Math 494

Yiwei Fu

Jan 13, 2022

1

FACT: If G is a finitely generated subgroup of \mathbb{C}^* , then $\forall n \in \mathbb{N}$, the equation $x_1 + x_2 + \ldots +$ $x_n = 1$ has only finitely many solutions with $x_1, x_2, \ldots, x_n \in G$, in which no nonempty subset of x_i 's sums to 0.

Extra credit: does \exists such a G for which \exists solutions as above for infinitely many n?

Example 1.1. 0 ring: $0 = 1$.

0 homomorphism: for any ring $R, f : R \rightarrow$ "zero ring", $r \mapsto 0$.

Definition 1.1. If $f : R \to S$ is a ring homomorphism, then the kernel of f is

$$
\ker f = \{ r \in R : f(r) = 0 \}.
$$

We know ker f is a subgroup of R under +. Also: if $r \in \text{ker } f$ and $r' \in R$ then $rr' \in \text{ker } f$ since $f(rr') = f(r)f(r') = 0 \cdot f(r') = 0$.

Definition 1.2. Suppose R is a ring. An ideal of R is a subgroup of $(R, +)$ which is closed under multiplication by R .

Ideals are great.

From NOW ON: ALL rings are commutative.

Example 1.2. Ideals in $\mathbb{Z}: n\mathbb{Z}, (n \in \mathbb{Z}_{\geq 0})$

NOTE: A nonempty subset of R is an ideal $\iff \forall n \geq 0, \forall r_1, \dots, r_n \in R, i_1, i_2, \dots, i_n \in R$ $I, r_1i_1 + r_2i_2 + \ldots + r_ni_n \in I.$

Definition 1.3. For $r \in R$ the principal ideal (r) (also denoted as rR) is $\{rr': r' \in R\}$.

Unit ideal of R is $(1) = 1R = R$. Zero ideal of R is $(0) = \{0\}$.

A "proper ideal" of R is an ideal which is not (0) or (1) .

NOTE: If $f : R \to S$ is a homomorphism then ker f is an ideal of R. ker $f = (1) \iff$ $S = "0$ ring", ker $f = (0) \iff f$ is injective.

Suppose R is a ring and I is an ideal. Then R/I is a group under addition.

Proposition 1.1. R/I *is a ring.*

Proof. Define $(r + I)(r' + I) := rr' + I$. Note that if $i, i' \in I$ then $(r + i)(r' + i') =$ $rr' + ri' + ir' + ii' \in rr' + I$.

Rest is easy.

Example 1.3. $R = \mathbb{Z}, I = 3\mathbb{Z}, R/I = \mathbb{Z}/3\mathbb{Z}.$

In general, $\mathbb{Z}/n\mathbb{Z}$ is the quotient of the ring R by the ideal $n\mathbb{Z}$.

Definition 1.4. A field is a nonzero ring in which every nonzero element has a multiplicative inverse.

Example 1.4. $\mathbb{Q}, \mathbb{C}, \mathbb{R}, \mathbb{Z}/p\mathbb{Z}$ where p is prime.

NON-EXAMPLES: $\mathbb{Z}, \mathbb{Z}/4\mathbb{Z}$.

Definition 1.5. An integral domain is a nonzero ring R with no zero divisors $(a, b \in$ $R, ab = 0 \implies a = 0 \text{ or } b = 0$.

If R is a field, what are the ideals of R ?

Only (0) and (1). since if an ideal I contains a nonzero $r \in R$, then $I \ni rr^{-1} = 1 \implies$ $I = (1).$

Proposition 1.2. If $f : R \to S$ *is a ring homomorphism andd* R *is a field. then either* f *is injective or* $S = "0 ring"$.

Notation: often $R = \text{ring}, I = \text{ideal}$. for $r \in R$ we denote the element $r + I$ of R/I by \overline{r} .

Theorem 1.1. $f: R \to S$ *is a ring homomorphism with kernel K. Let I be an ideal of R. Let* $\pi: R \to R/I$ *be the quotient map.*

1. If $I \subseteq K$ *then* \exists *a unique homomorphism* \overline{f} *:* $R/I \rightarrow S$ *s.t.* $\overline{f} \circ \pi = f$ *.*

$$
R \xrightarrow[\pi]{f} S
$$

\n
$$
\overbrace{\pi \searrow \frac{f}{f} \wedge \frac{f}{f}} \qquad R/I
$$

2. If $I = K$ and f *is surjective then* \overline{f} *is* \cong .

Theorem 1.2. *(Correspondence Theorem)* $f : R \rightarrow S$ *is a surjective ring homomorphism with kernel K*. Then the maps $I \mapsto f(I)$ and $J \mapsto f^{-1}(J)$ are inverse bijections {ideals of R contain*ing* K {*ideals of S* }.

Proof. We know that these maps induce bijections between subgroups of $(R, +)$ containing K and subgroups between $(S, +)$. Check:

- 1. *I* = ideal of *R* containing $K \implies f(I) =$ ideal of *S* since every $s \in S$ is $f(r), r \in R$, so $i \in I \implies s \cdot f(i) = f(r)f(i) = f(ri) \in f(I).$
- 2. $J =$ ideal of S then (from group result) $f^{-1}(J)$ is a subgroup of $(R, +)$ which contains K, and $f^{-1}(J)$ is an ideal since $r \in J$, $i \in f^{-1}(J) \implies f(ri) = f(r)f(i) \in$ $SJ = J$.

SUPPLEMENT: same notation, $R/I \cong S/f(I)$.