Artin's books is a little short on fields.

- Michiael Zieve

Today: $\sqrt[3]{2} \neq \sqrt{a_1} + \sqrt{a_2} + ... + \sqrt{a_k}, a_i \in \mathbb{Q}, a_i > 0.$

We show that the left-hand side is in a field K *s.t.* K has dimension divisible by 3 or ∞ as \mathbb{Q} vector space, while the right-hand side has dimension 2^{ℓ} .

Definition. Given a field *K*, a field *L* containing *K* is called an *extension* of *K*, and $L/_K$ (not a quotient) is a "field extension."

Definition. If $L/_K$ is a field extension then its *degree* is $\dim_K L := \dim L$ as K vector space.

Let $L/_K$ be a field extension and let $\alpha \in L$. Then $K(\alpha)$ denotes the smallest field that contains K and $\alpha = \left\{ \frac{a(\alpha)}{b(\alpha)} : a, b \in K[x], b(\alpha) \neq 0 \right\}$.

Let $S = \{f(x) \in K[x] : f(\alpha) = 0\}$. Then S is an ideal of K[x]. Since K[x] is PID, S = (m(x)) for some $m(x) \in K[x]$. We may assume m(x) is monic or 0. (Clearly m is irreducible.)

Definition. α is algebraic over K if $f(\alpha) = 0$ for some nonzero $f(\alpha) \in K[x]$. In this case, the *minimal polynomial* of α over k is minpol_K $(\alpha) = \operatorname{irr}_{K}(\alpha) =$ the unique monic irreducible $m(x) \in K[x]$ *s.t.* $m(\alpha) = 0$.

 α is transcendental over *K* is α is not algebraic over *K*.

If α is transcendental over K then $K[x] \xrightarrow{\text{eval}} K[\alpha] \subseteq K(\alpha)$ this homomorphism extends to an injective homomorphism $K(x) \hookrightarrow K(\alpha)$ which is an isomorphism $K(x) \cong K(\alpha)$.

Now suppose α is algebraic over K with $m(x) = \min_{K} [\alpha]$. Then $K[x] \to K[\alpha]$ is surjective with kernel (m(x)). So $K[x]/(m(x)) \cong K[\alpha]$. But (m(x)) is maximal $\implies K[\alpha]$ is a field $\implies K(\alpha) = K[\alpha]$.

K[x]/m(x)K[x] as a *K*-vector space has basis $\{1, x, x^2, ..., x^{n-1}\}$ where $n := \deg(m(x))$ (since every coset K[x]/(m(x)) contains a unique polynomial of degree < n.)

So if α is algebraic over K, and $n := \deg(\min \operatorname{pol}_K(\alpha))$, then $K(\alpha)$ has basis $1, \alpha, \ldots, \alpha^{n-1}$ as a K-vector space $\implies \dim_K(K(\alpha)) = n = \deg(\min \operatorname{pol}_K(\alpha))$.

Notation: if $L/_K$ is a field extension, then $[L:K] = \dim_K L = \dim_L a$ as a K vector space.

Example. $[\mathbb{Q}(i) : \mathbb{Q}] = 2.$

 $[\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}] = n.$ (since $x^n - 2$ is irreducible)

 $[\mathbb{Q}(e^{2\pi i/p}):\mathbb{Q}] = p-1 \text{ if } p \text{ is prime since } \min \text{pol}_{\mathbb{Q}}(e^{2\pi i/p}) = x^{p-1} + x^{p-2} + \ldots + 1.$

Example. Any 3-dimensional \mathbb{C} -vector space has dimension 6 as an \mathbb{R} -vector space: if

 $\alpha_1, \alpha_2, \alpha_3$ is a \mathbb{C} -basis, then every element of the vector space can be written in exactly one way as $(a_1 + ib_1)\alpha_1 + (a_2 + ib_2)\alpha_2 + (a_3 + ib_3)\alpha_3$ with $a_j, b_j \in \mathbb{R}$ i.e. as $a_1\alpha_1 + ib_1\alpha_1 + a_2\alpha_2 + ib_2\alpha_2 + a_3\alpha_3 + ib_3\alpha_3$. So $\alpha_j, i\alpha_j$'s is an \mathbb{R} -basis of V.

Proposition. *More generally, if* $L/_K$ *is a field extension and* V *is an* L*-vector space of nonzero dimension. Then* dim_K $V = [L : K] \dim_L V$.

Proof. Let $\alpha_1, \alpha_2, \ldots$ be an *L*-basis for *V*. Let β_1, β_2, \ldots be a *K*-basis for *L*. We'll show that $\{\alpha_i \beta_i\}$ is a *K*-basis for *V*.

Every element of *V* can be written in exactly one way as $\sum_i \ell_i \alpha_i$ with $\ell_i \in L$ and each ℓ_i can be written in exactly one way as $\ell_i = \sum_j k_{ij} beta_j$ with $k_{ij} \in K$.

Every element of *V* can be written in exactly one way as $\sum_i \sum_j k_{ij} \beta_j \alpha_i \implies \{\alpha_i \beta_j\}$ is a *K*-basis for *V*.

Corollary. If K, L, M are fields with $M \supset L \supset K$ then $[M : K] = [M : L] \cdot [L : K]$.

Example. Eisenstein $\implies x^3 - 2$ irreducible over $\mathbb{Q} \implies [\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3 \implies$ if *K* is a field containing $\sqrt[3]{2}$ then [K : Q] is divisible by 3 (or ∞ .)

If $L/_K$ is an extension and $\alpha \in K$ has a square root in L, then $[K(\sqrt{a}) : K] = 1$ or 2.

So if $a_1, \ldots, a_n \in \mathbb{Q}$ then $[\mathbb{Q}(\sqrt{a_1}) : \mathbb{Q}] = 1$ or 2, $[\mathbb{Q}(\sqrt{a_1}, \sqrt{a_2}) : \mathbb{Q}(\sqrt{a_1})] = 1$ or 2, \ldots Hence if $K_i := \mathbb{Q}(\sqrt{a_1}, \ldots, \sqrt{a_n})$ then $[K_{i+1} : K_i] = [K_i(\sqrt{a_{i+1}}) : K_i] = 1$ or 2.

This shows that $[K_i : \mathbb{Q}]$ divides $2^i \implies$ not divisible by 3.

We can also get that $\sqrt[3]{2} \neq$ sum of nested square roots.

You know that a protractor is? WOW! I didn't know what computer was when I was in school. I thought there must be some trade-off!

- Micheal Zieve