Math 493

Yiwei Fu

Nov 2, 2021

1 Representation Theory, cont'd

<u>**RECALL</u></u>: a linear representation of a group** *G* **is a homomorphism \rho : G \to GL(W) for some vector space** *V***.</u>**

Say ρ is <u>irreducible</u> if *V* has not subrepresentations except $\{0\}$ and *V*, where a subrepresentation is a subspace *W* of *V s.t.* $\rho(g)(W) \subseteq W, \forall g \in G$. (so that ρ induces a homomorphism: $G \to GL(W)$.)

1-dimensional representations:

 $\rho: G \to \operatorname{GL}(\mathbb{C}) \cong \mathbb{C}^*.$

If *G* is finite then $\rho(G)$ is a finite subgroup of \mathbb{C}^* , hence it is cyclic. So ρ is a homomorphism from *G* ot a cyclic group.

Theorem 1.1. (*Maschke's theorem*) Every finite dimensional complex representation of a finite group G can be written as a direct sum of irreducible subrepresentations.

Remark. It's like saying there is a prime factorization. Given homomorphism: $\rho : G \rightarrow GL(V)$, we can write $V = W_1 \oplus \ldots \oplus W_k$ with W_i subspaces of V such that (ρ, W_i) is an irreducible subrepresentation of V.

This result follows from:

Theorem 1.2. If $\rho : G \to GL(V)$ is a finite dimensional complex representation of a finite group *G*, and *W* is a subrepresentation, then there exists subrepresentation *W'* of *V* such that $V = W \oplus W'$.

Remark. Same proof works for any field *K* such that |G| is invertible in *K*.

Proof for Theorem 1.2. Pick any "projection map" $\pi : V \to W$, meaning a linear map $V \to W$ which restricts to the identity map on W. (e.g. extend a basis of W to a basis of V

and define π to be identity on the basis of W, and map to any chosen vectors in W on the basis vectors outside of W.)

Define:

$$\phi: V \to W, \ v \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot \pi(g^{-1} \cdot v)$$

<u>CLAIM</u>: ϕ is *G*-invariant projection map from $V \to W$.

Check:

(1) $\phi|_W = \mathrm{id}_W$: If $w \in W$ then $g^{-1} \cdot w \in W$ since W is a subrepresentation. Then

$$\pi|_W = \mathrm{id}_W \Rightarrow \pi(g^{-1} \cdot w) = g^{-1} \cdot w \Rightarrow g \cdot \pi(g^{-1} \cdot w) = g(g^{-1} \cdot w) = w$$

So $\phi(w) = \frac{1}{|G|} \sum_{g \in G} w = w$.

- (2) Clearly it $\phi(v) \in W$ since $\pi(g^{-1} \cdot v) \in W$, and then $g \cdot \pi(g^{-1} \cdot v) \in W$ because W is a subrepresentation.
- (3) ϕ is a linear map.

$$\phi(v+v') = \phi(v) + \phi(v')$$

since ϕ is a linear combination of linear maps.

(4) Finally show that ϕ is *G*-invariant: for $h \in G$,

$$\begin{split} h \cdot \phi(v) &= h \cdot \left(\frac{1}{|G|} \sum_{g \in G} g \cdot \pi(g^{-1} \cdot v) \right) \\ &= \frac{1}{|G|} \sum_{g \in G} h \cdot (g \cdot \pi(g^{-1} \cdot v)) \\ &= \frac{1}{|G|} \sum_{g \in G} g' \cdot \pi((g')^{-1}h \cdot v) \quad (g' = hg, (g')^{-1} = g^{-1}h^{-1}.) \\ &\iff \phi(h \cdot v) = \frac{1}{|G|} \sum_{g \in G} g \cdot \pi(g^{-1}h \cdot v). \end{split}$$

This proves the claim.

Let $W' := \ker(\phi)$. Then W' is a subrepresentation of V. Also since $\phi|_W = \operatorname{id}_W$ and $\phi(V) = W$, we have $V = W \oplus W'$.

Theorem 1.3. If V is a finite dimensional complex representation of a finite group G, then V can be written in exactly one way as an (internal) direct sum $V = V_1 \oplus \ldots \oplus V_k$. where each V_i is a direct sum of (one or more) copies of an irreducible subrepresentation W_i and $W_i \ncong W_j, \forall i \neq j$. Said another way:

If $V = U_1 \oplus \ldots \oplus U_\ell = R_1 \oplus R_2 \oplus \ldots \oplus R_m$ with U_i, R_j irreducible subrepresentations of V. then $\forall i$ the number of U_i 's isomorphic to U_i equals the number of R_j 's isomorphic to U_i , and the direct sum of those U_j 's equals the direct sum of those R_j 's.

Proof. We have a lemma first.

Lemma 1.1. A homomorphism $\phi : V \to W$ between irreducible *G*-representations is either 0 or an isomorphism.

Proof of lemma. ker ϕ is a subrepresentation of *V*. It is either 0 of *V*.

 $Im(\phi)$ is a subrepresentation of W. It is either 0 or W.

Now say

$$V = U_1 \oplus \ldots \oplus U_\ell = R_1 \oplus \ldots \oplus R_m$$

with U_i, R_j 's irreducible subrepresentations of V.

Consider

$$U_1 \xrightarrow{\text{inclusion}} V \xrightarrow{\text{coord. proj}} R_i$$

This is a homomorphism of irreducible *G*-representations.

By lemma, it is 0 or an isomorphism. It cannot be $0 \forall i$ since the image of $U_1 \hookrightarrow V$ is not $\{0\}$.

So there exists $i \ s.t. \ U_1 \hookrightarrow V \twoheadrightarrow R_i$ is an isomorphism of *G*-representations.

Relabel to assume i = 1. Continue to get that the set of U_i 's up to isomorphism, equals the set of R_i 's, up to isomorphism.

Rewrite: $V = U_1^{a_1} \oplus U_2^{a_2} \oplus \ldots \oplus U_\ell^{a_\ell}$ where $a_i > 0$, U_i is irreducible and $U_i \ncong U_j$ for any $i \neq j$.

Then the R_i decomposition becomes $V = R_1^{b_1} \oplus \ldots \oplus R_m^{b_m}$ where $b_i > 0, R_i \cong U_i$ as *G*-representations.

Consider

$$U_1^{a_1} \hookrightarrow V \twoheadrightarrow R_2^{b_2} \oplus \ldots \oplus R_m^{b_m}$$

Checking lemma gives that this is 0, since

$$U_1 \hookrightarrow U_1^{a_1} \hookrightarrow V \twoheadrightarrow R_2^{b_2} \oplus \ldots \oplus R_m^{b_m} \to W_j$$

is a homomorphism between different irreducible representations (so it is 0).

Hence

 $U_1^{a_1} \subseteq \ker(\operatorname{Projection} \operatorname{of} R_1^{b_2} \oplus \ldots \oplus R_m^{b_m} \operatorname{onto} R_2^{b_2} \oplus \ldots \oplus R_m^{b_m}) = R_1^{b_1}.$

Similarly $U_1^{a_1} \supseteq R_1^{b_1} \implies U_1^{a_1} = R_1^{b_1} \implies a_1 = b_1.$