Math 494

Yiwei Fu

Jan 25, 2022

 \mathbb{Z} is similar to $\mathbb{Z}/p\mathbb{Z}[x]$ and also to $\mathbb{C}[x]$. So there are analytic statements we can prove algebraically, and then apply it to different coefficient brackets.

Theorem (Integral domain is contained in a field). *If* R *is an integral domain, then* \exists *injective homomorphism* $\varphi : R \to K$ *for some field* K.

Proof. (Analogous to construction of rational numbers) Let $\operatorname{Frac} R = \{(a, b) : a, b \in R.b \neq 0\}$. Write $\frac{a}{b}$ for (a, b). Say $\frac{a}{b} \sim \frac{c}{d}$ if ad = bc.

Define $\frac{a}{b} + \frac{c}{d} := \frac{ad+bc}{bd}$ and check that the definition doesn't depend on the choice of representitive for each equivalence class i.e. if $\frac{a}{b} = \frac{A}{B}$ and $\frac{c}{d} = \frac{C}{D}$ then $\frac{ad+bc}{bd} = \frac{AD+BC}{BD}$.

In fact Frac *R* is a ring with 0 element $\frac{0}{1}$ and 1 element $\frac{1}{1}$, $-\left(\frac{a}{b}\right) = \frac{-a}{b}$. So there is injection $\mathbb{R} \hookrightarrow \operatorname{Frac} R, r \mapsto \frac{r}{1}$. Also $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a} \implies \operatorname{Frac} R$ is a field.

Frac R is the "field of fractions" of R, or the "fractional field" of R. In fact it is the smallest field containing R.

"Mapping property": If *R* is integral domain and *K* is a field. $\varphi : R \to K$ is injective homomorphism. $R \hookrightarrow \operatorname{Frac} R \dashrightarrow K, \varphi = \iota \circ \theta$.

Example. • Frac $\mathbb{Z} = \mathbb{Q}$.

- $K = \text{field} \implies \text{Frac}(K[x]) = K(X).$
- $\operatorname{Frac}(\mathbb{Z}[x]) = \mathbb{Q}(x).$

 $\mathbb{C}[x,y]/(xy-1) \cong \mathbb{C}\left[x,\frac{1}{x}\right].$

Definition. A <u>maximal ideal</u> M of a ring R is an ideal $M \neq R \ s.t. \nexists$ ideal I of R with

 $M \subsetneq I \subsetneq R.$

Example. • $R = \mathbb{Z}$, the maximal ideals are (p) where p is prime.

• $R = \mathbb{C}[x]$, the maximal ideals are $(x - \alpha)$, $\alpha \in \mathbb{C}$.

Lemma. If $\varphi : R \to R'$ is a surjective ring homomorphism, then ker (φ) is a maximal ideal if and only if R' is a field.

Proof. Correpondence theorem says that $\ker(\varphi)$ is maximal iff the only ideals of R containing $\ker(\varphi)$ are (1) and $\ker(\varphi)$, and $\ker(\varphi) \neq (1)$ iff the only ideals of R' are (0) and (1), where (0) \neq (1) iff R' is a field.

Corollary. An ideal I of R is maximal $\iff R/I$ is a field.

Corollary. The ideal (0) of R is maximal \iff R is a field.

Lemma. Let K be a field.

- 1. The maximal ideals of K[x] are (f(x)) with f(x) irreducible.
- 2. If $\varphi : K[x] \to R'$ is a homomorphism to an integral domain R', then ker (φ) is either (0) (which implies the map is injective) or a maximal ideal.

 $\begin{array}{l} fg \in \ker(\varphi) \implies \varphi(fg) = \varphi(f)\varphi(g) = 0 \implies \varphi(f) = 0 \text{ or } \varphi(g) = 0 \implies f \in \ker(\varphi) \text{ or } g \in \ker(\varphi). \end{array}$

But $\ker(\varphi) = \text{ideals of } K[x] = (h) \text{ for some } h \implies \ker(\varphi) = (0) \text{ or } (h), h \text{ irreducible, or } (1) \text{ (impossible sime } R' \text{ is integral domain).}$

HILBERT'S NULLSTELLENSTAZ The maximal ideals of

$$R := \mathbb{C}[x_1, \dots, x_n]$$

are

$$(x_1 - \alpha_1, x_2 - \alpha_2, \dots, x_n - \alpha_n)$$

with $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. (So they are in bijection of \mathbb{C}^n .)

Note: this ideal is the kernel of the evaluation homomorphism

$$\mathbb{C}[x_1,\ldots,x_n] \to \mathbb{C}, \quad f(x_1,\ldots,x_n) \mapsto f(\alpha_1,\ldots,\alpha_n).$$

This is maximal since image of a homomorphism is a field.

Proof. Let *M* be a maximal ideal of *R*. Consider quotient map $\pi : R \to R/M$. We have $M = \ker \pi$. It suffice to show that *M* contains $x_1 - \alpha_1, \ldots, x_n - \alpha_n$ for some $\alpha_1, \ldots, \alpha_n$.

Restrict this to the subring $\mathbb{C}[x_1] \subseteq R$ to get $\mathbb{C}[x_1] \to R/M$. Since R/M is a field, then the kernel of $\mathbb{C}[x_1] \to R/M$ is either (0) or a maximal ideal of $\mathbb{C}[x_1]$ *i.e.* $(x_1 - \alpha_1)$.

It cannot be (0) since if it were (0) then it was a injection and we get $\operatorname{Frac}(\mathbb{C}[x_1]) \hookrightarrow R/M$. But these maps are the identity on \mathbb{C} , so get injective \mathbb{C} -linear map.

R/M is a countable dimensional \mathbb{C} -vector space since it is spanned by $x_1^{e_1}x_2^{e_2}\ldots x_n^{e_n}$. $\mathbb{C}(x)$ has uncountable dimension as \mathbb{C} -vector space since $\frac{1}{x-\alpha}, \alpha \in \mathbb{C}$ are linearly independent.

So we obtain a injective map from uncountable dimensional \mathbb{C} -vector space to a countable dimensional \mathbb{C} -vector space, a contradiction.

So *M* has to be $(x_1 - \alpha_1)$. This applies to restriction to any $\mathbb{C}[x_i]$'s.

3