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Z is similar to Z/pZ[x] and also to C[x]. So there are analytic statements we can prove
algebraically, and then apply it to different coefficient brackets.

Theorem (Integral domain is contained in a field). If R is an integral domain, then ∃ injec-
tive homomorphism ϕ : R→ K for some field K.

Proof. (Analogous to construction of rational numbers) Let FracR = {(a, b) : a, b ∈ R.b 6=
0}. Write a

b
for (a, b). Say a

b
∼ c

d
if ad = bc.

Define a

b
+

c

d
:=

ad+ bc

bd
and check that the definition doesn’t depend on the choice

of representitive for each equivalence class i.e. if a

b
=

A

B
and c

d
=

C

D
then ad+ bc

bd
=

AD +BC

BD
.

In fact FracR is a ring with 0 element 0

1
and 1 element 1

1
, −
(
a

b

)
=

−a

b
.

So there is injection R ↪→ FracR, r 7→ r

1
.

Also
(
a

b

)−1
=

b

a
=⇒ FracR is a field. �

FracR is the "field of fractions" ofR, or the "fractional field" ofR. In fact it is the smallest
field containing R.

"Mapping property": If R is integral domain and K is a field. ϕ : R → K is injective
homomorphism. R ↪→ FracR 99K K,ϕ = ι ◦ θ.

Example. • FracZ = Q.

• K = field =⇒ Frac(K[x]) = K(X).

• Frac(Z[x]) = Q(x).

C[x, y]/(xy − 1) ∼= C
[
x,

1

x

]
.

Definition. A maximal ideal M of a ring R is an ideal M 6= R s.t. @ ideal I of R with
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M ( I ( R.

Example. • R = Z, the maximal ideals are (p) where p is prime.

• R = C[x], the maximal ideals are (x− α), α ∈ C.

Lemma. If ϕ : R → R′ is a surjective ring homomorphism, then ker(ϕ) is a maximal ideal if
and only if R′ is a field.

Proof. Correpondence theorem says that ker(ϕ) is maximal iff the only ideals of R con-
taining ker(ϕ) are (1) and ker(ϕ), and ker(ϕ) 6= (1) iff the only ideals of R′ are (0) and
(1), where (0) 6= (1) iff R′ is a field. �

Corollary. An ideal I of R is maximal ⇐⇒ R/I is a field.

Corollary. The ideal (0) of R is maximal ⇐⇒ R is a field.

Lemma. Let K be a field.

1. The maximal ideals of K[x] are (f(x)) with f(x) irreducible.

2. If ϕ : K[x] → R′ is a homomorphism to an integral domain R′, then ker(ϕ) is either (0)
(which implies the map is injective) or a maximal ideal.

fg ∈ ker(ϕ) =⇒ ϕ(fg) = ϕ(f)ϕ(g) = 0 =⇒ ϕ(f) = 0 or ϕ(g) = 0 =⇒ f ∈ ker(ϕ) or
g ∈ ker(ϕ).

But ker(ϕ) = ideals of K[x] = (h) for some h =⇒ ker(ϕ) = (0) or (h), h irreducible, or
(1) (impossible sime R′ is integral domain).

HILBERT’S NULLSTELLENSTAZ The maximal ideals of

R := C[x1, . . . , xn]

are
(x1 − α1, x2 − α2, . . . , xn − αn)

with α1, . . . , αn ∈ C. (So they are in bijection of Cn.)

Note: this ideal is the kernel of the evaluation homomorphism

C[x1, . . . , xn]→ C, f(x1, . . . , xn) 7→ f(α1, . . . , αn).

This is maximal since image of a homomorphism is a field.

Proof. Let M be a maximal ideal of R. Consider quotient map π : R → R/M . We have
M = kerπ. It suffice to show that M contains x1 − α1, . . . , xn − αn for some α1, . . . , αn.

2



Restrict this to the subring C[x1] ⊆ R to get C[x1]→ R/M . Since R/M is a field, then the
kernel of C[x1]→ R/M is either (0) or a maximal ideal of C[x1] i.e. (x1 − α1).

It cannot be (0) since if it were (0) then it was a injection and we get Frac(C[x1]) ↪→ R/M .
But these maps are the identity on C, so get injective C-linear map.

R/M is a countable dimensional C-vector space since it is spanned by xe11 x
e2
2 . . . xenn .

C(x) has uncountable dimension as C-vector space since 1
x−α , α ∈ C are linearly inde-

pendent.

So we obtain a injective map from uncountable dimensinoal C -vector space to a count-
able dimensional C-vector space, a contradiction.

So M has to be (x1 − α1). This applies to restriction to any C[xi]’s. �
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