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Theorem (Bezout’s theorem). If f(x, y) and g(x, y) are polynomials in C[x, y] with no (non-
constant) common factor. Then they only have finitely many common zeros in C× C.

In fact
#of zeros ≤ (total deg of f(x, y)) · (total deg of g(x, y)).

Note: every nonzero element of (C(y))[x] can be written as a(y)
b(y) · H(x, y) where a, b ∈

C[y] \ {0} and H(x, y) ∈ C[x, y] is note divisible by any nonconstant polynomial in C[Y ].

Proof. In (C(y))[x], (f, g) = (h) with h ∈ C[x, y], h not divisible by any nonconstant
polynomial in C[y].

=⇒ rf + sg = h, r, s ∈ (C(y))[x] =⇒ r1f + s1g = hv, we may assume u, r1, s1 ∈ C[x, y]
have no common factor.

If h = 1 then r1f+s1g = u. So any common root (x0, y0) of f and g would have u(y0) = 0.
(u 6= 0) So there are finitely many possibilities for y0. Look at x0, if they sample process
also result in h = 1, there are finitely many possibilities for x0.

Now show h = 1. Otherwise h | f in (C(y))[x].

h
a(y)

b(y)
H(x, y) = f =⇒ h(x, y)a(y)H(x, y) = f(x, y)b(y)

where a, b ∈ C[y] coprime, b 6= 0. H ∈ C[x, y] not divisible by any nonconstant polyno-
mial in C[y].

If b(y) is nonconstant then it has a root β ∈ C. Evaluate at y = β gives

h(x, β)α(β)H(x, β) = 0
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while all three are nonzero by assumption, which is a contradiction.

Therefore b(y) is constant =⇒ h | f in C[x, y]. Similarly h | g in C[x, y], a contradiction.
�

Factorization (in an Integral Domain)

Suppose R an integral domain.

u ∈ R∗ ⇐⇒ (u) = (1), u = 0 ⇐⇒ (u) = (0).

u is irreducible (u is nonzero, not a unit, not a product of two nonzero non-units) ⇐⇒
(0) ( (u) ( (1) (there is no principal ideal strictly between (u) and (1).)

u is reducible ⇐⇒ (0) ( (u) ( (a) ( (1) for some a ∈ R.

Definition. A "PID" (principle integral domain) is an integral domain in which all ideals
are principal

Definition. u is prime ⇐⇒ u /∈ R∗, [u | ab =⇒ u | a or u | b].

Lemma. If R is an integral domain and u ∈ R is a non-zero prime then u is irreducible.

Proof. Otherwise u is reducible =⇒ u = ab, a, b 6= 0, a, b ∈ R∗. u is prime =⇒ u |
a or u | b. Assume u | a =⇒ uv = a =⇒ u = ab = uvb =⇒ vb = 1 =⇒ b is a unit, a
contradiction. �

Lemma. If R is PID and u ∈ R is irreducible then u is prime.

Proof. Suppose u | ab. Then (u, a) = (h). So h | u. If h /∈ R∗ then u = h · unit =⇒ u |
h, but h | a =⇒ u | a.

If h ∈ R∗ then ∃x, y ∈ R s.t. ux + ay = 1. Multiply by b we have uxb + aby = b.
u | uxb, u | aby =⇒ u | b. �

Note: If u ∈ R is prime then u | a1a2 . . . ak =⇒ u | ai for some i (by induction). If in
addition all ai’s are irreducible then u = ai·unit for some i.

Lemma. IfR is an integral domain where all irreducible elements are prime, then any nonzero el-
ement ofR has at most one prime factorization. (up to equivalence i.e. if p1p2 . . . pk = q1q2 . . . q`

with pi, qj irreducible in R then k = ` and ∃σ a permutation, pi = qσ(i) · unit,∀i.)

Proof. If p1 . . . pk = q1 . . . q`, pi, qj irreducible. Then p1 | q1 . . . q` =⇒ p1 = qj · unit for
some j.
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Hence
p2p3 . . . pk = unit ·

∏
r 6=j

qr.

Then induct. �

Next time: If R is PID (or more generally, every ideal in R is finitely generated), then
every nonzero non-unit in R is a product of primes. ( =⇒ PID’s are UFD’s)

Definition. An integral domain R is Euclidean if ∃φ : R → {−∞} ∪ Z≥0 s.t. ∀a, b ∈ R
with b 6= 0, ∃q, r ∈ R s.t. a = bq + r and φ(r) < φ(b).

Example. R = Z, φ(n) = |n|. R = k[x], φ(f) = deg(f).

Lemma. Z[i] is Euclidean with φ(x) = |x|2, a+ bi 7→ a2 + b2.

Here φ is multiplicative.

Proof. Given a, b ∈ Z[i], b 6= 0, want q, r ∈ Z[i] s.t. a = bq + r, |r| < |b|. Equivalently:

a

b
= q +

r

b
,
∣∣∣r
b

∣∣∣ < 1.

Clearly ∀α ∈ C,∃q ∈ Z[i] s.t. α− q = u+ vi (u, v ∈ R, |u|, |v| ≤ 1
2 =⇒ |u+ vi| < 1).

If α ∈ Q[i] then u, v = Q. So write u+ vi = r
b then |r| < |b| and a = bq + r. �

Fun fact: x2 + x + 41 is prime for x = 0, 1, . . . , 39 and this statement is equivalent to
Z
[
1+
√
−163
2

]
being a unique factorization domain.
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