Math 494

Yiwei Fu

Jan 13, 2022

1

<u>FACT</u>: If *G* is a finitely generated subgroup of \mathbb{C}^* , then $\forall n \in \mathbb{N}$, the equation $x_1 + x_2 + \ldots + x_n = 1$ has only finitely many solutions with $x_1, x_2, \ldots, x_n \in G$, in which no nonempty subset of x_i 's sums to 0.

Extra credit: does \exists such a *G* for which \exists solutions as above for infinitely many *n*?

Example 1.1. 0 ring: 0 = 1.

0 homomorphism: for any ring $R, f : R \rightarrow$ "zero ring", $r \mapsto 0$.

Definition 1.1. If $f : R \to S$ is a ring homomorphism, then the kernel of f is

$$\ker f = \{ r \in R : f(r) = 0 \}.$$

We know ker f is a subgroup of R under +. Also: if $r \in \ker f$ and $r' \in R$ then $rr' \in \ker f$ since $f(rr') = f(r)f(r') = 0 \cdot f(r') = 0$.

Definition 1.2. Suppose *R* is a ring. An <u>ideal</u> of *R* is a subgroup of (R, +) which is closed under multiplication by *R*.

Ideals are great.

From NOW ON: ALL rings are commutative.

Example 1.2. Ideals in \mathbb{Z} : $n\mathbb{Z}$, $(n \in \mathbb{Z}_{\geq 0})$

<u>NOTE</u>: A nonempty subset of R is an ideal $\iff \forall n \ge 0, \forall r_1, \dots, r_n \in R, i_1, i_2, \dots, i_n \in I, r_1i_1 + r_2i_2 + \dots + r_ni_n \in I.$

Definition 1.3. For $r \in R$ the principal ideal (*r*) (also denoted as *rR*) is $\{rr' : r' \in R\}$.

Unit ideal of R is (1) = 1R = R. Zero ideal of R is $(0) = \{0\}$.

A "proper ideal" of R is an ideal which is not (0) or (1).

<u>NOTE</u>: If $f : R \to S$ is a homomorphism then ker f is an ideal of R. ker $f = (1) \iff S = "0$ ring", ker $f = (0) \iff f$ is injective.

Suppose *R* is a ring and *I* is an ideal. Then R/I is a group under addition.

Proposition 1.1. R/I is a ring.

Proof. Define (r + I)(r' + I) := rr' + I. Note that if $i, i' \in I$ then $(r + i)(r' + i') = rr' + ri' + ir' + ii' \in rr' + I$.

Rest is easy.

Example 1.3. $R = \mathbb{Z}, I = 3\mathbb{Z}, R/I = \mathbb{Z}/3\mathbb{Z}.$

In general, $\mathbb{Z}/n\mathbb{Z}$ is the quotient of the ring *R* by the ideal $n\mathbb{Z}$.

Definition 1.4. A <u>field</u> is a nonzero ring in which every nonzero element has a multiplicative inverse.

Example 1.4. $\mathbb{Q}, \mathbb{C}, \mathbb{R}, \mathbb{Z}/p\mathbb{Z}$ where *p* is prime.

<u>Non-examples:</u> \mathbb{Z} , $\mathbb{Z}/4\mathbb{Z}$.

Definition 1.5. An integral domain is a nonzero ring R with no zero divisors $(a, b \in R, ab = 0 \implies a = 0 \text{ or } b = 0)$.

If *R* is a field, what are the ideals of *R*?

Only (0) and (1). since if an ideal *I* contains a nonzero $r \in R$, then $I \ni rr^{-1} = 1 \implies I = (1)$.

Proposition 1.2. If $f : R \to S$ is a ring homomorphism and R is a field. then either f is injective or S = "0 ring".

Notation: often $R = \operatorname{ring}_{I} I = \operatorname{ideal}_{I}$ for $r \in R$ we denote the element r + I of R/I by \overline{r} .

Theorem 1.1. $f : R \to S$ is a ring homomorphism with kernel K. Let I be an ideal of R. Let $\pi : R \to R/I$ be the quotient map.

1. If $I \subseteq K$ then \exists a unique homomorphism $\overline{f} : R/I \to S \ s.t. \ \overline{f} \circ \pi = f$.

$$\begin{array}{ccc} R & \stackrel{f}{\longrightarrow} S \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

2. If I = K and f is surjective then \overline{f} is \cong .

Theorem 1.2. (Correspondence Theorem) $f : R \to S$ is a surjective ring homomorphism with kernel K. Then the maps $I \mapsto f(I)$ and $J \mapsto f^{-1}(J)$ are inverse bijections {ideals of R containing K} {ideals of S}.

Proof. We know that these maps induce bijections between subgroups of (R, +) containing K and subgroups between (S, +). Check:

- 1. $I = \text{ideal of } R \text{ containing } K \implies f(I) = \text{ideal of } S \text{ since every } s \in S \text{ is } f(r), r \in R,$ so $i \in I \implies s \cdot f(i) = f(r)f(i) = f(ri) \in f(I).$
- 2. J = ideal of S then (from group result) $f^{-1}(J)$ is a subgroup of (R, +) which contains K, and $f^{-1}(J)$ is an ideal since $r \in J, i \in f^{-1}(J) \implies f(ri) = f(r)f(i) \in SJ = J$.

<u>SUPPLEMENT</u>: same notation, $R/I \cong S/f(I)$.