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Mathematicians are brilliant people. Especially before they
have so many fancy tools, all they have is brilliance.

— Micheal Zieve

Lemma. If R is Noetherian (i.e. an integral domain in which every ideal is finitely generated)
then every non-zero non-unit in R is product of irreducible elements.

In general, it is easier for elements to be irreducible than prime.

Proof. Suppose otherwise. Then ∃x ∈ R non-zero non-unit, not a product of irreducible
elements =⇒ x is reducible, say x = yz. At least on of y or z is neither a unit nor a
product of irreducibles.

Hence x = x1y1, where x1 is not unit or product of irreducibles, y1 is not a unit. Likewise
x1 = x2y2 where x2 is a not unit or product of irreducibles with y2 is not a unit. xn =

xn+1yn+1.
(x) ( (x1) ( (x2) ( . . .⋃

n≥1(xn) is an ideal of R which doesn’t contain 1. It is finitely generated =⇒ all
generator is in xn for some finite n =⇒ (xn) = (xn+1), a contradiction. �

Last time: R = PID =⇒ all irreducible elements in R are prime =⇒ every element or
R has ≤ 1 factorization into irreducible elements (up to permutation).

On the other hand, R = PID =⇒ R is Noetherian =⇒ every nonzero element of R has
a factorization into irreducible elements.

These two together shows that R is UFD.

Lemma. If R is a Euclidean integral domain (i.e. ∃φ : R → {−∞} ∪ Z≥0 s.t. ∀a, b ∈ R with
b 6= 0, ∃q, r ∈ R s.t. a = bq + r where φ(R) < φ(b)) then R is PID.

Proof. If I is a nonzero ideal of R, then φ(I) ⊂ {−∞} ∪ Z≥0. So φ(I \ {0}) has a smallest
element φ(b), b ∈ I, b 6= 0. Then I = (b), since (b) ⊆ I and also I ⊆ (b) because a ∈ I =⇒
a = bq + r, q, r ∈ R,φ(r) < φ(b).

But a, b ∈ I, a = bq + r =⇒ r ∈ I . So the minimalist of b of φ(b) implies r = 0, so
b | a =⇒ a ∈ (b). �

Example. Z[i] Euclidean =⇒ PID =⇒ UFD.

φ(a + b
√

3) := a2 + 3b2 is NOT a Euclidean function on Z[
√
−3], since you can’t divide

1 +
√
−3 by 2 to get a smaller remainder.
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Moreover, Z[
√
−3] is not Euclidean, since it is not a UFD: (1+

√
−3)(1−

√
−3) = 4 = 2 ·2,

all irreducible and they are not unit multiples of each other.

But Z
[
1+
√
−3

2

]
is Euclidean with φ as Euclidean function.

Z[i] Euclidean =⇒ PID =⇒ UFD. What are the primes in Z[i]?

Define the "norm" N : Z[i] → Z, a + bi 7→ a2 + b2 = |a + bi|2. Then N(xy) = N(x)N(y)

and N(x) = xx̄ where a+ bi = a− bi.

Lemma. N(x) ≥ 0, N(x) = 0 ⇐⇒ x = 0, N(x) = 1 ⇐⇒ x = ±1 or ±i, N(x) = 1 ⇐⇒
x is a unit in Z[i].

Proof. The first 3 statements are easy. If N(x) = 1 then xx̄ = 1 =⇒ x = unit. If x = unit
then xy = 1, y ∈ Z[i] =⇒ N(xy) = N(x)N(y) = N(1) = 1 =⇒ N(x) = 1. �

Corollary. If x ∈ Z[i] and N(x) is prime in Z then x is irreducible in Z[i].

But there are other irreducibles in Z[i] too. Given x ∈ R non-zero non-unit, then N(x) ∈
Z≥2. If x is irreducible then x̄ is also irreducible (since complex conjugation is a homo-
morphism) so N(x) is a product of two irreducibles in Z[i]. But we can write N(x) =

p1p2 . . . pk where pi is prime numbers in Z and then write each pi as product of irre-
ducibles in Z[i], so either k = 1 and p1 = product of two irreducibles in Z[i] or k = 2 and
p1, p2 are two irreducibles in Z[i] where x = up1, x̄ = p2v, u, v units =⇒ p1 = p2.

Remains to show for p ∈ Z prime, p is irreducible in Z[i] ⇐⇒ p ≡ 3 (mod 4).
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