Math 493

Yiwei Fu

Nov 2, 2021

1 Representation Theory, cont'd

RECALL: a linear representation of a group G is a homomorphism $\rho : G \to GL(W)$ for some vector space V .

Say ρ is irreducible if V has not subrepresentations except $\{0\}$ and V, where a subrepresentation is a subspace W of V s.t. $\rho(g)(W) \subseteq W$, $\forall g \in G$. (so that ρ induces a homomorphism: $G \to GL(W)$.)

1-dimensional representations:

 $\rho: G \to \mathrm{GL}(\mathbb{C}) \cong \mathbb{C}^*.$

If G is finite then $\rho(G)$ is a finite subgroup of \mathbb{C}^* , hence it is cyclic. So ρ is a homomorphism from G ot a cyclic group.

Theorem 1.1. *(Maschke's theorem) Every finite dimensional complex representation of a finite group* G *can be written as a direct sum of irreducible subrepresentations.*

Remark. It's like saying there is a prime factorization. Given homomorphism: $\rho: G \rightarrow$ $GL(V)$, we can write $V = W_1 \oplus \ldots \oplus W_k$ with W_i subspaces of V such that (ρ, W_i) is an irreducible subrepresentation of V .

This result follows from:

Theorem 1.2. *If* ρ : $G \to GL(V)$ *is a finite dimensional complex representation of a finite group* G*, and* W *is a subrepresentation, then there exists subrepresentation* W⁰ *of* V *such that* $V = W \oplus W'.$

Remark. Same proof works for any field K such that $|G|$ is invertible in K .

Proof for [Theorem 1.2.](#page-0-0) Pick any "projection map" $\pi : V \to W$, meaning a linear map $V \to$ W which restricts to the identity map on W. (e.g. extend a basis of W to a basis of V and define π to be identity on the basis of W, and map to any chosen vectors in W on the basis vectors outside of W .)

Define:

$$
\phi: V \to W, \ v \mapsto \frac{1}{|G|} \sum_{g \in G} g \cdot \pi(g^{-1} \cdot v)
$$

CLAIM: ϕ is *G*-invariant projection map from $V \to W$.

Check:

(1) $\phi|_W = \text{id}_W$: If $w \in W$ then $g^{-1} \cdot w \in W$ since W is a subrepresentation. Then

$$
\pi|_W = \mathrm{id}_W \Rightarrow \pi(g^{-1} \cdot w) = g^{-1} \cdot w \Rightarrow g \cdot \pi(g^{-1} \cdot w) = g(g^{-1} \cdot w) = w.
$$

So $\phi(w) = \frac{1}{|G|} \sum_{g \in G} w = w$.

- (2) Clearly it $\phi(v) \in W$ since $\pi(g^{-1} \cdot v) \in W$, and then $g \cdot \pi(g^{-1} \cdot v) \in W$ because W is a subrepresentation.
- (3) ϕ is a linear map.

$$
\phi(v + v') = \phi(v) + \phi(v')
$$

since ϕ is a linear combination of linear maps.

(4) Finally show that ϕ is *G*-invariant: for $h \in G$,

$$
h \cdot \phi(v) = h \cdot \left(\frac{1}{|G|} \sum_{g \in G} g \cdot \pi(g^{-1} \cdot v)\right)
$$

$$
= \frac{1}{|G|} \sum_{g \in G} h \cdot (g \cdot \pi(g^{-1} \cdot v))
$$

$$
= \frac{1}{|G|} \sum_{g \in G} g' \cdot \pi((g')^{-1}h \cdot v) \quad (g' = hg, (g')^{-1} = g^{-1}h^{-1}.)
$$

$$
\iff \phi(h \cdot v) = \frac{1}{|G|} \sum_{g \in G} g \cdot \pi(g^{-1}h \cdot v).
$$

This proves the claim.

Let $W' := \text{ker}(\phi)$. Then W' is a subrepresentation of V. Also since $\phi|_W = id_W$ and $\phi(V) = W$, we have $V = W \oplus W'$. .

Theorem 1.3. *If* V *is a finite dimensional complex representation of a finite group* G*, then* V *can* be written in exactly one way as an (internal) direct sum $V=V_1\oplus\ldots\oplus V_k.$ where each V_i is a *direct sum of (one or more) copies of an irreducible subrepresentation* W_i *and* $W_i \not\cong W_j, \forall i \neq j$.

Said another way:

If $V=U_1\oplus\ldots\oplus U_\ell=R_1\oplus R_2\oplus\ldots\oplus R_m$ with U_i,R_j irreducible subrepresentations of V. then $\forall i$ the number of U_i 's isomorphic to U_i equals the number of R_j 's isomorphic to U_i , and the direct sum of those U_j 's equals the direct sum of those R_j 's.

Proof. We have a lemma first.

Lemma 1.1. *A homomorphism* $\phi: V \to W$ *between irreducible G-representations is either* 0 *or an isomorphism.*

Proof of lemma. ker ϕ is a subrepresentation of V. It is either 0 of V.

Im(ϕ) is a subrepresentation of W. It is either 0 or W.

Now say

$$
V = U_1 \oplus \ldots \oplus U_\ell = R_1 \oplus \ldots \oplus R_m
$$

with U_i , R_j 's irreducible subrepresentations of V .

Consider

$$
U_1 \xrightarrow{\text{inclusion}} V \xrightarrow{\text{coord. proj}} R_i.
$$

This is a homomorphism of irreducible G-representations.

By lemma, it is 0 or an isomorphism. It cannot be 0 $\forall i$ since the image of $U_1 \hookrightarrow V$ is not {0}.

So there exists $i \ s.t. \ U_1 \hookrightarrow V \twoheadrightarrow R_i$ is an isomorphism of G-representations.

Relabel to assume $i = 1$. Continue to get that the the set of U_i 's up to isomorphism, equals the set of R_j 's, up to isomorphism.

Rewrite: $V = U_1^{a_1} \oplus U_2^{a_2} \oplus \ldots \oplus U_\ell^{a_\ell}$ where $a_i > 0$, U_i is irreducible and $U_i \ncong U_j$ for any $i \neq j$.

Then the R_i decomposition becomes $V = R_1^{b_1} \oplus \ldots \oplus R_m^{b_m}$ where $b_i > 0, R_i \cong U_i$ as G-representations.

Consider

$$
U_1^{a_1} \hookrightarrow V \twoheadrightarrow R_2^{b_2} \oplus \ldots \oplus R_m^{b_m}.
$$

Checking lemma gives that this is 0, since

$$
U_1 \hookrightarrow U_1^{a_1} \hookrightarrow V \twoheadrightarrow R_2^{b_2} \oplus \ldots \oplus R_m^{b_m} \to W_j
$$

is a homomorphism between different irreducible representations (so it is 0).

Hence

$$
U_1^{a_1} \subseteq \text{ker}(\text{Projection of } R_1^{b_2} \oplus \ldots \oplus R_m^{b_m} \text{ onto } R_2^{b_2} \oplus \ldots \oplus R_m^{b_m}) = R_1^{b_1}.
$$

Similarly $U_1^{a_1} \supseteq R_1^{b_1} \implies U_1^{a_1} = R_1^{b_1} \implies a_1 = b_1.$