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1 Representation Theory, cont’d
RECALL: a linear representation of a group G is a homomorphism p : G — GL(W) for
some vector space V.

Say p is irreducible if V' has not subrepresentations except {0} and V, where a sub-
representation is a subspace W of V' s.t. p(g)(W) C W,V¥g € G. (so that p induces a
homomorphism: G — GL (W).)

1-dimensional representations:
p:G— GL(C) = C".
If G is finite then p(G) is a finite subgroup of C*, hence it is cyclic. So p is a homomor-

phism from G ot a cyclic group.

Theorem 1.1. (Maschke's theorem) Every finite dimensional complex representation of a finite
group G can be written as a direct sum of irreducible subrepresentations.

Remark. It’s like saying there is a prime factorization. Given homomorphism: p : G —
GL(V), we can write V =W, @ ... & W), with W, subspaces of V such that (p, W;) is an
irreducible subrepresentation of V.

This result follows from:

Theorem 1.2. If p : G — GL(V) is a finite dimensional complex representation of a finite
group G, and W is a subrepresentation, then there exists subrepresentation W' of V' such that
V=WwWaoW.

Remark. Same proof works for any field K such that |G| is invertible in K.

Proof for Pick any “projection map” 7 : V' — W, meaning a linear map V' —
W which restricts to the identity map on W. (e.g. extend a basis of W to a basis of V/



and define 7 to be identity on the basis of W, and map to any chosen vectors in W on
the basis vectors outside of 1.)

Define:

o:V—-o>W v e Zg (g™t )
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CLAIM: ¢ is G-invariant projection map from V' — W.
Check:

) ¢lw =idw: Ifw € W then g~ - w € W since W is a subrepresentation. Then

- w=gem(gT

mlw =idw = 7(g~ -w) =g

So p(w) = ﬁzger:w.

(2) Clearly it ¢(v) € W since m(g~! -v) € W, and then g - (g~ ' - v) € W because W is a
subrepresentation.

(3) ¢is alinear map.
¢(v +0") = ¢(v) + ¢(v)
since ¢ is a linear combination of linear maps.

(4) Finally show that ¢ is G-invariant: for h € G,

geG
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This proves the claim.

Let W’ := ker(¢). Then W’ is a subrepresentation of V. Also since ¢|yy = idw and
o(V)=W,wehave V =W g W' [ |

Theorem 1.3. If V is a finite dimensional complex representation of a finite group G, then V can
be written in exactly one way as an (internal) direct sumV = Vi @ ... @ Vj,. where each V; is a
direct sum of (one or more) copies of an irreducible subrepresentation W; and W; % W;, Vi # j.



Said another way:

tv=00..0U0 =R ®R:® ... Ry, with U;, R; irreducible subrepresentations of
V. then Vi the number of U;’s isomorphic to U; equals the number of R;’s isomorphic to

U;, and the direct sum of those U;’s equals the direct sum of those R;’s.
Proof. We have a lemma first.

Lemma 1.1. A homomorphism ¢ : V. — W between irreducible G-representations is either 0 or
an isomorphism.

Proof of lemma. ker ¢ is a subrepresentation of V. It is either 0 of V.

Im(¢) is a subrepresentation of W. It is either 0 or .

Now say
V=U&..oU=R1®... DR,

with U;, R;’s irreducible subrepresentations of V.

Consider .
inclusion coord. proj

U, - v R;.

This is a homomorphism of irreducible G-representations.

By lemma, it is 0 or an isomorphism. It cannot be 0 Vi since the image of U; < V is not
{0}.
So there exists ¢ s.t. Uy — V — R, is an isomorphism of G-representations.

Relabel to assume i = 1. Continue to get that the the set of U;’s up to isomorphism,

equals the set of R;’s, up to isomorphism.

Rewrite: V = U @ Uy* @ ... ® U} where a; > 0, U, is irreducible and U; 2 U; for any
i .

Then the R; decomposition becomes V' = R?l ®...® Rl» where b; > 0,R; = Uj; as
G-representations.

Consider
UV —»Rro...oRM.

Checking lemma gives that this is 0, since
U U~V —»R2a...¢Rm - W,

is a homomorphism between different irreducible representations (so it is 0).



Hence

U C ker(Projection of RY? & ... ® Rbm onto RY? @ ... ® RVm) = R}

m m

Similarly U™ D R} — U™ = R" — a; =b;.
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