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Chapter 1

Abstract Measure

1.1 o-Algebra
Definition 1.1. Let X be a set. A collection M of subsets of X is called a o-algebra on X
if

e peM.

* M is closed under complements: E € M = E¢¢ec M.

* M is closed under countable unions: E1,Es,... € M = (J;2| E; € M.

SIMPLE PROPERTIES:

e X=0eM.
* Nic, Bi = (UL, ES)° € M. 1tis closed under countable intersections.

. vazl E,=E;U...UE,UQU....1Itis closed under finite unions (similarly, inter-

sections). sigma
e E\F=ENF°e M,EAF =(ENF°)U(FNE®)eM.
Example 1.2. (a) A = P(X) power algebra.
(b) A= {0, X} trivial algebra.
(c) LetBC X,B#0,B+# X.A={0,B,B° X}
Lemma 1.3. (An intersection of o-algebras is a o-algebra) Let A,,« € I, be a family a o-

algebras of X. Then (¢, Aq is a o-algebra. (I can be uncountable.)

Proof. DIY [ |
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Definition 1.4. For £ C P(X) (not necessarily a o-algebra), let (£) be the intersection of
all o-algebras on X that contains £. Call it the o-algebra generated by £.

e (&) is the smallest o-algebra containing £ and is unique.

o {0.B.B°, X} = ({B}) = ({B}) = ({0, BY).
The above definition gives us (potentially) lots of examples of o-algebra on a set X
Lemma 1.5. (a) Suppose € C P(X), Aisac-algebraon X. E € A = (£) € A.
(b) ECFCPX) = (&) C(F).

Proof. |

Definition 1.6. For a topological space X, the Borel o-algebra B(X) is the o-algebra gen-
erated by the collection of open sets.

Example 1.7. (X = R) B(R) contains the following collections:

& ={(a,b) | a< b}, & ={[a,b]|a<b},
E={(a,b] |a<b}, & ={[a,b)]a<b}
& ={(a,0) [a € R}, & = {[a,00) |a € R},
& ={(—o00,a) |a e R}, & ={(—00,a]|a<b}
Proposition 1.8. B(R) = (&;) foreachi=1,...,8.
Proof. Use[L.5 |

Definition 1.9. (X, A) is called a measurable space.

1.2 Measures

Definition 1.10. A measure on (X, .A) is a function p : A — [0, 0] s.t.
@) p(@) =0

(b) (countable additive) For A;, As, ... € A disjoint we have
K (U Ai) = ZM(Ai)-
1 i=1

(X, A, p) is then called a measure space.
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Example 1.11.  (a) For any (X, A), u(A) = #A counting measure.

(b) For any (X, A), let zy € X. The Dirac measure at x is

1 zg€ A,
n(A) =
0 i) ¢ A.

(c) For (N,P(N)), let ay,az,... € [0,00). u(A) = >, 4 a; is a measure.
(X, A) measurable space
(X, A, 1) measure space
p: A —[0,00] s.t. u(0) = 0, countable additivity.

NOTE: A,B € A, A C B, then u(B\ A) + pu(A) = u(B) = p(B\ A) = u(B) — p(A) if
p(A) < oo.

Theorem 1.13. Suppose (X, A, 1) a measure space. Then

(a) (monotonicity)
ABeAACB = p(A) < u(B).

(b) (countable subadditivity)
AlvAQa € A7 == W <UAZ> < ZM(AL)
(c) (continuity from below/(MCT) from sets)

n— oo

A, Ay, . € ALALCAYCAsC ... = 1 (UA,») = lim p(A,).
(d) (continuity from above)

n—roo

A, Ag, ... € AJA1 DA D A3 D L u(A) <o = M(ﬂz‘h) = lim wp(4,).

Proof. (a), (b), DIY.
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For (c),let By = A1,B; = A; \ A;_1,i > 2.B; € Aand are disjoint.
U&:U&
= (U Az-) = u (U Bz—) =D _n(B) = lim ¥ p(Bi) = lim ().
For (d), let E; = A; \ A;. Hence E; € A E; C E5 C ... We have

UE [JAAA (ﬂA)'Z>6Arﬂ%\<©EJ.

Hence

(ﬂA>—uA1 OJE>—MA1—ﬁ&H() p(Ar) = lim pu(Ar) = p(An).
[ |
NOTE: the condition that 1(A;) < oo cannot be dropped.

For example, in (N, P(N), counting measure), let A,, = {n,n+1,n+2}, 4; D As D A3 D
..Wehave ()" =0 = p(N; Ai) =0.

Definition 1.14. For (X, A, 1) measure space,
e AC Xisapnullsetif A e A, u(A)=0.
e A C Xisa p-subnull setif 3B, u-null set A C B.
* (X, A, n)is a complete measure space if every u-subnull set is .A-measurable.

Definition 1.15. (X, A, 1) measure space. A statement P(z),z € X holds p-almost ev-
erywhere (a.e.) if the set {x € X | P(z)does not hold} is p-null.

Definition 1.16. (X, A, 1) measure space.
* u is a finite measure is u(X) < oo.
e wisa o-finite measure if X = |J7° X, X, € A, u(X,,) < .

HW: every measure space can be "completed."

1.3 Outer Measures

Definition 1.17. An outer measure on X is p* : P(X) — [0, o0] s.t.
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* w(®=0
* (monotonicity) p*(A) < p*(B)if A C B.

* (countable subadditivity)

VA1, As, ... € )(7,lj,>‘< (OAZ> < i,u*(A)

Example 1.18. For A C R,

o0

w*(A) = inf {Z

i=1

is an outer measure due to the next proposition.

Proposition 1.19. (1.19) Let £ € P(X) s.t. 0, X € €. Let p : € — [0,00] s.t. p(0) = 0. Then

= inf {Z p(E;)

is an outer measure on X.

E; eS,Vz‘eN,UEi DA}
1

Proof. (a) p* is well-defined (inf is taken over non-empty set.)
(b) (0) =0
(© ACB = 1(4) < u*(B).

We check the countable subadditivity.

Let A;, As,... C X. If one of p*(A4;) = oo, then the result holds. Suppose p*(A4,) <
00, Vn € N.

"Give your self a room of epsilon":

W (U An) < p(A
1 1

Foreachn e N,3E, 1, E,2,... € £ s.t.

Fix e > 0. We will show

G E,x DA, and p*(4,) Qi i
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Then,

Udanc U UEw= U Eun
1

n=1k=1 (n,k)EN2

RECALL: Tonelli’s thm for series. If a;; € [0, 00], Vi, j € N, then

Z ;5 = Z Z ajj = Zzaz]
(i,5) EN2 i=1j=1 j=14=1
Hence
n=1 n=1 n=1k=1 n=1 n=1
We have shown countable subadditivity. [

Outer measure is very close to a measure. Here the textbooks diverge.

[Tao11] introduces Lebesgue measure on R using topological qualities of subsets of R.
[Fol99] introduces abstract method by Carathéodory and Kolmogorov.

Definition 1.20. Let ;* be an outer measure on X. We say A C X is Carathéodory
measurable with respect to p* if VE C X, p*(E) = p*(E\ A) + p*(E N A).

Lemma 1.21. Let p* be an outer measure on X. Suppose By, B, ..., By are disjoint C-
measurable sets. Then,

N
VE C X, u* (Em (U Bi>

1

) R )

because B; is C-measurable. Then, iterate. [ |

Proof.

Improved version:

Bi, By, ... C-measurable and disjoint — p* (ENUYT By) = >0 w* (ENB,),VE C
X.
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Proof.
oo oo
Z p*(ENBy) > p* (E N U Bn>
1 1
N N
> (EmUBn> =Y 1w (ENBy)
1 1
Take N — oo or note that N € N is arbitrary we get the result. |
First big theorem:

Theorem 1.22 (Carathéodory extension theorem). Let pu* be an outer measure on X. Let A
be the collection of C-measurable sets with respect to y*. Then

(a) Ausac-algebraon X.
(b) p = p*|.a is a measure on (X, A).

(c) (X, A, ) is a complete measure space.

Proof. (a) (1) 0 € A.
(2) Ais closed under complements.
(3) To show A closed under countable unions.

e (finite union)
CilAM A Be A —= AUBecA.

Figure 1.1: Venn diagram of A, B, E
Fix arbitrary E C X. We need to show
1(E) = w* (BN (AU B)) + " (E\ (AU B)).

ie.
pr(lUu20U3U4) =p"(1U2U3) + u*(4)
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Since A is C-measurable, we have
pr(lu203U4) =p*(1U2) 4+ u*(3U4)
p(1U20U3) =p"(1U2)+ p*(3)
Similarly since B is C-measurable, we have
(3U4) = i (3) + 1" (4)
Hence

pf(lUu20U3U4) =p"(1U2)+ p*(3U4)
pr(LU2U3) = p*(3) +p*(3) + 4" (4)
p(1U20U3)+ u*(4).

* (countable disjoint unions)
Let Ay, Ag, ... € Aand disjoint.

Fix E C X arbitrary. Since p* is countably subadditive,

pr(E) < pt <E0U> +ut (E\UAn>
1 1
Fixn e N.
N
= (J4neA
1 N N
= p*(E)=pu" (EmU) +p* (E\UA”>
N 1 N 1
> ZM(E NA,)+p* (E\UAn> by lemma.

Take n — oo.

¢ (countable unions)
Let Ay, As,... € A. Take Ey = A1, E, = A, \ (U’;‘l Ai) for n > 2. Then
UJA, =UE, and E,s are disjoint.

(b) Firstly we have p(0) = p*(0) = 0.

Countable additvity of u* on A follows from the improved lemma with £ = X.
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(c) HW. n

1.4 Hahn-Kolmogorov Theorem

RECALL[I.19Let £ C P(X) s.t.0,X € E. Letp: €& — [0,00] s.t. p(P) =0

(€ p) T75r (P(X), 7)o (A, 1)
QUESTION € C A and ulg = p? No!
Definition 1.23. Let A, be an algebra on X. We say o : Ay — [0, 0] is a pre-measure if
(@) po(0) = 0.
(b) (finite additivity)

N N
Lo (U Aﬂ.) = Z /Lo(AZ) if Aq,..., Ay € Ag are disjoint.
1 1

(c) (countable additivity within the algebra) If A € A, and

A= U Ay, A, € Ap and are disjoint, then po(A) = Z to(Ar)
1 1

NOTATION: Folland uses M for o-algebra and A for algebra. (Jinho) uses A for o-algebra
and Ay for alegbra.

Example 1.24. A, finite disjoint unions of (a, b].

1o <Lj(ai7 bz]> = Z(bl —a;) or b —a? e — e% | etc.

1 1

Lemma125. ¢ (a)+(c) = (b).
® L is monotone.
Theorem 1.26 (Hahn-Kolmogorov Theorem). Let 119 be a pre-measure on algebra Ay on X.
Let p* be the outer measure induced by (Ao, f10) in Let A and p be the Carathéodory
o-algebra and measure for u* = (A, u) extends (Ao, o) i.e. A D Ao, 1] 4, = po-
Proof. (a) (A D Ap)Let A € Ay.
Question: A € A? i.e. is A C-measurable? i.e. u*(E) = p*(ENA)+u*(ENA°),VE C
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X.
Fix EF C X.
* (countable) subadditivity of u* = p*(E) < p*(ENA)+ p*(E N A°).
o If u*(F) = oo then p*(FE) =00 > p*(ENA) + p*(ENA°).
o If u*(F) < 0.
Fix £ > 0. By the definition of *, 3By, Bs, ... € Ay s.t. J;° B, D E and

E)+e>> po(Bn) = (1o(Bn N A) + o (B, N A%))).
1 1
Note that
UB.nA)>ENA, | JB.NA)DENA = >
1 1

(b) Let A € Ay. We want to show that p(A) = pe(A).
By definition, u(A) = p*(A).
A i=1, .
e [etB; = E.AoandUI B; D A.
0 i=2
Hence p*(A) < 377 po(Bi) = po(A).
e Let B; € Ao, ;" Bi D A an arbitrary collection of sets.

LetC, = ANBy,C; = AﬂBZ\(U ' B; ) .Then A = |J{° is a disjoint countable
union. By countable additivitiy we have

oo

po(A) = 1o(Ci) = po(A) <D po(B

1
Hence we have p9(A4) = p*(A) = p(A). We have completed our proof. [ |
Definition 1.27. Such (A, i) is called the Hahn-Kolmogorov extension of (Ao, io), and is

also called the Carathéodory c-algebra for (Ao, o).

Theorem 1.28 (uniqueness of HK extension). Let Ag be an algebra on X, 1o be a pre-measure
on Ay, (A, u) be the Hahn-Kolmogorov extension of (A, po). And let (A’, 1) be another exten-

sion of (Ao, po)-

If po is o-finite, then p | ana= ' |anar-

10
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NOTE o-finite means

VX, X = X0, X0 € Ao, po(X) < 0.

Corollary 1.29. Let 1 be a pre-measure on algebra Ay on X. Suppose i is o-finite, then 3!
measure p on (Ag) that extends Aq. Furthermore,

(a) the completion of (X, (Ao), p) is the HK extension of (Ao, po)-
(b)
mf{ZMO ) | Bi C Ao, Vi €N, UB :)A}NAE(A()).

Proof of [1.28] Let A € AN .A’". We need to show u(A) = p*(A) = 1/ (A).
o u(A) > 1 (A) (HW)
o u(A) < /(A)
(i) Assume ;(A) < co. Fixe > 0. Then 3B; € Ay, Vi € N,|JJ" B; D A s.t.

p(A) +e=p"(A)+e> > po(Bi) Zu >N(UB>

Hence u(B\ A) = u(B) — p(A4) <e.
On the other hand,

N
p(B) = lim p (UB> = Jim (Llsz) = i/(B)

by continuity of measure from below.

p(A) < u(B) = p'(B) = p'(A) + 1/ (B\ A) < p/(4) =e.

(ii) Assume p(A) = oco.
Since o is o-finite, X = J7° X,, X € Ao, po(Xo) < oo. Replacing X,, by
X1U...UX,, wemayassume X; C Xp C ....

VneN,u(ANnX,) <oco = pu(ANX,) <u'(ANX,).

11
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Hence
p(A) = lim p(ANX,) < lim u/'(ANX,) =y (A4). [ |
N—oo N—oo
1.5 Borel Measures on R

Definition 1.30. F': R — Ris an increasing function if F'(z) < F(y) forz <y. F: R - R
is increasing and right-continuous = F' is distribution function.

Example 1.31.
1, >0
o F(x)=
0, =z<0.
Iz Z n > F7 . . . .
* Q= {ri,r,...},Fy(z) = . F(x) = Z LSLI) is a distribution func-
0 z<ry n=1 2
tion.
NOTE If F' is increasing, F(co) := lim,_, F(z), F(—00) = lim, , o F(z) exists in
[—OO, OO]

In probability theory, cumulative distribution function (CDF) is a distribution function
with F'(00) = 1 and F(—o00) = 0.

There are distributions [Fol99, Ch.9], but these are different from distribution functions.

Definition 1.32. Suppose X a topological space. p on (X, B(X)) is called locally finite is
p(K) < oo for any compact set K C X.

Lemma 1.33. Let ;1 be a locally finite Borel measure on R —

p((0,2]), x>0

Fu(xz) =<0, x = 0 is a distribution function.
—u((z,0]), =<0
Proof. DIY. Use continuity of measure. |

Definition 1.34. h-intervals are (, (a, b}, (a, 00), (—00, b], (00, 00).

Lemma 1.35. Let H be the collections of finite disjoint unions of h-intervals. Then H is an
algebra on R.

Proof. DIY. |

12



Borel Measures on R

Yiwei Fu

Proposition 1.36 (Distribution function defines a pre-measure). Let ' : R — R bea

distribution function. For an h-interval I, define

0, I=0
Fb) - Fla),  I=(a}
£I) =Lp(I) = { F(0) — F(a), I = (a,00)
F(b) = F(o0), I = (—00,b]
F(00) = F(—00), I=(-00,00).
Define 1o = po,r : H — [0, 00] by

po(A) == ZE(Ik) ifA= U Iy, finite disjoint union of h-intervals.

k=1 k=1

Then p is a pre-measure.

Proof.  (a) po is well-defined.
(b) o is finite additive.

(¢c) po is countable additive within H.

Suppose A € H and A = |J{* A4; a disjoint union, A; € H. It is enough to consider

the case A = I, Ay, = I, all h-intervals. (Why?)

Focus on the case I = (a,b]: (HW: check other cases)
We have

(a,b] = U(an, by], a disjoint union.
1

Check

(a,b] > Uy (an,bn] = F(b) — F(a) > .Y F(b,) — F(an),VN € N. (Arranging

them in decreasing order) Take N — oo we have

F(b) - F(a) > Z(F(bn) - F(an))-

Since F' is right-continuous, 3a’ > a s.t. F(a') — F(a) < €. Foreachn € N, 3b,, >

13
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by s.t. F(V,) — F(by) < <

P

oo

— [a',b] [ J(an, b,

= 3N eNs.t [a,b] C | J(an, b))
1

N
= F(b) - F(a) <Y F(b),) — F(an)
— F(b)—F(a) < F(b)— F(d)+e <Y (F(b,) - F(an)) +¢

< i (F(bn) — F(an) + i) te ]

Once we have this pre-measure, HK theorem allows us to extended it to a measure.
Theorem 1.37 (Locally finite Borel measures on R).

(1) F : R — R is a distribution function == 3! locally finite Borel measure pr on R
satisfying pr((a,b]) = F(b) — F(a),Ya,b,a < b.
(b) Suppose F,G : R — R are distribution functions. Then, ur = pug on B(R) if and only if

F — G is a constant function.

Proof. HW |

1.6 Lebesgue-Stieltjes Measures on R
F distribution function = pur on Carathéodory o-algebra A, .
Actually (A, pr) = (B(R), ur) (HW3).

Definition 1.38.  ® pron A, is called the Lebesgue-Stieltjes measure corresponding
to F.

® Special case: F(r) = x = Lebesgue measure (B, m).
Example 1.39.

(@) pr((a,b]) = F(b) — F(a). F is right-continuous and increasing = F(x_) <

F(z)=F(xq).
(HW) pr({a}) = F(a) = F(a-), pr([a,b]) = F(b) = F(a-), pr((a, b)) = F(b-) -
F(a).

14
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(b)

1 <0
F(z) = { = pr({0}) =1L urR) =1, pr(R\ {0}) = 0.
0 <0

wr is the Dirac measure at 0.

(©

Q= {ri,rq,...}, F(z) = Z FnE;U)7 Folz) = {1 <,

2 0 z<r,

n=1

= pr({v}) >0,Y0 € Q, pp(R\Q) =0.

(d) If Fis continuous at a, ur({a}) = 0.
(€ F(z) =z = m((a,0])) = m((a,b)) = m([a,b]) = b —a.
() F(z)=¢*, = nr((a,b]) = pr((a,b)) = e’ —e
(a), (b) are examples of discrete measure.
Example 1.40 (Middle thirds Cantor set C = |J,; K,,).
C is uncountable set with m(C) = 0.
reC = x:ig—z,ane{Oﬂ}.

n=1

We are interested in the Cantor function F'.

Example 1.41. Cantor function F is continuous and increasing. This defines the Cantor
measure pp(R\C) = 0,upr(C) = 1,ur({a}) = 0. Compare with Lebesgue measure
m(R\C) =00 > 0,u(C) =0,m({a}) =0.

1.7 Regularity Properties of Lebesgue-Stieltjes Measures

Lemma 1.42. p is Lebesgue-Stieltjes measure on R =
1(A) = inf {ZM((ambi]) ‘ U(aiabi] D A}

1 1

1 1

15
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Proof. Using the continuity of measure.

Theorem 1.43. 1 is a Lebesgue-Stieltjes measure. Then VA € A,
(a) (outer reqularity)
wu(A) = inf{u(O) | open O D A}.

(b) (inner regularity)
w(A) = sup{p(K) | compact K C A}.

Proof.  (a) Followed from[1.42]
(b) Let s = sup{...}. Monotonicity = u(A) > s.
e (Abounded) A € B(R) C A,, Abounded = u(4) < oc.
Fixe > 0. By 1,3open O D A\ A, u(0) — u(A\ A) = p(O\ (A\ A)) <e.

Let K = A\ O = A\ O. Show that u(K) > p(A) — .
N~ =
KCA compact

¢ (A unbounded but y(A) < co) We have

A=|JAn, Ay=AN[-nn], A C A C ...
1

Hence
lim p(A,) = p(4) < .

n—oo

* (u(A) =)
lim p(An) = p(A) = oc.

n— oo
Fix L > 0. 3N s.t. u(An) > L.
Definition 1.44. Suppose X a topological space.
A Gy-setis G = ﬁ 0;, O; open. An F,-set is F' = G F;, F; closed.
1 1
Theorem 1.45. Suppose j a LS measure. Then the following statements are equivalent:

(@) Ac A,
(b) A=G\ M, GisaG,-set,and M is p-null.
(c) A=FUN, Fisan Fy-set,and N is p-null.

Proof. (b) = (a)and (c) = (a) are clear.

16
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* (@) = (0

(i) Assume (A) < oco. By inner regularity,

1
Vn € N,3 compact K,, C A s.t. u(K,) + — > p(A).
n

Let F =J° K,,. Then N = A\ F is p-null.

(ii) Assume p(A) = co. We construct

A= Ar, A= AN (k k+1].
kEZ

By (i), Vk € Z, Ay, = F;, U Nj,. Hence

(o) (o)

—_— Y—
Fo p-null

* (@ = (b)
A°=FUN,A=F°UN®=F°\N. |

Proposition 1.46. Suppose 1 a LS measure, A € A, n(A) < oo. Then
N=N(g)

Ve > 0,31 = U I;, disjoint open intervals s.t. f(AAT) < e.
1

Proof. DIY - use outer regularity. |

Properties of Lebesgue measure

Theorem 1.47.
Ael = A+seL,rAe L)Vr,seR.

In addition, m(A + 1) = m(A) and m(rA) = rm(A).
Proof. DIY. [ ]

Example 1.48.

(@) Q = {r1}32,, whichis dense in R. Let ¢ > 0 and

s

3 3
0= (Ti—g,ri—F?).

=1

17
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O is open and dense in R. We have

m(0) < Z% 922,00 = 0\ 0,m(0) = 0.
i=1

(b) 3 uncountable set A with m(A) = 0.

(c) 3A with m(A) > 0, but A contains no non-empty open interval.
(d) A ¢ L that is Vitali set.

(e) 3A € £\ B(R). We will deal with that later.

18



Chapter 2

Integration

2.1 Measurable Functions

Definition 2.1. Suppose (X, .A), (Y, B) two measurable spaces. f : X — Y is (A, B)-
measurable if
VB e B, f~1(B) € A.

Lemma 2.2. Suppose B = (£). Then
f:X = Yis (A, B)-measurable <= VE €&, [ Y(E) € A.

Proof. = clear

< LetD={ECY|f1(E) € A}. Wehave £ C D by assumption. In addition D is a
o-algebra = (£) C D. [ ]

Definition 2.3. Suppose (X, .4) a measurable space.

f:X—>R fis (A, B(R))-measurable
f:X =R =[-00,00] p is A-measurableif ¢ fis (A, B(R))-measurable
f: X—=>C Re f,Im f : X — R are A-measurable.

Here B(R) ={ECR|ENRec BR)}.
Lemma 2.4. Suppose f : X — R. Then the followings are equivalent:

(a) fis A-measurable

19
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(b) Ya € R, f~1((a,00)) € A.
(c) Va € R, f~([a,0)) € A.
(d) Ya €R, f~1((~00,a)) € A
(e) Ya € R, f~1((—o0,a]) € A

For f : X — R, change the interval to include —oo and oco.

Proof. By n

Example 2.5. A =P(X) = every function is .4 measurable.
A={0,X} = only A functions are constant functions.
PROPERTIES Suppose f, g : X — R, A-measurable functions.

(@ ¢ : R —» R, B(R) measurable (i.e. Borel measurable) — ¢o f: X — Ris
A-measurable.

(b) —f£,3f, f2,|f| are A-measurable, % is A-measurable if f(z) = 0,Vz € X.

(¢) f+ gis . A-measurable

(f +9) " ((a,00) = [ (f 7 ((r,00)) N g™ ((a = 1,00))) -

reQ

(d) fgis . A-measurable

((f(@) +g(2))* = f(2)* = g(2)?) .

DN | =

flx)g(x) =

) (f A g)(@) = min{f(z), g(x)}, (f V g)(x) = max{f(x),g(x)} are A-measurable.

(f) fn: X — R are asequence of A-measurable functions =

sup fn,inf f,,limsup f,, liminf f, are A-measurable.
n—00 n—0o0

(g) If f(x) = limp o0 fn(z) converges for every x € X, then f is measurable.

Example 2.6. Suppose f : R — R is continuous. Then f is Borel measurable — f is
Lebesgue measurable. (Preimage of an open set of a continuous function is open.)

Definition 2.7. For f : X — R, let f* = fVv 0, f~ = (—f) V0.

NOTE supp f Nsupp f~ = 0. f(x) = fT(x) — f~(x). fis A-measurable < f*, f~
measurable.

20
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Definition 2.8. For E C X, characteristic (indicator) funtion of £

1 z€eF
xe(r) =1p(r) =
0 xe€ E°.

1z is A-measurable «<— F c A.

Definition 2.9. Suppose (X, .A) a measurable space. A simple function ¢ : X — C that is

A-measurable and takes only finitely many values.

N
HX)={c1,....enbci £ 200, B =¢ (e) €A = =) cilpg,.

i=1

Theorem 2.10. Suppose (X, A) a measurable space and f : X — [0, 00]. Then the followings
are equivalent:

(a) fis A-measurable.

(b) Isimple functions 0 < ¢1(x) < ¢a(x) < ... < f(x) such that

lim ¢,(z) = f(z), Vx € X.

n—oQ
(f is the pointwise upward limit of simple functions.)
Proof. ¢ (b) = (a)iseasy: f(z) = sup ¢, ().
neN

* (a) = (b): suppose f is A-measurable.

Fixn € N. Let F,, = f~1([2", 00]) € A. For

0<k<2?—1, En}sz—l([k k+1])eA.

on’ on
92n _q
Let qbn(x) = Z 1En,k + 2ann.
k=0
This shows that

- 0< d1(z) < o) < ... < f(x), Vo € X.

- Ve e X\ F,,0< f(z)— ¢n(z) < 2%

Since F1 D F> D ...and an = f*({oc}), we have
1
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- x € fﬁl([oaoo)) =X\ (ﬂ Fn) = nlggo Pn(z) = f(2).
1
-z€ fH{oo}) = ﬂXn = ¢p(r) > 2" = nh_)rréo(ﬁn(x) =00 = f(x). [ ]
1

Corollary 2.11. If f is bounded on a set A C R (i.e. 3L > 0 s.t. |f(z)| < L, Vo € A) then
¢n — f uniformly on A.

Proof. DIY. [ ]

Corollary 2.12. f : X — C, measurable function <= 3 simple functions ¢,, : X —
Cs.t.0<|p1| < |p2| < ... < |f| and ¢, converges to f pointwise. (Again, if f is bounded the
convergence can be uniform.)

2.2 Integration of Nonnegative Functions

Definition 2.13. Suppose (X, A, (1) a measure space and ¢ = Zi 1Glg, : X = [0,00] a
simple function. Let

N

/¢:/¢du:/x¢du:20iu(Ei).

1

Proposition 2.14. Suppose ¢, > 0 are simple functions. Then,

. is well-defined.

/c¢:c/¢,c€ [0, 00).
Jeru=[o+ [u

6@ 2 U)o = [0 [v.

v(A) = / ¢ dp is a measure on (X, A).
A
Proof. DIY. |

Definition 2.15. Suppose (X, A, i), f : X — [0, o0] is A-measurable.

/f:/fdu:sup{/qﬂ()é¢§f,¢Simple}.

22
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Proposition 2.16.

e If f is a simple function then two definitions are the same.

O/cf:c/f.
’f2920:>/f2/9~

. /f+g:/f+/g. (A bit harder to check)

Theorem 2.17 (Monotone convergence theorem). Suppose (X, A, ) a measure space and

e f:X —[0,00] is A-measurable, ¥n € N.

* 0< fi(x) <
o lim fu(z) = f(z).
Then
r=Jm [ f.

Proof. Note that lim,,_,, f,(z) converges Vz € X and lim,,_,, f,(z) converges.

ch<f = [n<[r— m [n<]s

¢ Fix simple function 0 < ¢ < f. Enough to show that li_>m / fn > / 0.

Now fix a € (0, 1). Enough to prove that li_>m /fn > a/q’).

Let A, = {x | fu(z) > ad(x)}.
- A, €A

- Al CAyC...

- [J An = X (check!)

n=1
/fn > /fnlAn > /agblAn =av(4,)

where v(A) = [, ¢ is a measure.

So we have

= lim [ f, > lim v(A,) =av(z) = a/qb. [ ]

n—oo n—oo

Corollary 2.18. f,g > 0 measurable = /f +g9= /f + /g.
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Proof. 3 simple functions 0 < ¢; < ¢ < ...,¢, — f pointwise and 0 < 91 < 3y <
.., ¥p — g pointwise.

By MCT, we have

[+ =tin [@u+w)=tm [on+ [v=[1+ [ .

Corollary 2.19 (Tonelli’s theorem for series and integrals). Given s, > 0,Vn € N measur-
able functions. Then

[ 0= [
n=1 n=1
Proof. Let fx =301 50,0 < f1 < fo <

A}lm In( Z
By MCT, we have

N o)
lim E Sp = E S
N*} o 1 n 1 n

Theorem 2.20 (Fatou’s lemma). Suppose f, > 0 measurable. Then

/ liminf f, < hm inf / fn-
n—oo

Recall that

liminf f, := hm mf fn =sup inf f,,
n— oo >k keNnn>k

and

lim a, exists <= limsupa, = hm 1nf Q.
n—oo n—00

Proof. Let g, = inf,,>; f, = sy measurableand 0 < g; < go < .... By MCT, we have

liminf = li =1 =1l f
fmat = [ i o= i [~ i [ i 5,
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. <
;};f]; fo < fm,Vm >k
S 1 < v >

. <
= /ngn _égfk/fm

Example 2.21. Suppose (R, £, m)
(a) (escape to horizontal infinity) f, = 1( n1)-
We see that f,, — 0 = f pointwise and [ f, = 1,Vn, [ f = 0.
(b) (escape to width infinity) f,, = 119 ).
(c) (escape to vertical infinity) f, = nl(g1/n)-

Lemma 2.22 (Markov’s inequality). f > 0 is measurable —

Ve e (0,00, nl{o| f@) e < ¢ [ f

Proof. Let E = {z | f(z) > c}. Then

f@) 2 o) = [ 12 [10=cu(p), .

Proposition 2.23. Suppose f > 0 measurable. Then [ f =0 <= f = 0 almost everywhere
(a.e.)
[ du=na) =0, A= (] f(a) > 0} = 7 ((0.0¢)

Proof. (a) Assume f = ¢ a simple function. We may assume

N
o= Z ¢ilg,, ¢ € (0,00), E;’s are disjoint.
i=1

/¢ = iciu(ﬂ) =0

= p(Er) =...=p(EN)=0
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(b) General f > 0.
(1) Assume p(A) =0 (@.e. f=0ae.)
Let0 < ¢ < f, ¢ is simple.

= ¢(x) =0, Yz € A°

— ¢=0ae.

=>/¢>:0

Then [ f = 0 by the definition of [ f.
(2) Assumeinf f = 0. Let A, = f~1 ([, 00])

n?

= A1 CAyC...

oo

Dm_¢1<UE¢4>—f%mm»—A
1 1

1
it = ({el 1@ = 1) <u [ 1 =0
= u(A) = le w(A,) =0
by the continuity of measure from below. |
Corollary 2.24. f,g > 0 are measurable, f = gae. = [ f= [g.

Proof. Let A = {z | f(x) > g(z)}. A is measurable (why?). By assumption p(A4) = 0.

Hence f14 =0a.e.
[ = [ s0as 1)

:/f1A+/f1Ac
:/flAc
:/glAC:/glA“v‘/glAC:/g- n

Corollary 2.25. f,, > 0 measurable. Then

(a)
0<fi<fo<...<fae

limy, oo frn = f a.e. } — "h—gio Jn= /f
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(b)
lim f,=fae = [ f< liminf/fn.
n— 00 n—00

2.3 Integration of Complex Functions

I was afraid that you are bored.
— Jinho Baik on homework

Definition 2.26. (X, A, 1) measure space.

e f: X - Ror f: X — C measurable functions is called integrable if [ |f| < oo.

1= [ fo= - fr(f [ )

* Suppose f : X — R. Define

/f: N I
o [rteoe [ =

Lemma 2.27. Suppose f,g : * — R — C integrable. Assume f(z) + g(x) is well-defined
Vo e X. (ie. 0o+ (—o0), —00 + oo do not occur)

(a) f+g, cf,ce Careintegrable.
® [f+9=[1+ [0
(c) ‘/f‘ < /|f| (This is essentially triangle inequality.)
Proof. Check [Fol99, p.53]. [ |

Lemma 2.28. (X, A, 1) measure space and f integrable function on X.
(a) fisfiniteae. (i.e. {x € X : |f(z)| = oo} is a null set)
(b) Theset {x € X : f(x) # 0} is o-finite.

Proof. HW5Q38. |

Proposition 2.29. Suppose (X, A, 1) a measure space.
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(a) If h is integrable on X, then
/h:O,VEeA = /|h|:0 < h=0ae.
E
(b) If f, g are integrable on X then

/fz/g,VEEA(z) f=gae.
E E

Proof. (a) [|h| =0 <= h=0isshowninP.23

o= |[o< = f=n

On the other hand, assume [, h =0,YE € A. h=u+iv =u" —u~ +i(vT —v7).
Let B = {z | u*(x) > 0}.

OzRe/h:/u:/Lﬁ:/?ﬁJr/ u+:/u+ — uT =0ae.
B B B B e

Similarly, we get u™,v", v~ =0 a.e..

(b) follows from (a). [ |

Theorem 2.30 (Dominated convergence theorem). Suppose (X, A, (1) a measure space and
(a) f, integrable on X, Vn € N.
(b) nlg]g() fu(x) = f(z) a.e. (pointwise)
(c) 3g: X — [0,00] s.t.
* g is integrable.
o |fn(z)] < g(x)ae,Vn eN.
Then

lm [ f, = / /.
n—o0

Proof. Let F be the countable union of null sets on which (a)-(c) may fail. Modifying the
def of f,,, f, g on F we may assume (a)-(c) hold everywhere. (b)+(c) = f is integrable.
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We consider R-valued case only. (C-valued case follows)

g+ fn=>0,9—fn>0

Faton, g+f§hminf/g+fn, /gffgliminf/g—fn
n—inf n—inf
= /g+/f§/g+liminf/fm /g—/fﬁ/g—limsup/fn
n—oo
fg< /f<hmmf/fn7 /f< flimsup/fn.
n—oo

— fgliminf/fnglimsup/fng/f
n— oo

n—oo

So we should have

/f = hm 1nf fn = hmsup/fn. |

n—oo

Next we investigate the question:

JErs e

Tonelli: yes if f,, > 0. Fubini:

Corollary 2.31 (Fubini’s theorem for series and integrals).

frn integrable

i/mkw :é/iﬁ_i/“

N

Procf. G(a Zm )2 [Fy(@)], Fy(@) = fule). .

1

24 L'space
Definition 2.32. Suppose V is a vector space over field R or C. A seminorm on V is
-1l : V= [0, 00) s.t.
o |lev|| = |¢]||v]l, Vv € V, Ve scalar
o |lv+w| < |v| + ||w|, triangle inequality
A norm is a seminorm such that ||v| <= v =0.

Lemma 2.33. A normed vector space is a metric space with metric p(v, w) = |jv — w||.

29



L* space Yiwei Fu

Proof. (DIY)
* p(v,w)=0 <= [r—w||=0 << v—w=0 < v=w.
* p(v,w) = [lv—wl = |[-Lw =)l = [ = 1w —v| = p(w,v).

* pv,w) +p(w,2) = flo—wl| + Jw =z = lv—wt+w=2]| = [lv - 2| = p(v,2).

Example 2.34. R? with ||z, =

d 1/p
(Z Ircz'l”) pe[l,00)

is a normed vector space.

max |x;| P =00
1<i<d
Unit ball {z : ||z, < 1}.
All || - ||, norm induce the same topology i.e. if U is open in p-norm then it is open in

p’-norm. This implies that a sequence converging under p-norm also converges under

p'-norm.
RECALL f is integrable = [|f| <oo. f=gae. = [f=[g.

Definition 2.35. Suppose (X, A, 1) a measure space.
fe LY X, A p) = LYX,u) = L*(X) = L' (n) means f is an integrable function on X.

Lemma 2.36. L'(X, A, ) is a vector space with seminorm || f||, = / [f]-
Definition 2.37. Define f ~ gif f = ga.e. LY (X, A, )/~ = LY (X, A, p). “ =" isjusta
notation for convenience!

With new definition we have L' (X, A, 1) is a normed vector space. p(f, g) = / lf — gl

Something interesting to discuss is what are the dense subsets of L.
Theorem 2.38.
(a) { integrable simple functions } is dense in L*(X, A, u) (with respect to L' metric)

(b) (X, A, n) =R, A, p), puis Lebesgue-Stieltjes measure = { integrable step functions
}is densein L' (X, A, 1)

(c) C.(R) is dense in L*(R, L, m).
Definition 2.39.
* A step function on R is ¢ + ZJIV ¢ily,, where I; is an interval.

¢ C.(R) is the collection of continuous functions with compact support supp(f) =

{zeR|f(z)# 0}

Proof. (a) 3 simple functions 0 < |¢1| < |po| <

s S |f|/ ¢n — f pOintwise —
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Jim [0~ £l =0by DCT. (0 - 1] < lén] + 111 < 21f)

(b) 1g approx by Zf[ ¢ilr,? Regularity theorem for Lebesgue-Stieltjes measure —-
Ve > 0,3 =Y I; s.t. w(EAI) < €.

w\m
Y

(c) Suppose 1(q), g € C.(R /|1ab —gldm <1

2.5 Riemann Integrability

Suppose P = {a =1ty < t; < ... <ty = b} a partition of [a, b]. Lower Riemann sum of f
using P

k
Z( lnft f) t —tifl)

and upper Riemann sum

Up = Z ({:Hp f) (ti —ti—1)

Lower Riemann integral of f = I = supp Lp. Upper Riemann integral of f = T =

infp Up.

Definition 2.40. A bounded function f : [a,b] — R is called Riemann (Darboux) inte-
grableif I =1. (Ifso, I =1= f: f(z)dz.)

NOTE

e IfPC P ,thenLp < Lp/,Up <Up.

¢ Recall that continuous functions on [a, b] are Riemann integrable on [a, b].
Theorem 2.41. Let f : [a,b] — R be a bounded function.

(a) If f is Riemann integrable, then f is Lebesgue measurable. (thus Lebesgue integrable) and

b
/ f(z) dax = fdm.
a [a,b]

(b) fis Riemann integrable <= f is continuous Lebesgue a.e.

Proof. Jpartitions Py C P, C Py C ... s.t. Lp, S I,Up, \/I.

Define simple (step) functions
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ti—1,tq]

k
w’l’b = Z <[ Sup > 1(tj_17ti]
i=1

Define ¢ = sup,, ¢n, ¥ = inf,, ¥,,. Then ¢, ¢ are Lebesgue measurable functions.
NOTE
o IM > 0 s.t. |dnl, |n] < M1[a,b],Yn € N.
* [¢odm=Lp,, [, dm =Up,.
ByDCT,l:nILH;o/¢n dm = /qﬁdmj: /¢dm.
Thus, f is Riemann integrable < [¢ = [¢ < [(¢—1) =0 <= ¢ = 1) Lebesgue

a.e.

Recall that ¢ < f <1, Vx € (a,b]. So f = ¢ a.e. Since (R, L, u) is complete, f is Lebesgue
measurable (see HW). The second statement hence follows. |

2.6 Modes of Convergence

Suppose f,,f: X =+ C,S C X.
* fn — f pointwise on S: Vz € S,Ve > 0,3N € Ns.t.Vn > N, |f,(z) — f(z)| <e.
* fn — funiformlyon S: Ve > 0,3N € Ns.t. Vo € X,Vn > N, |f,(z) — f(z)| <e.

We can change Ve > 0 to Vk € N and bound the distance by 1.
f@)l <3}

oo

)_

oo o

ﬂ U m Bn,k-
1 N=1n=N

Lemma 2.42. Let B, ;, = {x € X | |fn(z
(a) fn — fpointwiseon S <= S C
k

(b) fn — funiformlyon S <= 3N, N3,... € Nst. S C ﬂ ﬂ B, k-
k=1 n:Nk

Definition 2.43. Suppose (X, A, ;1) a measure space.
(@) fn — faemeansdnullset £ s.t. f,, — f pointwise on E°.
(®) fn — fin L' means Jim. lfn — fll = 0.
Example 2.44. (R, L, p). f = 0.
@) fo=Lnnt1)s fo = 10m), fo = nl(p,1)- All of f,, — f pointwise but 4 fin L!.
(b) Typewriter functions: f, — fin L'. f, /4 f a.e.

Proposition 2.45 (Fast L' convergence = a.e. convergence). Suppose (z, A, j1) measure
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space. fn, f measurable function on X.

S U= fll; <00 = fu— f ace,
1

Proof. RECALL Markov’s inequality.

Let £ = U ﬂ U By . =A{x | fu(x) / f(x)}. By Markov we have

k=1 N=1n=N
Wk, YN, 1(BS ) <k [ 1 fn = ]

:>ww<ﬂ B;"k) <> kllfa—fll, »0asn—0

n=N n=N
2Vk7ﬂ<m ﬂBri,k>:A}i_r>n M(ﬂ BZ,k>:O
N=1n=N © \n=N
s (B) =0, n

Corollary 2.46. f,, — fin L' = Jsubsequence f,, — f a.c.
Proof. ¥j € N,3n; € Ns.t. |[fn, — f||; < 55 Then 3202, || fu, — f|, < o0 |

Definition 2.47. f,, f measurable functions on (X, A, ). f, — [ in measure means
Ve >0, lim pu({z € X [|fu(x) = f(z)] 2 €}) = 0.
n—oo

Example 2.48. e f,= nl(o 1) f=0.

Ve s 0. {z | |fule) - f(@)] > e} = (o, 1) .

n

(Recall that f,, A 0in L'.)
* Typewriter function. (Recall that f,, /~ 0 a.e.)

We can easily check that f,, — fin L' = f, — f in measure. But the converse is not
true.

fn — finmeasure = 3f,, — f a.e. (Check [Fol99])
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We have then the following diagram:

fo— ffast L' == f,, — fin L' == f, — f in measure

~. I

fn— fae. 3fn, — fae.

Definition 2.49. f,,, f measurable functions on (X, A, u).
(@) fn — f uniformly a.e means 3 null set F' s.t. f, — f uniformly on F°.

(b) frn — f almost uniformly means Ve > 0,3F € A, s.t. u(F) < ¢, f, = f uniformly
on F°.

Recall 2.42]

Theorem 2.50 (Egoroff). f,,, f measurable on (X, A, 1). Suppose u(X) < oo. Then f, — f
ae <= fn, — f almost uniformly.

Proof. " <=": DIY

"= ": Fixe > 0.

fn— fae = M(G ﬁ [j thk>:0 = sz,u<ﬁ G Bfl’k>:O.

k=1 N=1n=N N=1n=N

By the continuity of measure from above and since ;(X) < oo,

. Sl ge ) "l ae €
vk, lim pi < U Bmk) =0 = Vk,3IN, eN,u< U Bn7k> < o5

n=N n=~Ny

Let F = U U By, = u(F) <e, fn — F uniformly on F'“. [ |
k=1n=Ny
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Chapter 3

Product Measures

(p-22 - 36, section 1.2 and section 2.5, 2.6 of [Fol99]))
The ultimate goal is to prove Fubini’s theorem. This is also related to probability in in

the sense that a series of events is in product measure.

3.1 Product o-algebra

* Product space X =[], .; Xa, T = (Ta)acr-
¢ Coordinate map 7, : X — X,.

Definition 3.1. (X, A,) measurable space. Vo € I, the product o-algebra on X = H X
ael
is
) Aa = <U ! (Aa)>
ael acl

where
T (Aa) = {7, (E)|E € Aa}
NOTATION
d

d
I={1,....d} = X=[[Xiz=(21,...,2a), QA = A1 ®...® As.
=1

i=1
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Lemma 3.2. If I is countable, then

Q) Ao = <{ﬁE | E; eAz}>

acl i=1

Lemma 3.3. Suppose A, = (€,) ,Va € 1.
(@) 73 (Aa) = (731 (Ex)).

(b) XR) As = <U%1(5a)>.
(c) If I is countable, then (X) Ao = <{H B | E € &}>.

acl i=1
Proof.

(@ e f:Y — Z Bao-algebraon Z = f~}(B) is a o-algebra since set
—1

union commutes with preimage. Hence 7' (A, ) is a o-algebra on X. Since
T (Ea) C gt (As) = (mt(Ea)) C iyt (Aa).
o Let M ={BC X, |n, (B) € (r;*(€a))}. We show that A, C M.
- M is a o-algebra. (easy)
- &o C M. (by definition)
So Ay = (€4) C M. Hence,if E € Ay, EC M = w1 (E) € (n ' (Ea)) Le.
Ao C{(m 1 (&)
(b, ¢) DIY. [ |

d

Theorem 3.4. Suppose X1, ..., Xqmetric spaces. Let X = H X; with product metric p(x,y) =

1
d

Z pi(z,y). Then
i=1

d
(a) R B(X;) C B(X).

d
(b) If, in addition, each X; has a countable dense subset, then ® B(X;) = B(X).

i=1

Proof. DIY. |

As a consequence, we have B(RY) = B(R) ® ... ® B(R).
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Suppose f = u+iv : X — C. fis measurable < u~'(E) € A,v"'(E) € A VE €
BR) < f~Y(F) e AVF € B(C) = B(R?) = B(R) @ B(R).

p-65. Let’s focus on finite product.

You like Minecraft right? It’s all rectangles.

Definition 3.5. Suppose X, Y sets.
(@ ForaEC X xY,E,={yeY|(z,y) € E}and EY = {z € X | (z,y) € E}.
(b) For f: X xY — C,define f, : Y — C, f¥: X — Cby fo(y) = f(z,y) = f¥(x).
(©)
Example 3.6. (1g), = 1g,. (1g)¥ = 1gv.
Proposition 3.7. (X, A), (Y, B) measurable spaces.
(@) FE€eA®B — E,€B,EVeAVre X,yeY.
(b)) f: X xY — Cis AQ B-measurable —> f, is B-measurable, fY is A-measurable,
Vee X,yeY.
Proof. (a) Let F ={E C X xY | (a) holds}.
e Fisa o-algebra (easy)
* Rop:={AxB|Ac A BeB}C F(easy) = A@B=(Rg) CF
(b) DIY. [ |

MIDTERM is up till here.

3.2 Product Measures

Definition 3.8. Suppose (X, A), (Y,B). A (measurable) rectangleis R = A x B,A €
A beB.

LetRo:={R=AxB|Ae€ A Be B}

N
R = {U R;| N € N,Ry,..., Ry disjoint rectangles}.
1

Lemma 3.9. R is an algebra. (Ry) = (R) = A® B.

Theorem 3.10. Suppose (X, A, 1), (Y, B, v) measure spaces.
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(a) I measure yu x von A® B satisfying (u x v)(A® B) = u(A)v(B),YA € A, B € B.

(b) If u,v are o-finite, then 11 X v is unique.

Proof. (a) Define 7 : R — [0, 00] by m(A X B) = u(A)v(B) and extend linearly.

CLAIM 7 is a pre-measure on K.

Enough to check (A x B) = Z m(A, X By)if AxB = U(A" x B,,) disjoint union.
1

Since A,, x B, are disjoint,
Laxn(z,y) ZlA xB, (%,y), 1a(z ZIA z)1lp,(y

By Tonelli’s theorem for series and integrals, we have

W(A)1p(y) = / 14(2)15(y) du(z)
-y / La, (@)1, () du(@) = 3 (A 15, ().
1 x 1

We then integrate with respect to y to complete the claim.
By HK theorem, 3p ® v on (R) = A ® B extending 7 on R.

(b) p,v o-finite = wis o-finite on R = HK uniqueness them applies. |

So we have a measure

(nxv)(E) = inf{Zu(A )v(
1

Bi) ECUAL x B;, A; EA,BiGB}.
1

Then one questions naturally arises: suppose f : X x Y — C,

fyranen [ ([r0)

3.3 Monotone Class Lemma

Definition 3.11. Suppose X is a set, C C P(X). C is a monotone class on X if

e closed under countable increasing unions
(1e E,eC,EiCEC... = UTOOZ GC)
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¢ closed under countable decreasing intersections
(e E,€C,E1DE;D... = (N C;e€C)

Example 3.12. * g-algebra is a monotone class.
. ﬂ Co is a monotone class = if £ € P(X), there is unique smallest monotone
c?ass containing £.
The importance of this definition shows up in the following theorem:
Theorem 3.13. Suppose Ay is an algebra on X. Then (Ay) is the monotone class generated by
Ap.
Proof. Let A = (Ap), C = monotone class generated by A,.
(a) Aisao-algebra = A is a monotone class containing A9 = A D C.
(b) To show that C O A, we show that C is a o-algebra.
(1) 0 c A CC.
(2) LetC'={EC X | E°CC}.
e (’is a monotone class (easy)
e Ay C('since (Ee€ Ay = E°c Ay CC).

These two show thatC C C". SoE € C = E e€( = E°€ (. SoCis
closed under complements.

(B) ForEC X,letD(E)={FC|EUF €C}.
* D(E) C C by definition.
* D(E)is a monotone class (easy). EU (U;” F,) =N (EUF,).
o If Fe Ay, then 4y CD(E).(Fe Ay = FUFe A, CC(C)
These show that C = D(E) if E € A,.
4) LetD={E€eC|D(E)=C}={EecC|EUF e€C,YF €C}.
o Ay C Dby (3).
* D is a monotone class (easy).
¢ D C C by definition.
So we conclude that D = C. Now we have C is closed under finite unions.

(5) C is closed under finite unions and countable increasing unions = C is
closed under countable unions. (check) [ |
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RECAILE e ARB = E, € B,EY € A Vx € X,y € Y. However, the inverse is not
necessarily true.

Now comes the main thing:

3.4 Fubini-Tonelli Theorem

Theorem 3.14 (Tonelli for characteristic functions). Suppose (X, A, u), (Y, B, v) are o-finite
measure spaces. Suppose E € A® B. Then
(@) a(z) =v(E;): X — [0, 00] is a A-measurable function.

(b) B(y) :== u(EY) 1Y — [0, 00] is a B-measurable function.

© (ux)(B) = [ () dnto) = [ (B i),

Y

Proof. (a) Assume p, v are finite measures. Let
C={Ec A®B](a), (b),(c)hold}.

Enough to prove that (R) = A® B C C.

Because of monotone class lemma and that R is a o-algebra, it is enough to show
that R C C and C is a monotone class.

e Show that R C C.

v(B) z€A
a(z) =v((A x B);) = { =v(B)la(x).
0 x¢ A

(1 % v)(A x B) = u(A)w(B)

= [ v B.) du(o) = (BIu(4)
X

¢ Show that C is a monotone class.
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(1) Let B, € C,E; C E> C .... Need to show that E = |J;° E,, € C.

E,eC,EiCEyC...

= B, = J(En)e, (B1)a C (Ba)s C
= a(z) =v(E;) = lim v ((E,);),Vx € X, an(z) A-measurable

n—00

This satisfies (a), (b). For (c), we have

(1 x V)(E) = Tim (i x v)(E,)

= Jm [ (@) dute) M€ [ v an(x)

n—oo X

So we have shown countable increasing unions.

(2) Let F,, € C, F; D F» D .... Need to show that F|J{" F,, € C. Using
continuity of measure from above instead of below, DCT instead of MCT,

we obtained a similar result.

(b) Now assume that u, v are o-finite. Since X x Y = UTO(X,L x Y,), where X; C
Xo..., Y1 C Yy C ... with u(Xy), v(Yy) finite. Apply results from then finite case.
(DIY) [ |

Theorem 3.15 (Fubini-Tonelli). Suppose (X, A, ) and (Y, B, v) are o-finite measure spaces.
(@) (Tonelli) If f : X x Y — [0, 00] is A ® B-measurable then

(1) g(x / f(z,y) dv(y) : X — [0, 00] is a A-measurable function.

(2) h(y / f(z,y) dp(z) : Y — [0, 00| is a B-measurable function.

(3) We have the iterated integral formula

/Xxy () /XU wdv()]du(m
= [ | e aut)| avio.

)

(b) (Fubini) If f € LY (X x Y, u x v), then
(1) f. € LY(Y,v) for p-a.e x and g(x) (which is defined p-a.e) € L*(X, p).
(2) fv € LN(X, p) for v-a.e y and h(y) (which is defined v-a.e) € L*(Y, v).
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(3) The iterated integral formula from (a).(3) hold.
Usually we apply Tonelli to | f| to show f € L*(X x Y, u x v) and then apply Fubini to

evaluate.

Proof. See [Fol99]. [ |

3.5 Lebesgue Measure on R?

Example 3.16 ((R?, £ ® £, m x m) is not complete). Let A € £, A # 0,m(A) = 0. Let
B C [0,1],B ¢ L (e.g. Vitali set). Thenlet E = A x B, F = A x [0,1]. We can see that
ECFand F e L®L,(m xm)(F)=m(A)m([0,1]) = 0.

So F is a subnull set but not £ ® £L-measurable. (otherwise each section of F is measur-

able, a contradiction.)

Definition 3.17. Let (R?, £¢, m?) be the completion of (R?, B(R?),m x ... x m), which is
same(check!) as the completion of (R4, L ® ... ® L,m X ... X m).

So how do we compute m??

d
A rectangle in R? is R = H E;, E; € B(R). Then
im1

m?(E) = inf {Zdek
1

EC U Ry, Ry, rectangle} .
1

Theorem 3.18. Let E € L9,
(@) m?(E) = inf {m%(O) | open O > E} = sup {m*(K) | compact K C E}.

b) E= A, UN, = Ay \ Ny.
~— N~ = =
Fo null Go null

(¢) If m¥(E) < oo,Ve > 0,3Ry,..., Ry, rectangles whose sides are intervals such that
m* | EA (R || <e
1
Proof. Similar to d = 1 case. u

Theorem 3.19. Integrable "step functions” and C.(R?) are dense in L*(R%, £4, m?).
Theorem 3.20. Lebesgue measure in R? is translation-invariant.

Theorem 3.21. "Effect of linear transformations on Lebesgue measure”
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Skip p. 71-81 of [Fol99] except
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Chapter 4

Differentiation on Euclidean

Space

Suppose f : [a,b] — R. There are two versions of fundamental theorem of Calculus:
b
o [ F@do= 1) - fa)
o [ a0
dx J,

We focus on the second statement, which implies that

lim / T dt = tim L / _ £(#) dt

r—0t 7 r—0t 1

T+r
Write f(z) = %/ f(z) dt, then

This generalizes well in R%:

1

. Tod : _ f( _
fRISR lm S /B(M)f(t) F(x) dt = 0.

QUESTION to what extent does this hold?

Start from [Fol99, 3.4].

44



Hardy-Littlewood Maximal Function Yiwei Fu

4.1 Hardy-Littlewood Maximal Function

Suppose an open ball in R?, B = B(a,r). Denote ¢B = B(a,cr),c > 0.

Lemma 4.1 (Vitali-type covering lemma). Let By, ..., By be a finite collection of open balls
in R%. Then 3 a sub-collection B}, ..., Bl of disjoint open balls such that

m k

JsB) > B

1 1

Proof. Greedy algorithm. [ |

NOTATION:/fdmz/ f(z) dz
E E

Definition 4.2. f: R?Y — C is Lebesgue measurable. f is locally integrable if
/ | f| dm < 00,V compact K C R®.
K

We write f € L] (R%).
Example 4.3. f(z) = 22 € L} _(R?). (in fact all continuous functions € L} _(R%)).

Definition 4.4. For f € L] (R?), define Hardy-Littlewood maximal function for f

15 =l A 1> 0, A= s [ 1r)au

Lemma 4.5. Let f € L] (R?). Then,
(a) A, (x) is jointly continuous for (z,r) € R? x (0, 00).
(b) H f(x) is Borel measurable.

Proof.
@) (z,r) = (z*,r*) = A (z) = A ().

Let (x,, r,) be any sequence — (z*,r*).
Aro(o) < [ )L (0):
Apply DCT.

(b) (Hf)™ U A ) is open. ]

>0
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RECALL Markov inequality
m({e] 5@ 2 ) < ¢ [ If@)]do

Theorem 4.6 (Hardy-Littlewood maximal inequality). 3Cy > 0 s.t. Vf € Ll (R?),Va >
0,

m({o| Hi@) >ah < O [17@)] o

Proof. Fix f € L' and o > 0. Let E = {z | (Hf)(z) > a}. E is a Borel measurable set.
Then

1
r€FE = Jry; >0, sit. Ay (x) > a = m(B(z,1y)) < a/ |f(v)] dy.
B(z,rz)

By inner regularity, we have m(E) = sup{m(K) | compact K C E}. Let K C E be
compact. Then

KCU (x,74)
zeK
:>KCUi:1NBi

— K C U 3B}), B}, ..., B,, disjoint

4.2 Lebesgue Differentiation Theorem

Theorem 4.7. Let f € L' (R%). Then

1im;/ |f(y) — f(z)| dy = O for a.e z.
B(x,r)

+30 m(Bw. 7))

Proof.  (a) The result holds for f € C.(R%) (check!)
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(b) Let f € L*(R?). Fixe > 0. 3g € C.(RY) s.t. ||f — g||, < &. Then

/ [f(y) = f(z)] dy

B(z,r)

= - d —g(z)|d x) — f(z)| dy.
/BW) £ (y) —9(y)] y+/BW) l9(y) — g()| y+/ lg(z) — f(z)] dy

B(z,r)

1
Let Q(z) = limsup

(Bl(r. ) — f(2)] dy. We want to show that
r—0 m(B(z,T)) /B(g;m)|f(y) f(z)| dy

m (e | Q) > 0)) = m (U {s10w)> ;}) -0
Enough to show that m(E,) = 0,Va > 0, E, = {z | Q(z) > a}.
But Q(z) < (H(f — 9))(z) + 0+ |g(x) — f(2)| =

{21Q@) >a} c {a| B = 9)@) > S HU{elo@) - r@) > 5}

2 2
So we have
2C, 2 2(Cq+1
m(r] Q@) > ah) < 25 gl + 27 gl < 2N

Corollary 4.8. This also holds for f € L. _(R?).
Proof. DIY. [ |
Corollary 4.9. For f € L] (R9),

li ! / fly)dy =0fora.e

im —————— y)dy = x.

r—0 m(B(a:, 'I’)) B(z,r)
Proof. DIY. [ |

Definition 4.10. Let f € L{_(R?). The point z € R is called a Lebesgue point of f if

loc

50 m(B(z.r)

1
lim ——— ~ ()| = 0.
/B = 1)

felLt

loc

(RY) = a.e point is a Lebesgue point of f.

Definition 4.11. {E,},~¢ shrinks nicely to x as r — 0 means E, C B(z,r) and 3¢ >
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0 s.t.em(B(z,n)) < m(E,).

Corollary 4.12 (Lebesgue differentiation theorem).

E, shrinks nicely to 0

1
x a Lebesgue point of f "

Proof. DIY. [ |

Corollary 413. f € LL (RY) = F(z) = [ f(y) dy is differentiable and F'(z) = f(x)

a.e.

Rest of [Fol99, Ch.3] will be covered later.
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Chapter 5

Normed Vector Spaces

Topological spaces D metric spaces O normed spaces D inner product spaces.

Let’s start with metric spaces. [Fol99, 5.1, 6.1, 6.2]

5.1 Metric Spaces and Normed Spaces

Definition 5.1. Suppose Y is aset. Ametricof Yisp:Y xY — [0,00) s.t.
@ p(z,y) = ply, )
(b) p(z,y) < p(x, 2) + p(2,y)
© plz,y) =0 <= z=y.
Example 5.2.
@ Q p(z,y) = |z -yl
(b) R, p(z,y) = |z —yl.
© Repla,y) = i (2)].

d d 1/p
(d) R pi(2,y) = Y wsi—wil, ppl,y) = (Z | —in”>  Poo(®,y) = max [z;—y;l.

‘ ‘ 1<i<d
i=1 i=1

1 1/p
© cqo,u),pp(f,g)(/o fgl”) e = s (@) — g(a)].

z€[0,1

They are all metric spaces.

Definition 5.3 (Recall[2.32). Suppose V is a vector space over field R or C. A seminorm
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onVis| | :V —[0,00) s.t.

* |lcv|| = |¢||jv]], Vv € V, Ve scalar

o |lv+w| < |v| + ||w|, triangle inequality
A norm is a seminorm such that ||v|| <= v =0.
Norm gives rise to a metric where p(v, w) = ||jv — w||.
Up = v <= lim, o0 ||vn — 0] = 0.
Example 54. (a) L'(X, A, p)

®) C(0, 1), /11, = J; 1F@)] da, | £l maxocast | ()]

d d
(© R, Jllly = /327 |2l llzlly = 32 i, |2l o maxi<ica ).

5.2 LP Spaces

Definition 5.5. Suppose (X, A, ;1) a measure space. f is measurable function. For 0 <
1/p
p < oo, define 1, = ( [ 1P au) . Define 220x, A = { ] 111, < .
b

Example 5.6.

Definition 5.7. (* = (?(N) = {a = (a1,az,...) | [la], = (X ai?)"* < oo}

Lemma 5.8. LP? is a vector space, Vp € (0, 00).

1/p
( / cfl”) — 1l If1l

Given the following inequality

Proof.

(a+ )P < 2max(|al, |8]))” = 2" max (Jo”, [B7) < 2%(|af” + |B]7)

we have
1/p
Jusar <z (fareiam) = 1ol <2([arm) -

But we want to know that whether

1f+all, < 171, + llgll,
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holds.

Theorem 5.9 (Holder’s Inequality). Let p < 00,q = ;25 s0 % + % = 1. Then

I£glly < 171, gl

Proof.

tP 1
t< — 41— =,¥¢t>0
p P

(Take F(t) =t — &)

p

P q
af < % + %,Va, B > 0 (Young’s inequality) (6.1)
WLOG assume 0 < || f]l,,,[lg]l, < oo. Let F'(z) = ﬁc}ﬁpaG(x) = ﬁéﬁz

= [|F[l, =1= G|,
By (5.1),

frovens 58

J1f(@)g()]
/11, HgH

p
1
p

q

e

=1.

Theorem 5.10 (Minkowski’s inequality). Let 1 < p < oc. For f,g € LP,|f +4|, <

1£1l, + gl

Proof. p = 11is easy.

Assume 1 < p < co. WLOG assume || f + g||,, # 0. We have

L/U@ﬂ+g@ﬂpS/Wﬂ¢%+ﬂ@W”ﬂﬂxH+WWH)

s(/nf+gw*w)uq(/uw)l
(/ﬂf+mp1 [(/uw
<(far+ar ) (171, + Il
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Since q(p — 1) = p, divide by ([ (|f + glp_l)q)l/q on both sides we have
1-1/q
([1r@+o@P) " <1, + lal,. .

Holder: [|fgll, < [Ifll, lgll, 5 + 5 =1
Minkowski: || f +gll, < [[fIl, + llgll, . 1 <p < <.

Definition 5.11. For a measurable function f on (X, A, u), let
S={a=0|p({z|[f(z)]>a}) =0} ={a>0] f(z) < aae}.

_ infS S#
Define | f||, = { - Let L(X, A, p) = {f | || fll oo < o0}
00 S=10.

Example 5.12.
o (RLom), f(@) = Mg (@) # L, f(2) = elo(a) + gz € L.

e If fiscontinuouson (R, L, m), || f||., = sup,cr |f(x)|. Fora € €=, ||a|| . = sup;cy |ai|-
(= ={a=(a,az,...)| |la||o <oo} ={a|3IM > 0s.t. |a;| < M;,Vi})

Lemma5.13. (a) For a > ||f|,pn({z | [f(z)] > a}) = 0. For a < || f|l,x({z |
[f(x)] > a}) > 0.

®) [f(@)] < [If]l ae.

(c) f e L*® <= Jbounded measurable function g such that f = g a.e.
Proof. DIY. |

Theorem 5.14.

@ [Ifglly < 11l gl oo-
@) If +9lle < I1flloo + 119l

(c) fon— finL>® <= f, — f uniformlya.e.

Proof. DIY For (c): = Let A, = {z | |fu(z) — f(2)] > || fn — fll}- Then pu(A4,) = 0.
Let A = Uy" An, p(An) = 0. Vo € A° = ()" A, Vn, [fn(2) — f(2)] < [Ifn = fll- The
latter converges to 0 by assumption.

Given e > 0,3N s.t. ||fn — fll.o < &,Vn > N. SoVa € A°,Vn > N, |fn(x) — f(x)]
[fn = flloe <e

VAN
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Proposition 5.15.

(a) For 1 < p < oo, the collection of simple functions with finite measure support is dense in
LP(X, A, ).

(b) For 1 < p < o0, the collection of step functions (by definition they have finite measure
support) is dense in LP(R, L, m). So is C.(R).

(c) For p = oo, the collection of simple functions is dense in L™ (X, A, ).
Proof. DIY [ ]

NOTE: C.(R) is not dense in L= (R, L, m).

5.3 Embedding Properties of L? spaces

Definition 5.16. Two norms |||, ||-| on the same spaces V are said to be equivalent if

Jer, 0 > 05t cp o] < vl < e lv||, Vv e V.

So on equivalent norms we have same open sets, same convergence.
Example 5.17.
* ForR? [|-||,, 1 < p < oo are equivalent.

e For1 < p,q < oo,p # ¢, LP(R,m)-norm and L?(R, m)-norm are not equivalent.
LP(R,m) ¢ LY(R,m), LP(R,m) $ LI(R, m).

Proposition 5.18. Suppose u(X) < oo, then for any 0 < p < g < oo, L9 C LP,
Proof. * p =00 is easy.
* Suppose p < oo. [ |

Proposition 5.19. If0 < p < g < oo then (P C (4.

Proposition 5.20. VO <p <g<r <oo, LPNL" C L%

Proof. * p =00 is easy.

1 1

* Suppose p < co. Holder on p/Ag,7/(1 — X)g, A = g— -

—1_,—1°
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5.4 Banach Spaces

Theorem 5.21. Suppose (V, ||-||) a normed space. Then it is complete <= Every absolutely
convergent series is convergent (i.e. if Y0 ||vn|| < oo then 3s € V s.t. ZJIV vy, —> S 4as
N — )
Proof. = : DIY. (partial sums form a Cauchy Sequence)

<= : Suppose v,,n € Nis a Cauchy sequence. Vj € N,3AN; € N s.t. |[v, — v <
%,Vn, m > Nj.
WLOG we may assume Ny < Ny < .... Let w; = vy,,w; = N, —vn;_,,V] =2 2 =

oo oo k

X3 wsll < flow, | 4 52, 0 <00 = Xjw; = 3s €V,

Thus Vy, — sas k — o0. v, is Cauchy = v, = sasn — oo. |

5.5 Bounded Linear Transformation
Definition 5.22. Suppose (V, ||||), (W, ||-||") two normed spaces. A linearmap 7 : V — W
is said to be a bounded map is 3¢ > 0 s.t. ||T,,||" < C'|jv||,Vv € V.

Proposition 5.23. Suppose T : (V,|-|) — (W, ||-||') is a linear map. Then the followings are

equivalent:
(a) T is continuous
(b) T is continuous at 0

(c) T is a bounded map

Proof. (a) = (b) is clear.

(b) = (c): Fore =1,36 > 0s.t. |Tul| < e = 1if ||Jul| < &. Suppose v € V,v # 0. Let

u= ﬁv = flu|l=2<6 = |Tu <1 = ﬁ [Tv]' <1 = ||Tul|" < 2|v]|.
() = (a): Fixvg € V. ||Tv — Two||' = |T(v — vo)|| < C |lv — o [ |

Example 5.24. (a) T : ¢* — (', Ta = (as,as3,...), |Tal, <|a|,. T is BLT.
(b) T:(C([-1,1]),]|-Il,) = C,Tf = f(0). This is not continuous.
© T (C([~1,1))]].0) = C,Tf = f(0) is BLT.
(d) Let Abe an x m matrix. T': R™ — R™ v — Avis BLT.
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(e) Let K(z,y) be a continuous function on [0, 1] x [0, 1].

Tr(0[0’1]7||~Hoo)—>(0[071]’H~||oo)7Tf=/0 K(z,y)f(y) dy

is a BLT.
) T:L'R) = (CR), |ll..), (Tf)) = /oo e "* f(x) da (Fourier transform of f)

— 00

@) T : (C=([0,1]); [[lso) = (€2([0,1]), [I-|0), (T f) () = f'() is not bounded.

Definition 5.25. Let L(V,W) = {T': V — W | T is BLT}. For T' € L(V, W), the operator
norm of T is

17| = inf{e > 0| [To] < ello],vo € V)
. {nTv’
= sup

o]

U#O,UEV}

= sup {||T0]|" | ||v]| = 1}

Lemma 5.26. (a) Above three definitions are equivalent.

(b) 1t is indeed a normed space.

Proof. DIY. [ ]

5.6 Dual of L? Spaces
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Chapter 6

Signed and Complex Measures

[Eol99, Ch.3].

RECALL Suppose (X, A, u) a measure space. f : X — [0,00] measurable. Let v(E) =

fdu, E € A = visameasure on (X, A).
JE

6.1 Signed Measures
Definition 6.1. Suppose (X,.A) a measurable space. A signed measure is v : A —
[—00,00) orv : A — (—00, 00] such that

* v()=0.

o Ay, Ay, ... € A A disjoint = v U AZ-> = Z v(A;) where the series converges
1 1

absolutely if v (U A7;> € (—o0, 0).
1
Example 6.2.

* v positive measure —> v is a signed measure.

® 1, po positive measures such that either v1(X) < co or 15(X) < 0 = v =
H1 — p2 a signed measure.

. f:X—>Rs.t./f+du<ooor/f*du<oo = V(E):/fdu.
X X E
NOTE:

(@) AC B= v(A) <v(B)sincev(B) =v(A) +v(B\ A).
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(b) AC B,v(A) =00 = v(B) = 0.

Lemma 6.3. v is a signed measure on (X, A). Then

OEHGAJHCEQC”.:$V<LH%>—1m1MEJ

n—00
1

(oo}
e E,e A EiDED...,—0<v(E) <o = u(ﬂEn> = lim v(E,).

) NSoo
Definition 6.4. v is a signed measure on (X, A). Let E € A. We say
(a) FE is positive for v (a positive set for v) if VF C E, F € A, v(F) > 0.
(b) E is negative for v (a negative set for v) if VF C E, F € A, v(F) <0.
(¢) Eisnullforv (anullsetforv)if VF C E,F € A, v(F)=0.

NOTE E positive set, ' C E = v(F) < v(E). E negative set, F C E = v(F) >
v(E).

Definition 6.5. Suupose p, v are signed measure on (X, A). v L v (singular to each
otherymeans 3FE, F e As.t. ENF =(,EUF = X, F is null for p, E is null for v.

Example 6.6. For (R, B(R)),
(a) Lebesgue measure m
(b) Cantor measure pc((a,b]).
(c) Discrete measure pup = 61 + 26_1.

For (a), (c), take E = R\ {-1,1}, F = {—1,1}. For (a), (b), take the cantor set K,
E=R\K,F=K.

Lemma 6.7. v is a signed measure on (X, A).

(a) E is positive (for v) and G C E measurable => G is positive (for v).

oo
(b) Ey, Es, ... positive sets —> U E,, is positive.
1

Proof. DIY. |

Lemma 6.8. v is a signed measure on (X, A). Suppose E € Aand 0 < v(E) < co = 3
measurable set A C E s.t. A is a positive set (for v) and v(A) > 0.

Proof in [RF10]. If E is a positive set, we are done.

Otherwise, E contains sets of negative measure. Let n; € N be the smallest such that
JE, ¢ E with v(Ey) < _n%' If £\ E; is a positive set then we are done. Otherwise,
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E\ E; contain sets of measure.

Inductively if E\ [J}* E; is not a positive set. Let n, € N be the smallest such that
3B, C E\ U E; with v(E,) < —-L.

Note: if n, > 2,VB ¢ E\U; ' B, v(B) > — 1.

Let A= E\ ;" Ey. Since E = AU Ey, v(E) = v(A)+ Y " v(Er) = v(A) >0.

Since v(E), v(A) are finite, then >~ }° n—lk need to be convergent = limy_,oc 1y = 00.

Now, if B C Athen B c E\ U "E;. If y(B) > —— — »(B) > 0. Thus 4 is

- Nk—1
positive. n

Theorem 6.9 (The Hahn decomposition theorem). Suppose v is a signed measure of (X, A).
Then 3P,N € Ast. PNN =0,PUN = X, P is positive for v, and N is negative for v. If
P’, N’ are another such pair, then PAP'(= NAN') is null for v.

Proof. Uniqueness: P\ P’ C PNn' = P\ P’ is positive and negative, thus a null set.
Same for P\ P’.

Existence: WLOG assume v : A — [—00,00). Let s = sup{v(E) | E positive for v}.

3Py, Ps,. .. positive sets such that lim,, ., v(P,) = s.

> L s > v(P)
Let P = U E, = P ispositive —
1 v(P) = v(Py)

0<s=v(P)<oo.

v(P) = s. Note that

Let N = X \ P.Is N anegative set?

Suppose not. Then 3E C N s.t. v(E) > 0. Note that v(E) < co = 3 positive set
A C EAwith v(A) > 0. The P, A are disjoint, P U A is a positive set, and v(P U A) =
v(P) +v(A) > s, a contradiction.

So N is a negative set. [

Theorem 6.10 (Jordan decomposition theorem). v signed measure on (X, A). 3! positive
measures v, v~ on (X, A) s.t.v(E) =vT(E)—v (F),VE € Aandv™ L v~

Proof. vH(E)=v(ENP), v (E)=—-v(ENN).DIY. [ ]

Example 6.11. (X, A, p), f: X - R. Letv(E) = [, fdp. v = [, frdp,v™ = [, f~ dp.

Definition 6.12. Suppose v a signed measure on (X, .A). Total variation measure of v is
|v| = vt + v~ (a positive measure on (X, A)).

Definition 6.13. |v|(E) = [, |f| dv
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Lemma 6.14. (1) |[v(E)| < |v|(E),
(b) Eisanull set for v <= E is a null set for |v|,

(c) Suppose k is another signed measure. k L v <= k L |v| <= k Lvtandrx Lv™.
Proof. DIY. [ ]

Definition 6.15. v is finite (o-finite) if |v| is a finite (o-finite) measure. ( <= v™,v~ are

finite (o-finite) measures.)

6.2 Absolutely Measurable Spaces

Definition 6.16. p a positive measure, v a signed measure on (X, A). v < p (v is abso-
lutely continuous with respect to 1) <= (E € A, u(E) =0 = v(E) =0) <= all
p-null sets and v-null sets. (check)

Example 6.17. (X, A, pu), f: X - R v(E)= [Efdy = v < p.
NOTATION: dv = f du means v is the measure defined by v(E) = [, f d.
Lemma 6.18. 1 positive measure, v signed measure.

@ v<p <= V<p = vi<pandv- < p.

b)) v<pandv Ly — v=0.
Proof. |

Theorem 6.19 (Radon-Nikodym). Suppose v a o-finite positive measure, v a o-finite signed
measure on (X, A). Suppose v < p. Then 3f : X — R measurable function such that
v(E) = fE f dp. If g is another such function then f = g a.e.

Proof. Will follow by proof of Lebesgue-Radon-Nikodym on Monday:. |

Definition 6.20. Suppose v < u. A Radon-Nikodym derivative of v with respect to p is a
function 3% : X — R satisfying v(E) = [ 4% du,VE € A.
NOTE: shows the existence of such functions. If there is another such function g,
then % = g p-a.e.

”w

NOTATION:
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Example 6.21. F(z) = ¢** : R — R is continuous and increasing.

The Lebesgue-Stieltjes measure pp on (R, B(R)) is the unique locally finite Borel measure
satisfying p((a,b]) = €2* — ¢, Va < b.

pr(E) Wiy?/ 2e%* di.
E

dpr _ o2
So pup < mand < = 2e*7.

Example 6.22. F(z) = C(z) : R — R the Cantor function. C’(x) = 0 Lebesgue a.e.
pe(E) # / 0 dz.
B

In particular, ¢(b) — c(a) # f: ¢ (z) dz even if ¢ is continuous and has derivative a.e. So
e € m. But p. L m.

Lemma 6.23. Let 1, v be finite positive measures on (X, A). Then either
(a) p L v, or
(b) e > 0,3F € As.t.v(F) > 0and F is a positive set for v — ep. (i.e. VG C F,v(G) >
ep(@))
Proof. Letk, =v— % ¢ By Hahn decomposition, write X = P, UN,, where P, is positive
and N, is negative for «,,.

LetP =J" P,and N =" N,, = X \ P. We have x,(N) < 0since N C N,,,Vn =
0<v(N) < Lpu(N),vn = v(N)=0.

Now if u(P) = 0 then p L v. Otherwise 3n s.t. u(P,) > 0. Take F = P,,e = + we have
that F is a positive set for v — ey and v(F') > 0. [ |

Theorem 6.24 (Lebesgue-Radon-Nikodym). Suppose 1 a o-finite positive measure, v a o-
finite signed measure on (X, A). Then 3\, p o-finite signed measures on (X, A) such that
AL pp<<p,v=XA+p.

Furthermore, 3f : X — R measurable function that dp = f du. And if there exists another g
then f = g u-a.e.
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Proof. (a) Assume p, v finite positive measure. Let
F= {g:X% [0, o0] ‘/ gdu < V(E),VEGA}
E
= {g : X — [0, 0] ‘ dv — gdv is a positive measure} .

Note that F # () since g =0 € F. Lets =sup { [, gdu | g € F}.

(1) 3f e Fst.s= fodu.
i. g,h € F = u(z) = max{g(x), h(z)} € F. Since setting A = {z | g(x)

h(z)}, we have
/udu:/ gd,u—l—/ h dp.
E ENA ENAe

ii. 3g1,92,... s.t. lim,_ o fx gn dp = S. By i, WLOG we can assume 0 <
g1(z) < go(x) < ...and s.t. lim, o0 [ gn dp=S.

Let f(x) = sup,, gn(z) = lim, o gn(x). By MCT,

Y

/fdu: lim/gnd,ugz/(E):S
E n—oo E

when F = X.
(2) Define p(E) = [, fdp = p < pand p(X) = [, fdp < v(X) < .

(3) Define \(E) = v(E)—p(E) = v(E)— [, f du > 0. Then \is a positive measure
and A\(X) < v(X) < 0.

(4) X L p. Suppose it is not. Then by lemma, 3¢ > 0, F € A s.t. u(F) > 0 and F
is a positive set for A — ep.

Let g(x) = f(z) + elp(x). Then VE € A,

/gd,u:/fdu+5u(EUF):y(E)—A(E)%—s,u(EUF)
E E

<Vv(E)-MENF)4+en(ENF)
< v(E)

since \(ENF)—eu(ENF)>0.

Buts > [ gdu= [y fdu+eu(F) =s+eu(F) > s, a contradiction. [ |
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6.3 Lebesgue Differentiation Theorem for Regular Borel

Measures on R

[Fol99, p. 99]

Definition 6.25. A Borel signed measure v on R? is called regular if
(@) |v|(k) < 00,V compact K.
(b) |v|(E) =inf{m(O) | open O D E},V Borel set E.

Example 6.26. LS measure on R are regular. Lebesgue measure on R? is regular (so, the
difference of two of them) Note: from (a), v regular = v is o-finite,

If dv = f dmregular, then |v|(k) = [, |f| dm < oo, s0 f € LL_(R?).
Lemma 6.27. If f € L] (RY) < dv = f dm is regqular

Proof. Read the book. |

RECALL Lebesgue differentiation theorem

Corollary 6.28. Let p be a regular signed Borel measure on R, Suppose p < m == For

ri((%;)) = % (x) for every E, — x nicely.

Lebesgue a.e.-z, lim,_,o

Proposition 6.29. Let \ be a regular positive Borel measure on RY. Suppose X | m. For

Lebesgue a.e.-z, lim, o % = 0 for every E, — x nicely.

Proof. Enough to consider £y = B(z,r)

{x | lim sup T/:L((le)) * O} = fj Gn, G, = {a: | lim sup :;L((le)) > ;}
n=1

r—0 r—0

Enough to show that m(G,,) = 0, Vn.
AL m = R?= AU B disjoint. A\(4) = 0,m(B) = 0, Enough to show m(G,, N A) = 0.
Fix ¢ > 0. Since A is regular, 3open O D A s.t. A(O) < AMA)+e=e.Vz e G, NA,Ir, >

0 s.t. % > Land B(z,r,) C O.

Let K C G,,NA, compact. K C U, x B(z,r,) = 3Ifinitesubcover = 3By, By, ..., Ex
disjoint, K < |} 3B;.

= m(K) <3¢ Ziv m(B;) < 3%n Ziv A(B;) = 3%n\ (ﬂiv Bi) < 3%M\(0) < 3%ne =
m(G, N A) < 3ne. |

Theorem 6.30 (LDT for regular Borel measures). Suppose v is a regular Borel signed meaaure
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onRYand dv = dA\+ fdm, A L m = for Lebae. z,lim, ;((EE:)) = f(x) for every

E, — x nicely.

Proof. vregular = A, f dm are regular. n

6.4 Monotone Differentiation Theorem

[Fol99 3.5]
Definition 6.31. For F' : R — R that is increasing, denote F(z+) = lim,, F(y) =
inf, 0 F(y), F(o—) = limyp, F(y) = sup,., F(y).
Lemma 6.32. F is increasing = D = {x | F is discontinuous at x} is countable.
Proof. © € D = F(xz+) > F(x—)since F /. Forz,y € D,x # y = I, 1, disjoint.
Foreachz € D,let I, = (F(z—), F(z+)) = 3f: D — Qis 1-1. I, is open interval, not
empty = D is countable. |
Theorem 6.33 (Monotone differentiation theorem). Suppose F' /* =

o [ is differentiable Lebesgue a.e.

e G(z) = F(x+) is differentiable Lebesque a.e.

e G'=Fae.

Proof. G is increasing, right-continuous on R = 3 Lebesgue-Stieltjes measure pc on

R (so, regular).
SO egua MG(($7x+h]) L
Gz +h)—Gx) _ ) m((@2+h]) ’
h piG((x + h, z])
m@+ha) 50

converges for Lebesgue a.e 2 by LDT. So G’ exists a.e.

Let H(z) = G(z) — F(z) > 0. We have
{z | H(z) > 0} C {z | z is discontinuous at z}.

So {z | H(x) > 0} it is countable. Denote the set as {x,, }.

Letpu =73, H(xy,)d,,. Then
check
p(=N,N)= Y H(z,) < GN)=-F(-N) < oo,
zn€(—N,N)
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So 1 is a locally finite Borel measure on R = p is regular. Hence

H(z+h)— H(z) H(x+h)+ H(z) < 4u((x —2h,x+2h)) LDT,ulm 0
h - |h| - 4lh|
for Lebesgue a.e. .
So H is differentiable a.e and H' = 0 a.e. [ |

b
Proposition 6.34. F' /' —> / F'(z) dz < F(b) — F(a).

Example 6.35.

0 <0 1
o F(x)= { .F'(x)=0ae and/ F(z)de=0< F(1) - F(-1)=1.
1 >0 -1

1
e F'(z) Cantor function. F'(z) =0 a.e. and/ F'(z)dz=0< F(1) — F(0) = 1.
0

6.5 Functions of Bounded Variation

Definition 6.36. For F' : R — R, the total variation function of F'is Tr : R — [0, o],
Tr(x) —sup{Z|F(a:i)—F(aci1)| [IneN,—co<zp <1 <...<xp —x}.

i=1

Lemma 6.37. Fora < b,

Tr(b) = Tr(a) +sup{Z|F(xi) —Flxi)|IneNa=xg<x1 <...<Tp= b}
i=1

Note that T is increasing.

Definition 6.38. F' € BV (F is of bounded variation) means Tr(c0) = limg; o, Tr(x) <

0.
F € BV([a, b]) means sup {Zfr |F(z;) — F(zim1)| la=x0<x1 < ...<2p = b} < 00.
Note that ' € BV = F'is bounded.
Example 6.39.

(a) F(z) =sinz ¢ BV, € BV([a, b]).
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{ Lt
(b) F(z)=1 ° ¢ BV([a,b]) fora < 0 < b.
1 z=0

(c) F,G € BV = «aF + G € BV.
(d) F ~and bounded = F € BV.

(e) F Lipschitzon [a,b] = F € BV([a,b]). (Lipschitz = IM > 0s.t. |F(z)—F(y)| <
M|I - y|,Vx,y)

(f) F differentiable, F’ bounded on [a,b] = F € BV([a, b]).
(g) F(z)=["_ f(t)e L'(R) = F € BV since

N

SO |F () x21\<2/ ()] dt = /|f |dt</oo|(t)|dt<oo.

1

Definition 6.40. NBV = {G € BV | G right-continuous, G(—o0) = 0}.
Example 6.41.
(a) F , bounded, right-continuous, F'(—co0) = 0.
(b) F(z)= ["_ f(t)dt, f € L'(R). (Midterm => F is uniformly continuous.)

Lemma 6.42. F € BV and right-continuous =—> Tr € NBV.

Proof. Tr /", bounded = Tr € BV,Tr(—o00) = 0. Is TF right-continuous?

Suppose it is not. Ja € R s.t. ¢ := Tr(a+) — Tr(a) > 0. Fix e > 0. Since F(z) and
g(x) := Tp(x+) are right continuous, 36 > 0 s.t.

|F(y) — F(a)l <e, |g9(y) —gla)l <e Vy€ (a,a+d].

So TF(y) — TF(G+) < Tp(y+) — TF(G+) <é€

dJa=xzg <1 <20<...<2Tp =0a+6 s.t.

Z|F F(zi-1)| > Tr(a+6) - (a)_z
> TF(UI+) — Tp(a) — — = —¢c.

This shows that }_" , |F(2;) — F(x;_1)| > 2¢ — € since
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Consider [a,z1]. Ja =ty < t; < ... <t = 21 8.t.

k

D IF(t:) = F(tim1)| = Tr(e) — Tr(a) -
i=1

>0
v

=]
o

So we can write [a,a + 0] = [a, 1] U [x1,a + ¢]. So
e+c>Tr(a+98) —Tr(at+) + Tr(a+) — Tr(a)
=Tr(a+96) —Tr(a)
é 3 3 3
Z;|F(tj)—F(tj—1)|+Z\F(%)—F($i—1)| 2 c-etje=g-¢
— ¢ < 4e.

Since € > 0 is arbitrary, we conclude that ¢ = 0, a contradiction. [ |

Corollary 6.43. ' € NBV <« F=F — Fy, F1,F> € NBVand .

Tr+F Tp—F

Proof. Write F' = . Tr(z1) —Tr(z2) > total variation of F on (x1,z2) >
|F(z1) — F(z2)| so both functions are increasing. [ ]
Theorem 6.44.

(a) yuis a finite signed Borel measure on R = F(z) := p((—o0,z]) € NBV.
(b) F € NBV = 3! finite signed Borel measure up on R satisfying j1((—oo, z]) = F(x).
Proof. (@) p = put —pu~ = F = F* — F~ F*(z) = p*((—o0,z]) is increasing,
bounded, right-continuous, and F*(—o00) = 0.

(b) F € NBV = F = F| — F,,F},F, € NBV and are increasing. So 3ur,, ir,
Lebesgue-Stieltjes measure. pp := pp, — pp,. Uniqueness is left for homework.

Proposition 6.45. Let F' € NBV. Then
(a) Fis differentiable a.e, F € L'(R, m).
() dpp = dA+ F'dm, A L m.

(c) pp L m <= F’ =0 Lebesgue a.e.

(d) pp<m <= / F'(t) dt = F(x).
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Proof. Check (a), (b), (c).

(d)pur <m <= X=0 < dur = Fldm <= pp = [, F' dm,VE Borel
> F(z) = [*_ F'(t)dt,Vz € R. (by uniqueness) |

6.6 Absolutely Continuous Functions

Definition 6.46. F': R — R is absolutely continuous (F' € AC) means Ve > 0,30 > 0 s.t.
if (al7 b1),...,(an,bn) are disjoint open intervals satisfying ZnNzl(bn — an) < 9, then

Z |F(by) — Flap)| < e.
Lemma 6.47. (a) F' € AC = F is uniformly continuous.

(b) Fis Lipschitz = F € AC.

(c) F(x /f t)dt,f € L' = F € AC.

Proof.

N

SIF(ba) — Flan)| =

n=1

<Z/ ()] dt = /|f|dm

where E = Y (ay, by,). By midterm Q1, If f € L'(X, zz) then Ve > 0,36 > 0 s.t. u(E) <
b = [Llfl<e [ |

The inverse of (a) is not always true. The Cantor function C(z) is uniformly continuous
but C ¢ AC.

Proposition 6.48. Suppose ' € NBV. Then F € AC <= pp < m.

Corollary 6.49. ' € NBVNAC <= F(z / f(t) dt for some f € L*(R,m). If this
holds, f = F' Lebesgue a.e.

Lemma 6.50. F' € AC([a,b]) = F € NBV({a,b)).
Proof. Check. (read the textbook) [ |

Theorem 6.51 (Fundamental theorem of Calculus). For F : [a,b] — R, TFAE:
(a) F € AC([a,b]),

(b) F(z) - Fla) = /mf(t) dt for some f € L'([a,b], m),
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(c) F is differentiable a.e on [a, b] and F(x) = [TF(t

Proof of Prop. <= : Suppose pip < m. Then F(z) = [* F'(t)dt,F' € L' = F € AC.
= : Suppose I' € AC.

Note: since F is continuous, r((a,b]) = lim, o0 pr ((a,0 — 1]) = limpoo F (b— 1) —
F(a) = F(b) — F(a).
Let E be a Borel set with m(E) = 0. Fixe > 0. Let § > 0 be the constant from F' € AC.

Since m and p 5 are regular,

JopenU; DUz D ... D Es.t. lim m(U,) = m(E) =0,

n—00

| open VioVeD...D FEs.t. 114)111 ,LLF(V;L) = ,LLF(E)
Let O, =U, NV,. Oy isopenand O; D Oy O ... D E. Then

lim m(0,) =m(E) =0, lim prp(0,) = pur(E) (think about it).

n— oo n—oo

WLOG, we may assume m(0O;) < é. Each O,, = J,—, (a}, b}) disjoint, Zszl(bz, ap) <
m(Op) <m(07) <§ =

N N N
pF (U (aZ»b}?)> = wrlag,bi) =Y F(0F) — Flag).

k=1 k=1 k=1

Take the absolute value we have

(Ye)
o (Ye)

Since € > 0 is arbitrary we conclude that yr(E) = 0. [ |

N
Z F(ap)| < e.

k=1

Hence

|1 (On)| = lim

n—oQ

<e = [pr(B)l = lm |up(O0n)| <e.

Definition 6.52. Suppose y a finite signed Borel measure on R.

e uis a discrete measure means Jcountable set {z,,} and ¢,, # 0 s.t. > ¢, < o0 and
B=2>_, tnla,,.

* u is a continuous measure means p({a}) = 0,Va € R.
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Lemma 6.53. (a) p = pq+p. uniguely, where pq is a discrete measure and p. is a continuous
measure.

(b) udiscrete =—> u 1L m.
(c) p < m = pis continuous.

Corollary 6.54. Suppose . is finite signed Borel measure on R. Then p can be uniquely written
as

N:ﬂd+ﬂac+ﬂsc

where jiq. € AC and . is singularly continuous (continuous and 1L m).
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Chapter 7

Hilbert Spaces

[Fol99, 5.5]

7.1 Inner Product Spaces

Definition 7.1. Suppose V' a (complex) vector space. An inner productis (,) ,V x V — C
such that

a) {ax + By, z) = ar,z) + B (y, 2),
(b) (z,y) = (y, ),
(©) (z,z) € [0,00),
(d) (z,z) =0 < z=0.

Note that (z, ay + B2) = a (z,y) + B (z, 2).

Example 7.2. ¢ RY (z,y) = -y =YYy,
« C(z,y) =y =Y 2
* L*(X,p),(f.9) = [x fg du. (Note: by Holder, | [ fg| < [|fgll, < /], llgll»)
o 2 (z,y) = Zl ZiYi-

Definition 7.3. ||z|| = \/{z, z). Does it satisfy triangle inequality?

lz +yl* = (z,2) + (@ y) + (4, 2) + (3. y) = [l2]* + 2Re (z,y) + |y]|*.

Theorem 7.4 (Cauchy-Schwarz Inequality). | (z,y)| < ||z|l |yl

Proof. Clearly if (x,y) = 0. Assume that (z,y) # 0.
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Va € C,0 < [laz — y||* = |of? |«|* — 2Rea (z,y) + [|ly||*. Write (z,y) = | (z,y) [”.

Leta = e ¢ ¢t € R. Then 0 < ||z|* 2 — 2| (z,9) |t + |lyl|®, V¢t € R. Hence 4| (z,y) |> —
2 2

A" lylI” < 0. u

Corollary 7.5. ||z + y|| < ||z| + ||y||. As a consequence, ||z| = \/(x,x) is a norm.

2 2 2 2 2
Proof. ||lz+ylI” = [lzl”+2Re (z,y) + lyl” < =™+ 2[l2[ Iyl + lyl” = (=] + yl)?. =

Theorem 7.6 (Parallelogram law). Let V' be a normed space. Then, ||-|| is induced by an inner
product <= ||z +y|* + ||z —y|* = 2 " + 2 |ly|* , Yz, y € V.
Proof. = : Follows from ||z + y|| = ||z||* + 2Re (z, ) + ||y|>.
<=:Let )
2 2 . 2 2
(y) =7 (Il + 9l =l =ylI* +i o+ iy]* =i = = iyl|*)

and check that it is a inner product. |

Example 7.7. LP(R,m), f = 1(0,1),9 = 1(1,2). For p # 2, the parallelogram law fails.

Lemma 7.8. Let V be an inner product space. If X,, — X strongly (i.e. lim, o ||z, — 2| =
0.) Then X,, — X weakly (i.e. Vy € V,lim,,_, (x,, — x,y) = 0.)

Proof. | (wn — )| < |n — || |yl u

Example 7.9. (2, x, = (0,...,0,1(n-th),0,...). Fixy = ¢2. Then (z,,y) = ¥, — 0 as
2

n — oo since Y1 |yn|* < oo

Thus, z,, — 0 weakly. But ||z,, — 0|| = ||z,|| = 0 so x,, 4 0 strongly.

7.2 Orthonormal Basis

Definition 7.10. z,y are called orthogonal (z L y) if (z,y) = 0.

Lemma 7.11 (Pythagorean theorem).

oo €Vi(Tias) = OVi# § = o+ 4 @all® = Joal* + -+ .

. , : 0 m#n
Definition 7.12. {e}} is an orthonormal set is (e, €,) = .
1 m=n
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Lemma 7.13 (Best approximation). Let e1, ..., e, orthonormal vectors. For x € V, let oa; =
(x,e;),i=1,...,N. Then

< s Vﬂh...,ﬁNGC.

N
T — Z Bie;
i=1

N
Xr — E ;€4
i=1

Proof. Letz =z — Ziv Qe w = Ziv(ai —Bi)ei.Vn=1,...,N,(z,e,) = (x,en) —ap =
2 2 2 2

0= (zw) =0 = |z+wl|”=z]" +[Jwl]” = |=]". u

Lemma 7.14. Suppose {e;}$° orthonormal set. For x € V, let oy; = (x, e;). Then

2
@ |z|* = Ha: - Zfr ae;l| + Zf[ |os|2, VN € N.

() 377 |l < ||z||. (Bassel’s inequality)

Proof. (a) We have

2

N

> e
1
N

> e
1

N
= ||lz||* — 2Re <x,Zaiei> +
1

N
xr — E ;€4
1

N 2
— Jlol® =23 Rea (, i) +
1

N

2
= 2l = 3" ol

1
(b) follows from (a). [ |

Definition 7.15. An orthonormal set {¢;} is said to be an orthonormal basis of V if W =
V where W = {377 Bie; | N € N, B1,..., By € C} = {finite linear combinations of {e;}}
ie.VreV,Ve > 0,3w e W s.t. ||z —w| <e.

Example 7.16. C% ¢; = (0,...,0,1,0,...,0),i = 1,--- ,dand ¢2,e; = (0,...,0,1,0,...),i =
1,2,

Definition 7.17. A Hilbert space is an inner product space that is complete.

Example 7.18. R% C4 L2(X, A, i), 2.

C([0,1]) € L3([0,1],m) is not closed, so it is not a Hilbert space.

Theorem 7.19. Let H be a Hilbert space. Let {e;}5°, be an orthonormal set. TAFE:
(a) {e;}5°, is an orthonormal basis.

(b) x € Hand (z,e;) =0,¥Vi = x=0.
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(c) xreH — Sy = Zf[ aje; — x strongly where a; = (x, €;).

@d zeM = |z|* = 33 |a;|2 (Plancherel identity)

Proof. (¢) = (d): |lz|| = ||z —sn|® + Zfz |ai||”. Since Sy — x strongly we have
. N 2

]l = limy 00 327 [l ]|

@ = @: |z = ||z —sn|® + Zf[ i )® taking limit of both sides we have 0 =

lmy o0 |2 — sy |-

(@) = (b): Fixz € H. Fixe > 0. Then, by (a), 3y € {Zjlv Biei} s.t. |lz —yl <e. By the

best approximation lemma, ||z — si|| < [lz — y|| < e. If (z,¢e;) = 0,Vi, then s = 0. Thus,

llz|]| = ||z — Sk|| < €. Since € > 0 arbitrary, ||z|| = 0.

(b) = (c): Bessel = > 1% |a| < [Jz|| < oc.

2

N N
1Sn — Sau|” = Z ae; Z ail> = 0as N > M — oo.
i=M+1 i=M+1

So {Sn}%_; is a Cauchy sequence in H. Since H is complete, Jy € H such that
lmy oo ||Sn — yl| = 01ie. S, — y strongly. Is y = 2?

Fixi € N,(y —z,e;) = (y — Sn,e;) + (Sp —x,€;) = oy — (x,¢;) = 0 (if N > 4). So for
N> i (y—z,e)=(y—S,e) = (y—z,e)as N — 0. (Since S, — y strongly
= 5, — y weakly)

By (b) wehavey —2 =0 <= y==x. [ |

Corollary 7.20 (Parseval). (z,y) = Y7 a,Bn.
Definition 7.21. A metric space is called separable if 3 countable dense subset.
Definition 7.22. Q¢ c R%. /,1 < p < conot p = co. LP(R,m),1 < p < conot p = cc.

Proposition 7.23. Every separable Hilbert space has a countable orthonormal basis.
Proof. Gram-Schmidt process. |

Every vector space has a basis, but need to use Zorn’s lemma.
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Chapter 8

Intro to Fourier Analysis

8.1 Fourier Series

1 1
Lemma 8.1. ¢,(z) = —e"* = cos(nz) + t¢sin(nz is an orthonormal set in
H = L ([, ).
Proof. Direct check.
1 [ . 1 m=n
— ellm=—mz qg — . [ |
21 ) _x 0 m#n

Question: is {e,, } an orthonormal basis?

In L ([—7,n]), we have

1 = [ @I < Dl 15, = <= 171, < 27 -

Definition 8.2. For F € L!([—x, 7)), its Fourier coefficients are

fo={fren) = \/% / Fw)e ™ dy.
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We want to have

N R 1 N
n;anen *27 :Z |:

1 M,N— o0
—in(z—y) >
=50 10 <Z ‘ > W= )

™

7iny dy:|

Definition 8.3 (Poisson Kernel). For 0 <r < 1,

oo

1—r?
27(1 — 2rcost +r?)’

1
o

n=—oo

zntr\n| _

P.(t) e

Lemma 8.4. For f € L([-m, 7)) and 0 <r < 1,37 fnen( )rinl converges absolutely and
uniformly for x € [—m, x|, and is equal to

" Poe— o) /() dy.

—T

Proof.

- T —int n| __ ||fH1 G n
S| e au ea = B30 < oo
Thus, Fubini’s theorem applies. Now

> 4 ™ N
> { / |f(y)e ™| dy} len(a)[ri™! = % f(y)( 3 e—in<w—y>r|n|> dy
- n=—M

—o0 -T

T

Po(z —y)f(y) dy.

—T

Need to check a bit more about uniform convergence. [ |

1—r? 1+
2r(1—7)2  27(1—1)
Lemma 8.5. P,(t) form a "family of good kernels” i.e

NOTE P.(0) = —ooasr ~1.

(a) P.(t)>0
w [ Pya=1

—T

(c) Yo >0, hm/ P.(t)dt = 0.
[=m,7m]\[-6,6]
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Proof. (b) 1st formula; (a), (c) 2nd formula.

1— 72 r 1
Po(t) dt < o 0. ]
/[_Trm]\[_&(;] 27(1 — 27 cos 6 + r?)

Lemma 8.6. For f € C([—m,n]) satisfying f(—n) = f(w), then

h/ni - Pr(z —y)f(y) dy = f(x)

uniformly for x € [—m, 7.

Proof. Extend f to f : R — R where f(xz +27) = f(x). So f is uniformly continuous and
bounded.

/_”Pm— () dy - (o /_P _y)dy_f@/_”g(y)dy
- / P —y) - f(x) dy

+ / Po)(f(z —y) — f(x)) dy. m
[=m,7]\[-9,0]

1
en(x) = E

Proof. Let f € L?(|—m,n]). Fixe > 0.

Theorem 8.7. { ei”“’} is an orthonormal basis of L*([—m, —7)).

dg € C([-m, 7)) with g(m) = g(=7) s.t. [|f — gll, < 5 (Why?)

Letg.(z) = [© P.(z—y)g(y) dy. By. re0,1) st [lgr — 9l < 575 Sollgr — gl <

€

3-

Let g, n(z) = ZiVNgAnen(m)r\"‘, By N € N st |lgrny —grll, < 3\/Eg. Thus
lgr.v = grlly <

Hence, || f — grn |, 1 <. [ ]

Example 8.8 (Plancherel identity). || f||* = S | fnl?

PR JU S
) =2, fn=— ze T o
miﬂ_ (71)nz 2T TL?éO
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So the identity becomes

Yo

1

Example 8.9 (Isoperimetric inequality). Suppose (z(t),y(t)),t € [, x| is a parametric
curve in R? that is

(@) closed: (z(—),y(—m)) = (x(7), y()),
(b) smooth: z,y are C' functions,
(c) simple.
Suppose
L= [ VEEE @R =
What is the largest area A encloses?

By Green’s theorem (§, P dz — Q dy = [[(Q. — P,) dA),

A= % f{(fc dy —y da) = % ?{(ﬂf(t)y’(t) — z(t)y'(t)) dt.

Arc length parametrization so that 2/(¢)? + v/ (t)> = 1 for all t. Then the condition L = 27
can be written as

L= / (@' (0% + /(1)) dt = 2n
Rewrite using z(t) = x(t) + iy(t), ¢ € [—m, 7] subject to
IR

—T

find the max of

A= 4%/” (%z'(t) - z(t)z’(t)) dt

Note that z € C! and z(—7) = z(n).
Denote 2, = a,,. Now, (/Z'\)n = \/% [T 2 (t)em™* dt = ina, (integrate by parts).
By Plancherel, the L constraint becomes

oo

Z lina,|? = 2.

— 0o
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By Parseval, the A object becomes

1 & — 1l
A= 4 Za*n(inan) — ap(inay,) = 3 Zn|an\2.
— 00 — 00
1 o0 o
The question now becomes the max of 5 Z nlay,|* subject to Z n?lay,|* = 2.
— 00 — 00
o] o0
Show that 27 — Z n|a,|? is nonnegative <= Z(n2 — n)|a,|? is nonnegative, which
— 00 —0o0

is obvious.

A =m < theequality holds <= «, =0forn #0,1 < z(t) = ap + a1e1(t) <
2(t) = ap + are”® < |z(t) — ap| = |aa|, which is a circle.

This beautiful proof is by Hurwitz.

Books: Fourier Series & Integrals, Dym & McKean.
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