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FACT: IfG is a finitely generated subgroup of C∗, then ∀n ∈ N, the equation x1+x2+. . .+
xn = 1 has only finitely many solutions with x1, x2, . . . , xn ∈ G, in which no nonempty
subset of xi’s sums to 0.

Extra credit: does ∃ such a G for which ∃ solutions as above for infinitely many n?

Example 1.1. 0 ring: 0 = 1.

0 homomorphism: for any ring R, f : R→ “zero ring”, r 7→ 0.

Definition 1.1. If f : R→ S is a ring homomorphism, then the kernel of f is

ker f = {r ∈ R : f(r) = 0}.

We know ker f is a subgroup of R under +. Also: if r ∈ ker f and r′ ∈ R then rr′ ∈ ker f

since f(rr′) = f(r)f(r′) = 0 · f(r′) = 0.

Definition 1.2. SupposeR is a ring. An ideal ofR is a subgroup of (R,+) which is closed
under multiplication by R.

Ideals are great.

From NOW ON: ALL rings are commutative.

Example 1.2. Ideals in Z: nZ, (n ∈ Z≥0)

NOTE: A nonempty subset of R is an ideal ⇐⇒ ∀n ≥ 0,∀r1, . . . , rn ∈ R, i1, i2, . . . , in ∈
I, r1i1 + r2i2 + . . .+ rnin ∈ I.

Definition 1.3. For r ∈ R the principal ideal (r) (also denoted as rR) is {rr′ : r′ ∈ R}.

Unit ideal of R is (1) = 1R = R. Zero ideal of R is (0) = {0}.
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A "proper ideal" of R is an ideal which is not (0) or (1).

NOTE: If f : R → S is a homomorphism then ker f is an ideal of R. ker f = (1) ⇐⇒
S = “0 ring”, ker f = (0) ⇐⇒ f is injective.

Suppose R is a ring and I is an ideal. Then R/I is a group under addition.

Proposition 1.1. R/I is a ring.

Proof. Define (r + I)(r′ + I) := rr′ + I. Note that if i, i′ ∈ I then (r + i)(r′ + i′) =

rr′ + ri′ + ir′ + ii′ ∈ rr′ + I.

Rest is easy. �

Example 1.3. R = Z, I = 3Z, R/I = Z/3Z.

In general, Z/nZ is the quotient of the ring R by the ideal nZ.

Definition 1.4. A field is a nonzero ring in which every nonzero element has a multi-
plicative inverse.

Example 1.4. Q,C,R,Z/pZ where p is prime.

NON-EXAMPLES: Z,Z/4Z.

Definition 1.5. An integral domain is a nonzero ring R with no zero divisors (a, b ∈
R, ab = 0 =⇒ a = 0 or b = 0).

If R is a field, what are the ideals of R?

Only (0) and (1). since if an ideal I contains a nonzero r ∈ R, then I 3 rr−1 = 1 =⇒
I = (1).

Proposition 1.2. If f : R → S is a ring homomorphism andd R is a field. then either f is
injective or S = “0 ring”.

Notation: often R = ring, I = ideal. for r ∈ R we denote the element r + I of R/I by r.

Theorem 1.1. f : R → S is a ring homomorphism with kernel K. Let I be an ideal of R. Let
π : R→ R/I be the quotient map.

1. If I ⊆ K then ∃ a unique homomorphism f : R/I → S s.t. f ◦ π = f.

R S

R/I

f

π f

2. If I = K and f is surjective then f is ∼= .
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Theorem 1.2. (Correspondence Theorem) f : R → S is a surjective ring homomorphism with
kernel K. Then the maps I 7→ f(I) and J 7→ f−1(J) are inverse bijections {ideals of R contain-
ing K} {ideals of S}.

Proof. We know that these maps induce bijections between subgroups of (R,+) contain-
ing K and subgroups between (S,+). Check:

1. I = ideal of R containing K =⇒ f(I) = ideal of S since every s ∈ S is f(r), r ∈ R,
so i ∈ I =⇒ s · f(i) = f(r)f(i) = f(ri) ∈ f(I).

2. J = ideal of S then (from group result) f−1(J) is a subgroup of (R,+) which
contains K, and f−1(J) is an ideal since r ∈ J, i ∈ f−1(J) =⇒ f(ri) = f(r)f(i) ∈
SJ = J. �

SUPPLEMENT: same notation, R/I ∼= S/f(I).
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