Mathematicians are brilliant people. Especially before they have so many fancy tools, all they have is brilliance.

Micheal Zieve

Lemma. If *R* is Noetherian (i.e. an integral domain in which every ideal is finitely generated) then every non-zero non-unit in *R* is product of irreducible elements.

In general, it is easier for elements to be irreducible than prime.

Proof. Suppose otherwise. Then $\exists x \in R$ non-zero non-unit, not a product of irreducible elements $\implies x$ is reducible, say x = yz. At least on of y or z is neither a unit nor a product of irreducibles.

Hence $x = x_1y_1$, where x_1 is not unit or product of irreducibles, y_1 is not a unit. Likewise $x_1 = x_2y_2$ where x_2 is a not unit or product of irreducibles with y_2 is not a unit. $x_n = x_{n+1}y_{n+1}$.

 $(x) \subsetneq (x_1) \subsetneq (x_2) \subsetneq \dots$

 $\bigcup_{n\geq 1}(x_n)$ is an ideal of R which doesn't contain 1. It is finitely generated \implies all generator is in x_n for some finite $n \implies (x_n) = (x_{n+1})$, a contradiction.

Last time: $R = PID \implies$ all irreducible elements in R are prime \implies every element or R has ≤ 1 factorization into irreducible elements (up to permutation).

On the other hand, $R = PID \implies R$ is Noetherian \implies every nonzero element of R has a factorization into irreducible elements.

These two together shows that R is UFD.

Lemma. If R is a Euclidean integral domain (i.e. $\exists \phi : R \to \{-\infty\} \cup \mathbb{Z}_{\geq 0} \ s.t. \ \forall a, b \in R \ with b \neq 0, \exists q, r \in R \ s.t. \ a = bq + r \ where \ \phi(R) < \phi(b)$) then R is PID.

Proof. If *I* is a nonzero ideal of *R*, then $\phi(I) \subset \{-\infty\} \cup \mathbb{Z}_{\geq 0}$. So $\phi(I \setminus \{0\})$ has a smallest element $\phi(b), b \in I, b \neq 0$. Then I = (b), since $(b) \subseteq I$ and also $I \subseteq (b)$ because $a \in I \implies a = bq + r, q, r \in R, \phi(r) < \phi(b)$.

But $a, b \in I, a = bq + r \implies r \in I$. So the minimalist of b of $\phi(b)$ implies r = 0, so $b \mid a \implies a \in (b)$.

Example. $\mathbb{Z}[i]$ Euclidean \implies PID \implies UFD. $\phi(a + b\sqrt{3}) := a^2 + 3b^2$ is NOT a Euclidean function on $\mathbb{Z}[\sqrt{-3}]$, since you can't divide

 $1 + \sqrt{-3}$ by 2 to get a smaller remainder.

Moreover, $\mathbb{Z}[\sqrt{-3}]$ is not Euclidean, since it is not a UFD: $(1+\sqrt{-3})(1-\sqrt{-3}) = 4 = 2 \cdot 2$, all irreducible and they are not unit multiples of each other.

But $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ is Euclidean with ϕ as Euclidean function.

 $\mathbb{Z}[i]$ Euclidean \implies PID \implies UFD. What are the primes in $\mathbb{Z}[i]$?

Define the "norm" $N : \mathbb{Z}[i] \to \mathbb{Z}, a + bi \mapsto a^2 + b^2 = |a + bi|^2$. Then N(xy) = N(x)N(y) and $N(x) = x\bar{x}$ where $\overline{a + bi} = a - bi$.

Lemma. $N(x) \ge 0$, $N(x) = 0 \iff x = 0$, $N(x) = 1 \iff x = \pm 1$ or $\pm i$, $N(x) = 1 \iff x$ is a unit in $\mathbb{Z}[i]$.

Proof. The first 3 statements are easy. If N(x) = 1 then $x\bar{x} = 1 \implies x = \text{unit.}$ If x = unit then $xy = 1, y \in \mathbb{Z}[i] \implies N(xy) = N(x)N(y) = N(1) = 1 \implies N(x) = 1$.

Corollary. If $x \in \mathbb{Z}[i]$ and N(x) is prime in \mathbb{Z} then x is irreducible in $\mathbb{Z}[i]$.

But there are other irreducibles in $\mathbb{Z}[i]$ too. Given $x \in R$ non-zero non-unit, then $N(x) \in \mathbb{Z}_{\geq 2}$. If x is irreducible then \bar{x} is also irreducible (since complex conjugation is a homomorphism) so N(x) is a product of two irreducibles in $\mathbb{Z}[i]$. But we can write $N(x) = p_1 p_2 \dots p_k$ where p_i is prime numbers in \mathbb{Z} and then write each p_i as product of irreducibles in $\mathbb{Z}[i]$, so either k = 1 and $p_1 =$ product of two irreducibles in $\mathbb{Z}[i]$ or k = 2 and p_1, p_2 are two irreducibles in $\mathbb{Z}[i]$ where $x = up_1, \bar{x} = p_2 v, u, v$ units $\implies p_1 = p_2$.

Remains to show for $p \in \mathbb{Z}$ prime, p is irreducible in $\mathbb{Z}[i] \iff p \equiv 3 \pmod{4}$.