Math 494

Yiwei Fu

Feb 01, 2022

Last time:

Theorem (Bezout's theorem). If f(x, y) and g(x, y) are polynomials in $\mathbb{C}[x, y]$ with no (nonconstant) common factor. Then they only have finitely many common zeros in $\mathbb{C} \times \mathbb{C}$.

In fact

#of zeros \leq (total deg of f(x, y)) \cdot (total deg of g(x, y)).

Note: every nonzero element of $(\mathbb{C}(y))[x]$ can be written as $\frac{a(y)}{b(y)} \cdot H(x, y)$ where $a, b \in \mathbb{C}[y] \setminus \{0\}$ and $H(x, y) \in \mathbb{C}[x, y]$ is note divisible by any nonconstant polynomial in $\mathbb{C}[Y]$.

Proof. In $(\mathbb{C}(y))[x]$, (f,g) = (h) with $h \in \mathbb{C}[x,y]$, h not divisible by any nonconstant polynomial in $\mathbb{C}[y]$.

 \implies $rf + sg = h, r, s \in (\mathbb{C}(y))[x] \implies r_1f + s_1g = hv$, we may assume $u, r_1, s_1 \in \mathbb{C}[x, y]$ have no common factor.

If h = 1 then $r_1 f + s_1 g = u$. So any common root (x_0, y_0) of f and g would have $u(y_0) = 0$. $(u \neq 0)$ So there are finitely many possibilities for y_0 . Look at x_0 , if they sample process also result in h = 1, there are finitely many possibilities for x_0 .

Now show h = 1. Otherwise $h \mid f$ in $(\mathbb{C}(y))[x]$.

$$h\frac{a(y)}{b(y)}H(x,y) = f \implies h(x,y)a(y)H(x,y) = f(x,y)b(y)$$

where $a, b \in \mathbb{C}[y]$ coprime, $b \neq 0$. $H \in \mathbb{C}[x, y]$ not divisible by any nonconstant polynomial in $\mathbb{C}[y]$.

If b(y) is nonconstant then it has a root $\beta \in \mathbb{C}$. Evaluate at $y = \beta$ gives

$$h(x,\beta)\alpha(\beta)H(x,\beta) = 0$$

while all three are nonzero by assumption, which is a contradiction.

Therefore b(y) is constant $\implies h \mid f$ in $\mathbb{C}[x, y]$. Similarly $h \mid g$ in $\mathbb{C}[x, y]$, a contradiction.

Factorization (in an Integral Domain)

Suppose R an integral domain.

$$u \in R^* \iff (u) = (1), \ u = 0 \iff (u) = (0).$$

u is irreducible (*u* is nonzero, not a unit, not a product of two nonzero non-units) \iff (0) \subsetneq (*u*) \subsetneq (1) (there is no principal ideal strictly between (*u*) and (1).)

u is reducible $\iff (0) \subsetneq (u) \subsetneq (a) \subsetneq (1)$ for some $a \in R$.

Definition. A "PID" (<u>principle integral domain</u>) is an integral domain in which all ideals are principal

Definition. u is prime $\iff u \notin R^*, [u \mid ab \implies u \mid a \text{ or } u \mid b].$

Lemma. If R is an integral domain and $u \in R$ is a non-zero prime then u is irreducible.

Proof. Otherwise *u* is reducible $\implies u = ab, a, b \neq 0, a, b \in R^*$. *u* is prime $\implies u \mid a$ or $u \mid b$. Assume $u \mid a \implies uv = a \implies u = ab = uvb \implies vb = 1 \implies b$ is a unit, a contradiction.

Lemma. If R is PID and $u \in R$ is irreducible then u is prime.

Proof. Suppose $u \mid ab$. Then (u, a) = (h). So $h \mid u$. If $h \notin R^*$ then $u = h \cdot \text{unit} \implies u \mid h$, but $h \mid a \implies u \mid a$.

If $h \in R^*$ then $\exists x, y \in R \ s.t. \ ux + ay = 1$. Multiply by b we have uxb + aby = b. $u \mid uxb, u \mid aby \implies u \mid b$.

Note: If $u \in R$ is prime then $u \mid a_1 a_2 \dots a_k \implies u \mid a_i$ for some *i* (by induction). If in addition all a_i 's are irreducible then $u = a_i$ unit for some *i*.

Lemma. If *R* is an integral domain where all irreducible elements are prime, then any nonzero element of *R* has at most one prime factorization. (up to equivalence i.e. if $p_1p_2...p_k = q_1q_2...q_\ell$ with p_i, q_j irreducible in *R* then $k = \ell$ and $\exists \sigma$ a permutation, $p_i = q_{\sigma(i)} \cdot unit, \forall i$.)

Proof. If $p_1 \dots p_k = q_1 \dots q_\ell$, p_i, q_j irreducible. Then $p_1 \mid q_1 \dots q_\ell \implies p_1 = q_j \cdot \text{unit for some } j$.

Hence

$$p_2 p_3 \dots p_k = \operatorname{unit} \cdot \prod_{r \neq j} q_r.$$

Then induct.

Next time: If *R* is PID (or more generally, every ideal in *R* is finitely generated), then every nonzero non-unit in *R* is a product of primes. (\implies PID's are UFD's)

Definition. An integral domain *R* is Euclidean if $\exists \phi : R \to \{-\infty\} \cup \mathbb{Z}_{\geq 0} \ s.t. \ \forall a, b \in R$ with $b \neq 0$, $\exists q, r \in R \ s.t. \ a = bq + r$ and $\phi(r) < \phi(b)$.

Example. $R = \mathbb{Z}, \phi(n) = |n|.$ $R = k[x], \phi(f) = \deg(f).$

Lemma. $\mathbb{Z}[i]$ is Euclidean with $\phi(x) = |x|^2, a + bi \mapsto a^2 + b^2$.

Here ϕ is multiplicative.

Proof. Given $a, b \in \mathbb{Z}[i], b \neq 0$, want $q, r \in \mathbb{Z}[i]$ *s.t.* a = bq + r, |r| < |b|. Equivalently:

$$\frac{a}{b} = q + \frac{r}{b}, \ \left|\frac{r}{b}\right| < 1.$$

Clearly $\forall \alpha \in \mathbb{C}, \exists q \in \mathbb{Z}[i] \ s.t. \ \alpha - q = u + vi \ (u, v \in \mathbb{R}, |u|, |v| \le \frac{1}{2} \implies |u + vi| < 1).$ If $\alpha \in \mathbb{Q}[i]$ then $u, v = \mathbb{Q}$. So write $u + vi = \frac{r}{b}$ then |r| < |b| and a = bq + r.

Fun fact: $x^2 + x + 41$ is prime for x = 0, 1, ..., 39 and this statement is equivalent to $\mathbb{Z}\left[\frac{1+\sqrt{-163}}{2}\right]$ being a unique factorization domain.