Math 494

Yiwei Fu

Jan 25, 2022

 \mathbb{Z} is similar to $\mathbb{Z}/p\mathbb{Z}[x]$ and also to $\mathbb{C}[x]$. So there are analytic statements we can prove algebraically, and then apply it to different coefficient brackets.

Theorem (Integral domain is contained in a field)**.** *If* R *is an integral domain, then* ∃ *injective homomorphism* φ : $R \to K$ *for some field* K.

Proof. (Analogous to construction of rational numbers) Let Frac $R = \{(a, b) : a, b \in R.b \neq b\}$ 0}. Write $\frac{a}{b}$ for (a, b) . Say $\frac{a}{b} \sim \frac{c}{d}$ $\frac{c}{d}$ if $ad = bc$.

Define $\frac{a}{b} + \frac{c}{d}$ $\frac{c}{d} := \frac{ad + bc}{bd}$ and check that the definition doesn't depend on the choice of representitive for each equivalence class i.e. if $\frac{a}{b} = \frac{A}{B}$ $\frac{A}{B}$ and $\frac{c}{d} = \frac{C}{D}$ $\frac{C}{D}$ then $\frac{ad + bc}{bd}$ = $AD + BC$ $\frac{1}{BD}$.

In fact Frac R is a ring with 0 element $\frac{0}{1}$ and 1 element $\frac{1}{1}$, $\left(\frac{a}{b}\right)$ b $= \frac{-a}{b}$ $\frac{a}{b}$. So there is injection $\mathbb{R} \hookrightarrow \text{Frac } R, r \mapsto \frac{r}{1}$ $\frac{1}{1}$. Also $\left(\frac{a}{b}\right)$ $\Big)^{-1} = \frac{b}{b}$ $\frac{b}{a} \implies$ Frac R is a field.

Frac R is the "field of fractions" of R, or the "fractional field" of R. In fact it is the smallest field containing R.

"Mapping property": If R is integral domain and K is a field. $\varphi : R \to K$ is injective homomorphism. $R \hookrightarrow$ Frac $R \dashrightarrow K$, $\varphi = \iota \circ \theta$.

Example. • Frac $\mathbb{Z} = \mathbb{Q}$.

b

- $K = \text{field} \implies \text{Frac}(K[x]) = K(X).$
- Frac $(\mathbb{Z}[x]) = \mathbb{Q}(x)$.

 $\mathbb{C}[x,y]/(xy-1) \cong \mathbb{C}[x,\frac{1}{x}]$ x i .

Definition. A maximal ideal M of a ring R is an ideal $M \neq R$ s.t. \sharp ideal I of R with

 $M \subsetneq I \subsetneq R$.

Example. • $R = \mathbb{Z}$, the maximal ideals are (p) where p is prime.

• $R = \mathbb{C}[x]$, the maximal ideals are $(x - \alpha)$, $\alpha \in \mathbb{C}$.

Lemma. If φ : $R \to R'$ is a surjective ring homomorphism, then $\ker(\varphi)$ is a maximal ideal if and only if R' is a field.

Proof. Correpondence theorem says that $\ker(\varphi)$ is maximal iff the only ideals of R containing ker(φ) are (1) and ker(φ), and ker(φ) \neq (1) iff the only ideals of R' are (0) and (1), where $(0) \neq (1)$ iff R' is a field.

Corollary. An ideal I of R is maximal $\iff R/I$ is a field.

Corollary. *The ideal* (0) *of* R *is maximal* $\iff R$ *is a field.*

Lemma. *Let* K *be a field.*

- *1. The maximal ideals of* $K[x]$ *are* $(f(x))$ *with* $f(x)$ *irreducible.*
- 2. If φ : $K[x] \to R'$ *is a homomorphism to an integral domain* R' *, then* $\ker(\varphi)$ *is either* (0) *(which implies the map is injective) or a maximal ideal.*

 $fg \in \text{ker}(\varphi) \implies \varphi(fg) = \varphi(f)\varphi(g) = 0 \implies \varphi(f) = 0 \text{ or } \varphi(g) = 0 \implies f \in \text{ker}(\varphi) \text{ or }$ $g \in \ker(\varphi)$.

But ker(φ) = ideals of $K[x] = (h)$ for some $h \implies \ker(\varphi) = (0)$ or (h) , h irreducible, or (1) (impossible sime R' is integral domain).

HILBERT'S NULLSTELLENSTAZ The maximal ideals of

$$
R := \mathbb{C}[x_1, \dots, x_n]
$$

are

 $(x_1 - \alpha_1, x_2 - \alpha_2, \ldots, x_n - \alpha_n)$

with $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. (So they are in bijection of \mathbb{C}^n .)

Note: this ideal is the kernel of the evaluation homomorphism

$$
\mathbb{C}[x_1,\ldots,x_n]\to\mathbb{C},\quad f(x_1,\ldots,x_n)\mapsto f(\alpha_1,\ldots,\alpha_n).
$$

This is maximal since image of a homomorphism is a field.

Proof. Let *M* be a maximal ideal of *R*. Consider quotient map $\pi : R \to R/M$. We have $M = \ker \pi$. It suffice to show that M contains $x_1 - \alpha_1, \ldots, x_n - \alpha_n$ for some $\alpha_1, \ldots, \alpha_n$.

Restrict this to the subring $\mathbb{C}[x_1] \subseteq R$ to get $\mathbb{C}[x_1] \to R/M$. Since R/M is a field, then the kernel of $\mathbb{C}[x_1] \to R/M$ is either (0) or a maximal ideal of $\mathbb{C}[x_1]$ *i.e.* $(x_1 - \alpha_1)$.

It cannot be (0) since if it were (0) then it was a injection and we get $\text{Frac}(\mathbb{C}[x_1]) \hookrightarrow R/M$. But these maps are the identity on $\mathbb C$, so get injective $\mathbb C$ -linear map.

 R/M is a countable dimensional \mathbb{C} -vector space since it is spanned by $x_1^{e_1}x_2^{e_2}\ldots x_n^{e_n}$. $\mathbb{C}(x)$ has uncountable dimension as $\mathbb{C}\text{-vector space since } \frac{1}{x-\alpha}, \alpha \in \mathbb{C}$ are linearly independent.

So we obtain a injective map from uncountable dimensinoal C -vector space to a countable dimensional C-vector space, a contradiction.

So *M* has to be $(x_1 - \alpha_1)$. This applies to restriction to any $\mathbb{C}[x_i]$'s.