a < 0 < b.

(c) F,G ∈ BV =⇒ αF + βG ∈ BV.

(d) F ↗ and bounded =⇒ F ∈ BV.

(e) F Lipschitz on [a, b] =⇒ F ∈ BV([a, b]). (Lipschitz =⇒ ∃M ≥ 0 s.t. |F (x)−F (y)| ≤
M |x− y|,∀x, y.)

(f) F differentiable, F ′ bounded on [a, b] =⇒ F ∈ BV([a, b]).

(g) F (x) =
∫ x
−∞ f(t) ∈ L1(R) =⇒ F ∈ BV since

N∑
1

|F (xi)− F (xi−1)| ≤
N∑
1

∫ xi

xi−1

|f(t)| dt =

∫ x

x0

|f(t)| dt ≤
∫ ∞
−∞
|f(t)| dt <∞.

Definition 6.40. NBV = {G ∈ BV | G right-continuous, G(−∞) = 0}.

Example 6.41.

(a) F ↗, bounded, right-continuous, F (−∞) = 0.

(b) F (x) =
∫ x
−∞ f(t) dt, f ∈ L1(R). (Midterm =⇒ F is uniformly continuous.)

Lemma 6.42. F ∈ BV and right-continuous =⇒ TF ∈ NBV.

Proof. TF ↗, bounded =⇒ TF ∈ BV, TF (−∞) = 0. Is TF right-continuous?

Suppose it is not. ∃a ∈ R s.t. c := TF (a+) − TF (a) > 0. Fix ε > 0. Since F (x) and
g(x) := TF (x+) are right continuous, ∃δ > 0 s.t.

|F (y)− F (a)| < ε, |g(y)− g(a)| < ε ∀y ∈ (a, a+ δ].

So TF (y)− TF (a+) ≤ TF (y+)− TF (a+) < ε.

∃a = x0 < x1 < x2 < . . . < xn = a+ δ s.t.

n∑
i=1

|F (xi)− F (xi−1)| ≥ TF (a+ δ)− TF (a)− c

4

≥ TF (a+)− TF (a)− c

4
=

3

4
c.

This shows that
∑n
i=2 |F (xi)− F (xi−1)| ≥ 3

4c− ε since
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Consider [a, x1]. ∃a = t0 < t1 < . . . < tk = x1 s.t.

k∑
i=1

|F (ti)− F (ti−1)| ≥ TF (x1)− TF (a)− c

4
≥ 3

4
c.

So we can write [a, a+ δ] = [a, x1] ∪ [x1, a+ δ]. So

ε+ c ≥ TF (a+ δ)− TF (a+) + TF (a+)− TF (a)

= TF (a+ δ)− TF (a)

≥
k∑
j=1

|F (tj)− F (tj−1)|+
n∑
i=2

|F (xi)− F (xi−1)| ≥ 3

4
c− ε+

3

4
c =

3

2
− ε

=⇒ c ≤ 4ε.

Since ε > 0 is arbitrary, we conclude that c = 0, a contradiction. �

Corollary 6.43. F ∈ NBV ⇐⇒ F = F1 − F2, F1, F2 ∈ NBV and↗.

Proof. Write F =
TF + F

2
− TF − F

2
. TF (x1)−TF (x2) ≥ total variation of F on (x1, x2) ≥

|F (x1)− F (x2)| so both functions are increasing. �

Theorem 6.44.

(a) µ is a finite signed Borel measure on R =⇒ F (x) := µ((−∞, x]) ∈ NBV.

(b) F ∈ NBV =⇒ ∃! finite signed Borel measure µF on R satisfying µ((−∞, x]) = F (x).

Proof. (a) µ = µ+ − µ− =⇒ F = F+ − F−, F±(x) = µ±((−∞, x]) is increasing,
bounded, right-continuous, and F±(−∞) = 0.

(b) F ∈ NBV =⇒ F = F1 − F2, F1, F2 ∈ NBV and are increasing. So ∃µF1 , µF2

Lebesgue-Stieltjes measure. µF := µF1 − µF2 . Uniqueness is left for homework.

�

Proposition 6.45. Let F ∈ NBV. Then

(a) F is differentiable a.e, F ∈ L1(R,m).

(b) dµF = dλ+ F ′dm,λ ⊥ m.

(c) µF ⊥ m ⇐⇒ F ′ = 0 Lebesgue a.e.

(d) µF � m ⇐⇒
∫ x

−∞
F ′(t) dt = F (x).
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Proof. Check (a), (b), (c).

(d) µF � m ⇐⇒ λ = 0 ⇐⇒ dµF = F ′dm ⇐⇒ µF =
∫
E
F ′ dm,∀E Borel

⇐⇒ F (x) =
∫ x
−∞ F ′(t) dt, ∀x ∈ R. (by uniqueness) �

6.6 Absolutely Continuous Functions

Definition 6.46. F : R→ R is absolutely continuous (F ∈ AC) means ∀ε > 0,∃δ > 0 s.t.

if (a1, b1), . . . , (aN , bN ) are disjoint open intervals satisfying
∑N
n=1(bn − an) < δ, then

N∑
n=1

|F (bn)− F (an)| < ε.

Lemma 6.47. (a) F ∈ AC =⇒ F is uniformly continuous.

(b) F is Lipschitz =⇒ F ∈ AC.

(c) F (x) =

∫ x

∞
f(t) dt, f ∈ L1 =⇒ F ∈ AC.

Proof.

N∑
n=1

|F (bn)− F (an)| =
N∑
1

∣∣∣∣∣
∫ bn

an

f(t) dt

∣∣∣∣∣ ≤
N∑
1

∫ bn

an

|f(t)| dt =

∫
E

|f | dm

where E =
⋃N

1 (an, bn). By midterm Q1, If f ∈ L1(X,µ) then ∀ε > 0,∃δ > 0 s.t. µ(E) <

δ =⇒
∫
E
|f | < ε. �

The inverse of (a) is not always true. The Cantor function C(x) is uniformly continuous
but C /∈ AC.

Proposition 6.48. Suppose F ∈ NBV. Then F ∈ AC ⇐⇒ µF � m.

Corollary 6.49. F ∈ NBV∩AC ⇐⇒ F (x) =

∫ x

∞
f(t) dt for some f ∈ L1(R,m). If this

holds, f = F ′ Lebesgue a.e.

Lemma 6.50. F ∈ AC([a, b]) =⇒ F ∈ NBV([a, b]).

Proof. Check. (read the textbook) �

Theorem 6.51 (Fundamental theorem of Calculus). For F : [a, b]→ R, TFAE:

(a) F ∈ AC([a, b]),

(b) F (x)− F (a) =

∫ x

a

f(t) dt for some f ∈ L1([a, b],m),
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(c) F is differentiable a.e on [a, b] and F (x)− F (a) =
∫ x
a
F ′(t) dt.

Proof of Prop. ⇐= : Suppose µF � m. Then F (x) =
∫ x
−∞ F ′(t) dt, F ′ ∈ L1 =⇒ F ∈ AC.

=⇒ : Suppose F ∈ AC.

Note: since F is continuous, µF ((a, b]) = limn→∞ µF
((
a, b− 1

n

])
= limh→∞ F

(
b− 1

n

)
−

F (a) = F (b)− F (a).

Let E be a Borel set with m(E) = 0. Fix ε > 0. Let δ > 0 be the constant from F ∈ AC.
Since m and µF are regular,

∃ open U1 ⊃ U2 ⊃ . . . ⊃ E s.t. lim
n→∞

m(Un) = m(E) = 0,

∃ open V1 ⊃ V2 ⊃ . . . ⊃ E s.t. lim
n→∞

µF (Vn) = µF (E).

Let On = Un ∩ Vn. On is open and O1 ⊃ O2 ⊃ . . . ⊃ E. Then

lim
n→∞

m(On) = m(E) = 0, lim
n→∞

µF (On) = µF (E) (think about it).

WLOG, we may assume m(O1) < δ. Each On =
⋃∞
k=1(ank , b

n
K) disjoint,

∑N
k=1(bnk , a

n
k ) ≤

m(On) ≤ m(O1) ≤ δ =⇒

µF

(
N⋃
k=1

(ank , b
n
K)

)
=

N∑
k=1

µF (ank , b
n
K) =

N∑
k=1

F (bnk )− F (ank ).

Take the absolute value we have∣∣∣∣∣µF
(

N⋃
k=1

(ank , b
n
K)

)∣∣∣∣∣ ≤
N∑
k=1

|F (bnk )− F (ank )| < ε.

Hence

|µF (On)| = lim
n→∞

∣∣∣∣∣µF
(

N⋃
k=1

(ank , b
n
K)

)∣∣∣∣∣ ≤ ε =⇒ |µF (E)| = lim
n→∞

|µF (On)| ≤ ε.

Since ε > 0 is arbitrary we conclude that µF (E) = 0. �

Definition 6.52. Suppose µ a finite signed Borel measure on R.

• µ is a discrete measure means ∃countable set {xn} and cn 6= 0 s.t.
∑∞

1 cn <∞ and
µ =

∑
n cnδxn

.

• µ is a continuous measure means µ({a}) = 0,∀a ∈ R.
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Lemma 6.53. (a) µ = µd+µc uniquely, where µd is a discrete measure and µc is a continuous
measure.

(b) µ discrete =⇒ µ ⊥ m.

(c) µ� m =⇒ µ is continuous.

Corollary 6.54. Suppose µ is finite signed Borel measure on R. Then µ can be uniquely written
as

µ = µd + µac + µsc

where µac ∈ AC and µsc is singularly continuous (continuous and ⊥ m).
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Chapter 7

Hilbert Spaces

[Fol99, 5.5]

7.1 Inner Product Spaces

Definition 7.1. Suppose V a (complex) vector space. An inner product is 〈, 〉 , V × V → C
such that

(a) 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉,

(b) 〈x, y〉 = 〈y, x〉,

(c) 〈x, x〉 ∈ [0,∞),

(d) 〈x, x〉 = 0 ⇐⇒ x = 0.

Note that 〈x, αy + βz〉 = ᾱ 〈x, y〉+ β̄ 〈x, z〉.

Example 7.2. • Rd, 〈x, y〉 = x · y =
∑d

1 xiyi

• Cd, 〈x, y〉 = x · y =
∑d

1 xiȳi.

• L2(X,µ), 〈f, g〉 =
∫
X
fḡ dµ. (Note: by Hölder,

∣∣∫ fḡ∣∣ ≤ ‖fḡ‖1 ≤ ‖f‖2 ‖g‖2)

• `2, 〈x, y〉 =
∑∞

1 xiyi.

Definition 7.3. ‖x‖ =
√
〈x, x〉. Does it satisfy triangle inequality?

‖x+ y‖2 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 = ‖x‖2 + 2 Re 〈x, y〉+ ‖y‖2.

Theorem 7.4 (Cauchy-Schwarz Inequality). | 〈x, y〉 | ≤ ‖x‖ ‖y‖.

Proof. Clearly if 〈x, y〉 = 0. Assume that 〈x, y〉 6= 0.

70



Orthonormal Basis Yiwei Fu

∀α ∈ C, 0 ≤ ‖αx− y‖2 = |α|2 ‖x‖2 − 2 Reα 〈x, y〉+ ‖y‖2. Write 〈x, y〉 = | 〈x, y〉 |eiθ.

Let α = e−iθt, t ∈ R. Then 0 ≤ ‖x‖2 t2 − 2| 〈x, y〉 |t + ‖y‖2 ,∀t ∈ R. Hence 4| 〈x, y〉 |2 −
4 ‖x‖2 ‖y‖2 ≤ 0. �

Corollary 7.5. ‖x+ y‖ ≤ ‖x‖+ ‖y‖. As a consequence, ‖x‖ =
√
〈x, x〉 is a norm.

Proof. ‖x+ y‖2 = ‖x‖2 + 2 Re 〈x, y〉+ ‖y‖2 ≤ ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2. �

Theorem 7.6 (Parallelogram law). Let V be a normed space. Then, ‖·‖ is induced by an inner
product ⇐⇒ ‖x+ y‖2 + ‖x− y‖2 = 2 ‖x‖2 + 2 ‖y‖2 ,∀x, y ∈ V .

Proof. =⇒ : Follows from ‖x± y‖ = ‖x‖2 ± 2 Re 〈x, y〉+ ‖y‖2.

⇐= : Let
〈x, y〉 =

1

4

(
‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2

)
and check that it is a inner product. �

Example 7.7. Lp(R,m), f = 1(0,1), g = 1(1,2). For p 6= 2, the parallelogram law fails.

Lemma 7.8. Let V be an inner product space. If Xn → X strongly (i.e. limn→∞ ‖xn − x‖ =

0.) Then Xn → X weakly (i.e. ∀y ∈ V, limn→∞ 〈xn − x, y〉 = 0.)

Proof. | 〈xn − x, y〉 | ≤ ‖xn − x‖ ‖y‖. �

Example 7.9. `2, xn = (0, . . . , 0, 1(n-th), 0, . . .). Fix y = `2. Then 〈xn, y〉 = yn → 0 as
n→∞ since

∑∞
1 |yn|2 <∞.

Thus, xn → 0 weakly. But ‖xn − 0‖ = ‖xn‖ = 0 so xn 6→ 0 strongly.

7.2 Orthonormal Basis

Definition 7.10. x, y are called orthogonal (x ⊥ y) if 〈x, y〉 = 0.

Lemma 7.11 (Pythagorean theorem).

x1, . . . , xn ∈ V, 〈xi, xj〉 = 0,∀i 6= j =⇒ ‖x1 + · · ·+ xn‖2 = ‖x1‖2 + · · ·+ ‖xn‖2 .

Definition 7.12. {ek} is an orthonormal set is 〈em, en〉 =

0 m 6= n

1 m = n
.
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Lemma 7.13 (Best approximation). Let e1, . . . , en orthonormal vectors. For x ∈ V , let αi =

〈x, ei〉 , i = 1, . . . , N . Then∥∥∥∥∥x−
N∑
i=1

αiei

∥∥∥∥∥ ≤
∥∥∥∥∥x−

N∑
i=1

βiei

∥∥∥∥∥ , ∀β1, . . . , βN ∈ C.

Proof. Let z = x−
∑N

1 αiei, w =
∑N

1 (αi − βi)ei. ∀n = 1, . . . , N, 〈z, en〉 = 〈x, en〉 − αn =

0 =⇒ 〈z, w〉 = 0 =⇒ ‖z + w‖2 = ‖z‖2 + ‖w‖2 ≥ ‖z‖2. �

Lemma 7.14. Suppose {ei}∞1 orthonormal set. For x ∈ V , let αi = 〈x, ei〉. Then

(a) ‖x‖2 =
∥∥∥x−∑N

1 αiei

∥∥∥2 +
∑N

1 |αi|2,∀N ∈ N.

(b)
∑∞

1 |αi|2 ≤ ‖x‖
2. (Bassel’s inequality)

Proof. (a) We have

∥∥∥∥∥x−
N∑
1

αiei

∥∥∥∥∥ = ‖x‖2 − 2 Re

〈
x,

N∑
1

αiei

〉
+

∥∥∥∥∥
N∑
1

αiei

∥∥∥∥∥
2

= ‖x‖2 − 2

N∑
1

Reαi 〈x, ei〉+

∥∥∥∥∥
N∑
1

αiei

∥∥∥∥∥
2

= ‖x‖2 −
N∑
1

|αi|2.

(b) follows from (a). �

Definition 7.15. An orthonormal set {ei} is said to be an orthonormal basis of V if W =

V where W = {
∑n

1 βiei | N ∈ N, β1, . . . , βN ∈ C} = {finite linear combinations of {ei}}
i.e. ∀x ∈ V,∀ε > 0,∃w ∈W s.t. ‖x− w‖ < ε.

Example 7.16. Cd, ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, · · · , d and `2, ei = (0, . . . , 0, 1, 0, . . .), i =

1, 2, · · · .

Definition 7.17. A Hilbert space is an inner product space that is complete.

Example 7.18. Rd,Cd, L2(X,A, µ), `2.

C([0, 1]) ⊂ L2([0, 1],m) is not closed, so it is not a Hilbert space.

Theorem 7.19. LetH be a Hilbert space. Let {ei}∞i=1 be an orthonormal set. TAFE:

(a) {ei}∞i=1 is an orthonormal basis.

(b) x ∈ H and 〈x, ei〉 = 0,∀i =⇒ x = 0.

72



Orthonormal Basis Yiwei Fu

(c) x ∈ H =⇒ SN :=
∑N

1 αiei → x strongly where αi = 〈x, ei〉.

(d) x ∈ H =⇒ ‖x‖2 =
∑∞

1 |αi|2. (Plancherel identity)

Proof. (c) =⇒ (d): ‖x‖ = ‖x− sN‖2 +
∑N

1 ‖αi‖
2. Since SN → x strongly we have

‖x‖ = limN→∞
∑N

1 ‖α1‖2.

(d) =⇒ (a): ‖x‖ = ‖x− sN‖2 +
∑N

1 ‖αi‖
2 taking limit of both sides we have 0 =

limN→∞ ‖x− sN‖2.

(a) =⇒ (b): Fix x ∈ H. Fix ε > 0. Then, by (a), ∃y ∈
{∑N

1 βiei

}
s.t. ‖x− y‖ < ε. By the

best approximation lemma, ‖x− sk‖ ≤ ‖x− y‖ < ε. If 〈x, ei〉 = 0,∀i, then sk = 0. Thus,
‖x‖ = ‖x− Sk‖ < ε. Since ε > 0 arbitrary, ‖x‖ = 0.

(b) =⇒ (c): Bessel =⇒
∑∞

1 |αi| ≤ ‖x‖ <∞.

‖SN − SM‖2 =

∥∥∥∥∥
N∑

i=M+1

αiei

∥∥∥∥∥
2 N∑
i=M+1

αi|2 → 0 as N > M →∞.

So {SN}∞N=1 is a Cauchy sequence inH. SinceH is complete, ∃y ∈ H such that
limN→∞ ‖Sn − y‖ = 0 i.e. Sn → y strongly. Is y = x?

Fix i ∈ N, 〈y − x, ei〉 = 〈y − Sn, ei〉 + 〈Sn − x, ei〉 = αi − 〈x, ei〉 = 0 (if N > i). So for
N > i, 〈y − x, ei〉 = 〈y − Sn, ei〉 =⇒ 〈y − x, ei〉 as N → 0. (Since Sn → y strongly
=⇒ Sn → y weakly)

By (b) we have y − x = 0 ⇐⇒ y = x. �

Corollary 7.20 (Parseval). 〈x, y〉 =
∑∞

1 αnβn.

Definition 7.21. A metric space is called separable if ∃ countable dense subset.

Definition 7.22. Qd ⊂ Rd. `p, 1 ≤ p <∞ not p =∞. Lp(R,m), 1 ≤ p <∞ not p =∞.

Proposition 7.23. Every separable Hilbert space has a countable orthonormal basis.

Proof. Gram-Schmidt process. �

Every vector space has a basis, but need to use Zorn’s lemma.
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Chapter 8

Intro to Fourier Analysis

8.1 Fourier Series

Lemma 8.1. en(x) =
1√
2π
einx =

1√
2π

(cos(nx) + i sin(nx))n∈Z is an orthonormal set in

H = L2 ([−π, π]).

Proof. Direct check.

1

2π

∫ π

−π
ei(m−n)x dx =

1 m = n

0 m 6= n
. �

Question: is {en} an orthonormal basis?

In L ([−π, π]), we have

‖f‖1 =

∫ π

−π
|1||f(x)| ≤ ‖1‖2 ‖f‖2 =

1√
2π
‖f‖2 ≤ 2π ‖f‖∞ .

Definition 8.2. For F ∈ L1([−π, π]), its Fourier coefficients are

f̂n = 〈f, en〉 =
1√
2π

∫ π

−π
f(y)e−iny dy.
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We want to have

N∑
n=−M

f̂nen(x) =
1

2π

N∑
n=−M

[∫ π

−π
f(y)e−iny dy

]

=
1

2π

∫ π

−π
f(y)

(
N∑

n=−M
e−in(x−y)

)
dy

M,N→∞−−−−−−→
in L2??

f(x).

Definition 8.3 (Poisson Kernel). For 0 ≤ r < 1,

Pr(t) =
1

2π

∞∑
n=−∞

eintr|n| =
1− r2

2π(1− 2r cos t+ r2)
.

Lemma 8.4. For f ∈ L1([−π, π]) and 0 ≤ r < 1,
∑∞
−∞ f̂nen(x)r|n| converges absolutely and

uniformly for x ∈ [−π, π], and is equal to∫ π

−π
Pr(x− y)f(y) dy.

Proof.

∞∑
−∞

[∫ π

−π

∣∣f(y)e−int
∣∣ dy

]
|en(x)| r|n| =

‖f‖1
2π

∞∑
−∞

r|n| <∞.

Thus, Fubini’s theorem applies. Now

∞∑
−∞

[∫ π

−π

∣∣f(y)e−int
∣∣ dy

]
|en(x)|r|n| =

1

2π

∫ π

−π
f(y)

(
N∑

n=−M
e−in(x−y)r|n|

)
dy

=

∫ π

−π
Pr(x− y)f(y) dy.

Need to check a bit more about uniform convergence. �

NOTE Pr(0) =
1− r2

2π(1− r)2
=

1 + r

2π(1− r)
→∞ as r ↗ 1.

Lemma 8.5. Pr(t) form a "family of good kernels" i.e.

(a) Pr(t) ≥ 0

(b)
∫ π

−π
Pr(t) dt = 1

(c) ∀δ > 0, lim
r↗1

∫
[−π,π]\[−δ,δ]

Pr(t) dt = 0.
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Proof. (b) 1st formula; (a), (c) 2nd formula.∫
[−π,π]\[−δ,δ]

Pr(t) dt ≤ 1− r2

2π(1− 2r cos δ + r2)
2π

r↗1−−−→ 0. �

Lemma 8.6. For f ∈ C([−π, π]) satisfying f(−π) = f(π), then

lim
r↗1

∫ π

−π
Pr(x− y)f(y) dy = f(x)

uniformly for x ∈ [−π, π].

Proof. Extend f to f : R→ R where f(x+ 2π) = f(x). So f is uniformly continuous and
bounded.∫ π

−π
Pr(x− y)f(y) dy − f(x) =

∫ π

−π
Pr(y)f(x− y) dy − f(x)

∫ π

−π
Pr(y) dy

=

∫ δ

−δ
Pr(y)(f(x− y)− f(x)) dy

+

∫
[−π,π]\[−δ,δ]

Pr(y)(f(x− y)− f(x)) dy. �

Theorem 8.7.
{
en(x) =

1√
2π
einx

}
is an orthonormal basis of L2([−π,−π]).

Proof. Let f ∈ L2([−π, π]). Fix ε > 0.

∃g ∈ C([−π, π]) with g(π) = g(−π) s.t. ‖f − g‖2 <
ε
3 (why?)

Let gr(x) =
∫ π
−π Pr(x−y)g(y) dy. By 8.6, ∃r ∈ [0, 1) s.t. ‖gr − g‖∞ < ε

3
√
2π

. So ‖gr − g‖ <
ε
3 .

Let gr,N (x) =
∑N
−N ĝnen(x)r|n|. By 8.4, ∃N ∈ N s.t. ‖gr,N − gr‖∞ < ε

3
√
2π

. Thus
‖gr,N − gr‖2 <

ε
3 .

Hence, ‖f − gr,N‖2 1 < ε. �

Example 8.8 (Plancherel identity). ‖f‖2 =
∑∞
−∞ |f̂n|2.

f(x) = x, f̂n =
1√
2π

∫ π

−π
xe−inx dx

0 n = 0

(−1)ni
√
2π

n n 6= 0
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So the identity becomes
∞∑
1

1

n2
=
π2

6
.

Example 8.9 (Isoperimetric inequality). Suppose (x(t), y(t)), t ∈ [−π, π] is a parametric
curve in R2 that is

(a) closed: (x(−π), y(−π)) = (x(π), y(π)),

(b) smooth: x, y are C1 functions,

(c) simple.

Suppose

L =

∫ π

−π

√
x′(t)2 + y′(t)2 dt = 2π.

What is the largest area A encloses?

By Green’s theorem (
∮
C
P dx−Q dy =

∫∫
D

(Qx − Py) dA),

A =
1

2

∮
(x dy − y dx) =

1

2

∮
(x(t)y′(t)− x(t)y′(t)) dt.

Arc length parametrization so that x′(t)2 +y′(t)2 = 1 for all t. Then the condition L = 2π

can be written as
L =

∫ π

−π

(
x′(t)2 + y′(t)2

)
dt = 2π

Rewrite using z(t) = x(t) + iy(t), t ∈ [−π, π] subject to∫ π

−π
‖z′(t)‖2 dt = 2π,

find the max of
A =

1

4i

∫ π

−π

(
z(t)z′(t)− z(t)z′(t)

)
dt

Note that z ∈ C1 and z(−π) = z(π).

Denote ẑn = αn. Now, (̂z′)n = 1√
2π

∫ π
−π z

′(t)e−int dt = inαn (integrate by parts).

By Plancherel, the L constraint becomes

∞∑
−∞
|inαn|2 = 2π.
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By Parseval, the A object becomes

A =
1

4i

∞∑
−∞

αn(inαn)− αn(inαn) =
1

2

∞∑
−∞

n|αn|2.

The question now becomes the max of
1

2

∞∑
−∞

n|αn|2 subject to
∞∑
−∞

n2|αn|2 = 2π.

Show that 2π −
∞∑
−∞

n|αn|2 is nonnegative ⇐⇒
∞∑
−∞

(n2 − n)|αn|2 is nonnegative, which

is obvious.

A = π ⇐⇒ the equality holds ⇐⇒ αn = 0 for n 6= 0, 1 ⇐⇒ z(t) = α0 + α1e1(t) ⇐⇒
z(t) = α0 + α1e

−it ⇐⇒ |z(t)− α0| = |α1|, which is a circle.

This beautiful proof is by Hurwitz.

Books: Fourier Series & Integrals, Dym & McKean.
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