Math 493

Yiwei Fu

Nov 9, 2021

1 Representation Theory, cont'd

Lemma 1.1. *If* ρ : $G \to GL(V)$ *is a finite dimensional G-representation of a finite group G and* χ *is the character of* ρ *which is non trivial and irreducible, then*

$$
\sum_{g \in G} \chi(g) = 0,
$$

and the multiplicity of the trivial representation in any decomposition of ρ *as the sum of irredicuble representations is*

$$
\langle \chi_{triv}, \chi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g).
$$

Theorem 1.1. If ρ : $G \to GL(V)$ and ρ' : $G \to GL(V')$ are irreducible representations of G \overline{w} *ith characters* χ *and* χ' *, then*

$$
\langle \chi, \chi' \rangle = \begin{cases} 1 & \rho \cong \rho', \\ 0 & otherwise. \end{cases}
$$

Proof. This says

$$
\frac{1}{|G|}\sum_{g\in G}\chi(g)\overline{\chi'(g)}=\begin{cases}1 & \rho\cong\rho',\\ 0 & \text{otherwise.}\end{cases}
$$

From homework we have character of $\operatorname{Hom}_{\mathbb C}(V,W)$ is $\chi\overline{\chi'}$. So this is the multiplicity of ρ_{triv} in $\text{Hom}_{\mathbb{C}}(V, W)$.

 $\text{Hom}_{\mathbb{C}}(V, W)$ has structure of G-representation via $g.\phi$ mapping $v \mapsto g.\phi(g^{-1}.v)$. ϕ is fixed by *G* in the sense that $\forall g, g. \phi(g^{-1}.v) = \phi(v)$.

So $\phi: V \to W$ is a homomorphism of *G*-representations.

Lemma 1.2. Let $f : G \to \mathbb{C}$ be a class function (i.e. a function which is constant on each *conjugacy class of* G*.)*

Let $\rho:G\to \mathrm{GL}(V)$ be a representation. Let $\phi:V\to V$ be $\phi=\sum_{g\in G}f(g)\rho(g).$

If ρ *is irreducible of degree n with character* χ *, then* ϕ *is scaling by* $\frac{1}{n} \sum_{g \in G} f(g) \chi(g) = |G| / f \ge \chi$ $\frac{G|}{n} \langle f, \overline{\chi} \rangle$.

Proof. ϕ is a C-linear map $V \to V$. We want to show

$$
\forall g \in G, \phi \rho(g) = \rho(g)\phi. \tag{1}
$$

п

This is true since

$$
\phi \rho(g) = \sum_{g' \in G} f(g') \rho(g') \rho(g)
$$

$$
= \sum_{g' \in G} f(g') \rho(g'g)
$$

$$
= \sum_{h \in G} f(hg^{-1}) \rho(h)
$$

$$
\rho(g) \phi = \sum_{g' \in G} f(g') \rho(g) \rho(g')
$$

$$
= \sum_{h \in G} f(g^{-1}h) \rho(h).
$$

But $g^{-1}h = h^{-1}(hg^{-1})h$ so $f(g^{-1}h) = f(hg^{-1})$.

Hence ϕ is a homomorphism of *G*-representations from $V \to V$, so it is scaling, say by *c*. Then we have

$$
c \dim V = \text{tr}(\phi) = \sum_{g \in G} f(g) \text{tr}(\rho(g)) = \sum_{g \in G} f(g) \chi(g).
$$

Theorem 1.2. *The characters* χ_1, \ldots, χ_n *of the irreducible representations of G form an orthonormal basis of the space of class functions on* G*.*

Proof. Just need to show that χ_i 's span the space of class functions.

Pick any class function f. Replace f by $f - \sum_{i=1}^{n} \langle f, \chi_i \rangle \chi_i$ to assume f is orthogonal to very χ_i . We want to show that $f = 0$.

From [Lemma 1.2](#page-1-0) we have that $\forall i$, the ϕ coming from χ_i is 0.

Hence \forall representation ρ , the ϕ coming from ρ is 0. Apply this to the regular representation ρ_{reg} .

 $\rho = \mbox{regular representation } \Longleftrightarrow \ V \mbox{ has basis } e_g, g \in G.$

$$
\phi(e_1) = \sum_{g \in G} f(g)\rho(g)(e_1)
$$

$$
= \sum_{g \in G} f(g)e_g.
$$

But ϕ is the 0 map, so

$$
0 = \sum_{g \in G} f(g)e_g.
$$

Hence $f(g) = 0, \forall g$.

Proposition 1.1. *For* $g \in G$ *, let* $c(g)$ *be the size of the conjugacy class of* G. *Then if* χ_1, \ldots, χ_n *are the irreducible characters of* G *then*

$$
\sum_{i=1}^n\overline{\chi_i(g)}\chi_i(g)\frac{|G|}{c(g)}=|C_G(g)|
$$

and if $g' \in G$ is not conjugate to g then

$$
\sum_{i=1}^{n} \overline{\chi_i(g)} \chi_i(g) = 0.
$$

Proof. Let $f : G \to \mathbb{C}$ be 1 on the conjugacy class of g, and 0 elsewhere. This is a class function. Then

$$
f = \sum_{i=1}^{n} \langle f, \chi_i \rangle \chi_i
$$

where

$$
\langle f, \chi_i \rangle = \frac{1}{|G|} \sum_{g'' \sim g} \chi_i(g'') = \frac{c(g)}{|G|} \overline{\chi_i(g)}.
$$

Hence

$$
f = \frac{c(g)}{|G|} \sum_{i=1}^{n} \overline{\chi_i(g)} \chi_i
$$

So for $g' \in G$ we have

$$
f(g') = \frac{c(g)}{|G|} \sum_{i=1}^{n} \overline{\chi_i(g)} \chi_i(g')
$$

If g is conjugate to g' then $\chi_i(g') = \chi_i(g) \implies \sum \overline{\chi_i(g)} \chi_i(g) = \frac{|G|}{c(g)}$.

If g is not conjugate to g' then $\sum \overline{\chi_i(g)}\chi_i(g) = 0$.